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Fonction caractéristique et théorème central limite

On présente ici la notion de fonction caractéristique d’une variable aléatoire. Si elle nous permet de caractériser les vari-
ables aléatoires usuelles, qu’elles soient discrètes ou continues, nous verrons que cette notion permet aussi d’aller chercher
un résultat fondamental : le théorème central limite dont les applications peuvent être très pratiques, puisque le calcul
d’une probabilité se ramène alors au calcul de l’aire sous une distribution gaussienne.

Définition Soit (Ω,A, P ) un espace probabilisé et considérons X une variable aléatoire réelle définie sur Ω. On appelle fonction
caractéristique de X l’application définie par :

φX : t 7−→ E(eiXt)

En particulier, si X désigne une variable aléatoire discrète telle que X(Ω) = {xk, k ∈ I}, alors φX désigne la somme d’une série
de fonctions définie par :

φX(t) =
∑
k∈I

pke
ixkt

Remarque D’ailleurs, à t fixé dans R, on remarque que pour tout k ∈ I, |pkeixkt| = pk et ainsi, la série converge absolument
de sorte que φX est définie sur R tout entier.

1. Pour chacune des lois suivantes, donner l’expression de φX(t) :

X ∼ B(p), X ∼ P (λ), X ∼ G(p)

2. (a) Soient X1, . . . , Xn des variables aléatoires discrètes mutuellement indépendantes et on note Sn = X1 + . . .+Xn.
Montrer que :

φSn(t) =

n∏
k=1

φXk (t)

(b) On suppose que X ∼ B(n, p). Donner alors l’expression de sa fonction caractéristique.

On peut même généraliser cette notion aux variables aléatoires réelles continues que vous avez rencontrées en terminale.
Ces variables aléatoires sont généralement définies par une fonction de densité f continue par morceaux, positive et intégrable

sur R telle que

∫
R
f(x) dx = 1 et pour laquelle :

P (Y ∈ [a, b]) =

∫ b

a

f(x) dx

Dans ce cas, on adapte les notations et la fonction caractéristique est donnée sur R par l’intégrale à paramètre :

φX(t) =

∫
R
eixtf(x) dx

Remarque On reconnâıt ici la transformée de Fourier de f ... celle-ci est d’ailleurs bien définie sur R puisque f est
intégrable.

3. (a) On dit que la variable aléatoire réelle Y suit la loi exponentielle de paramètre λ > 0 si elle admet pour densité
la fonction :

f : x 7−→

{
λe−λx si x ≥ 0

0 sinon

Calculer φY (t).

(b) On dit que la variable aléatoire réelle Y suit la loi normale N(0, 1) si elle admet pour densité la fonction :

f : x 7−→ 1√
2π
e−x

2/2

Calculer φY (t). On pourra encore montrer que φY est solution d’une équation différentielle linéaire...

4. On se place dans la cas particulier où X est une variable aléatoire discrète vérifiant X(Ω) = N.
Etablir que pour tout n ∈ N,

P (X = n) =
1

2π

∫ π

−π
φX(t)e−int dt

Remarque On pourra donc retenir que la connaissance de φX caractérise la loi de X : c’est en cela qu’elle désigne une
fonction caractéristique. Bien entendu, ce résultat se généralise mais il repose en partie sur l’inversion de la transformée
de Fourier, qui n’est pas simple à obtenir.

5. En utilisant la fonction caractérisique, établir que la somme d’un nombre fini de variables aléatoires indépendantes et
suivant une loi de Poisson suit encore une loi de Poisson dont on précisera le paramètre.
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Pour finir, on admet alors le théorème de Paul Lévy :

Soient (Ω,A, P ) un espace probabilisé et (Xn), X des variables aléatoires réelles définies sur Ω. Alors,

Xn
loi−→ X ⇔ ∀ t ∈ R, φXn(t) −→

n→+∞
φX(t)

Théorème 1 (de Lévy).

6. Soit (Xn) une suite de variables aléatoires mutuellement indépendantes et identiquement distribuées. On suppose de
plus que les variables aléatoires Xn possèdent un moment d’ordre 2, et on pose pour tout n ∈ N∗ :

Sn =

n∑
k=1

Xk et X∗n =
Sn − E(Sn)√

V (Sn)

(a) En notant m = E(Xi) et σ =
√
V (Xi), justifier que X∗n =

1√
n

(Y1 + . . . + Yn) avec Yi des variables aléatoires

centrées réduites et indépendantes. Montrer dans ce cas que :

φX∗
n

(t) =

(
φY1(

t√
n

)

)n
(b) Justifier rapidement que Y1 ∈ L2, puis établir que φ′Y1

(0) = 0 et φ′′Y1
(0) = −1 de sorte qu’au voisinage de 0 :

φY1(t) = 1− t2

2
+ o(t2)

(c) En déduire finalement que :

X∗n =
Sn − E(Sn)√

V (Sn)
converge en loi vers la noi normale N(0, 1)

Remarque Cette convergence en loi est aussi appelé théorème central limite. Avec la loi faible des grands nombres,
ils constituent deux résultats puissants en probablités, notamment en ce qui concerne leur interprétation :

• la loi faible des grands nombres nous permet d’affirmer que la fréquence d’apparition d’un évènement tend vers
vers une limite qui n’est rien d’autre que la probabilité que celui-ci se réalise... et ainsi, la répétition d’une expérience
nous donnera ”une bonne idée” de la probabilité qu’un évènement se réalise.

• le théorème central limite nous donne :

P (a ≤ X∗n ≤ b) = P (aσ(Sn) ≤ Sn − E(Sn) ≤ bσ(Sn)) −→
n→+∞

1√
2π

∫ b

a

e−x
2/2 dx

et ainsi, quand la taille de l’échantillon augmente, on peut en déduire ”la façon” dont le nombre d’apparitions d’un
évènement se disperse autour de sa moyenne. C’est ce qui justifie qu’en statistiques, nos histogrammes tendent vers
une distribution gaussienne.
Concrètement, si on observe les notes obtenues sur les 5 derniers DS, alors on obtient la distribution suivante :
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