
MP - Lycée Chrestien de Troyes Séance 3

Le polynôme caractéristique : définition et applications

Nous rappelons ici la définition du polynôme caractéristique. Si dans la pratique, il nous permet d’expliciter une base de
réduction, il a de nombreuses propriétés et on pourra notamment exploiter celles-ci pour justifier la densité de certains sous-
espaces de Mn(K).

Soit A ∈Mn(K). On appelle polynôme caractéristique de A le polynôme χA défini sur C par :

∀ λ ∈ C, χA(λ) = det(λ.In −A)

Attention, cette définition par le déterminant n’a du sens que pour λ ∈ C. On peut évidemment évaluer un tel polynôme en
spécifiant la valeur de l’indéterminée en un endomorphisme ou une matrice donnée... mais pour cela, il nous faudra d’abord
l’obtenir explicitement !

1. En revenant à la définition du déterminant, justifier que :

χA(λ) = λn + qn−1λ
n−1 + qn−2λ

n−2 + . . .+ q1λ+ q0

avec q0 = (−1)ndet(A) et qn−1 = −tr(A).

2. Soit λ0 ∈ K, on introduit f ∈ L(Kn) canoniquement associé à la matrice A. Etablir que les assertions suivantes sont
équivalentes :

(i) ∃ X ∈Mn1(K)\{0}, AX = λ0X

(ii) ∃ x ∈ Kn\{0}, f(x) = λ0x

(iii) Ker(f − λ0id) 6= {0}
(iv) χA(λ0) = 0

Si l’une de ces assertions est vérifiée, alors on dit que λ0 désigne une valeur propre de A (ou de f), et X (ou x) est un
vecteur propre associé à la valeur propre λ0. En particulier, on pourra retenir que ces valeurs propres sont exactement les
racines du polynôme caractéristique χA.

3. Soit p ∈ J1, nK, et notons x1, . . . , xp des vecteurs propres de Kn associés à des valeurs propres distinctes λ1, . . . , λp.
Montrer que la famille (x1, . . . , xp) est libre dans Kn.

4. (a) On se place dans le cas particulier où f admet n valeurs propres distinctes. Justifier que f est nécessairement
diagonalisable, c’est à dire que A est semblable à une matrice diagonale dans Mn(K).

(b) Plus généralement, montrer que f est diagonalisable si et seulement si f annule un polynôme scindé à racines
simples.

5. Montrer par récurrence sur n ∈ N∗ que toute matrice M ∈ Mn(C) est trigonalisable, c’est à dire semblable à une
matrice triangulaire.

Remarques

1. On a ici des résultats sur la diagonalisabilité d’un endomorphisme, des résultats que nous reverrons... mais attention :
ne condondez pas la condition suffisante sur les valeurs propres distinctes et le critère de diagonalisation.

2. En fait, le polynôme caractéristique n’a pas toujours de racines sur R et c’est pour cela qu’on ne pourra pas toujours
réduire un endomorphisme défini sur un R-espace vectoriel. Par contre, pour une matrice donnée dansMn(R), on peut
alors se plonger dans Mn(C) et dans ce cas, il existe P ∈ GLn(C) telle que :

M = PTP−1 avec T triangulaire à coefficients éventuellement complexes.

3. On montre facilement que le polynôme caractéristique est aussi un invariant de similitude, et donc :

χA(λ) = χT (λ) =

n∏
i=1

(λ− tii)

et ainsi, T étant triangulaire, les coefficients diagonaux ne sont rien d’autres que les valeurs propres !

6. Applications

(a) Montrer que GLn(K) est dense dans Mn(K).

(b) On note Dn l’ensemble des matrices diagonalisables dans Mn(C). Etablir que Dn est dense dans Mn(C).

Remarque On essaiera de retenir ces résultats fort pratiques, car ils nous permettent de prouver des égalités établies pour
des matrices particulières avant de les étendre par simple passage à la limite. Par exemple, on prouve une égalité matricielle
sur les matrices diagonales, puis les matrices diagonalisables et par densité, on peut éventuellement la prolonger surMn(C).
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