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Séries entiéres : théoréme d’Abel radial et théoréeme de Bernstein

Les séries entieres sont un prétexte a de nombreuz sujets de concours. Pour aller plus loin, nous verrons ici deux théorémes
pratiques : le théoréme d’Abel radial qui nous livre la convergence uniforme sur un segment jusqu’au bord du domaine de
convergence et le théoréme de Bernstein qui nous permet d’affirmer que certaines classes de fonctions sont nécessairement
développables en série entiére au voisinage de 0.

Théoreme d’Abel radial et exemple d’application

1. On considére une série entiere complexe > anz™ de rayon de convergence R > 0 et on suppose qu'il existe 6 € [0, 27]
tel que Y anR"e™? converge. En particulier, on définit le reste partiel pour tout n € N par :

“+oo
pn =3 an(Re)
k=n
(a) Soit z un nombre complexe du segment [0, Re*] de sorte que z = tRe®, avec t € [0,1]. Etablir pour N € N que :
—+oo +oo
Z CLnZn _ PNtN + Z pn(tn _ tnfl)
n=N n=N+41

(b) En déduire que la série d’une variable réelle 3 a,t" R"e™™® converge uniformément sur le segment [0, 1].

Remarque Ici, on a prouvé la convergence uniforme en se ramenant a la convergence uniforme du reste partiel en 0, et on
pourra retenir ce résultat qui permet notamment de prolonger par continuité nos développements en série entiére
en un point du cercle d’incertitude :

{Théor‘eme 1 (d’Abel radial dans le plan complexe).]

Soit > anz™ une série entiere complexe dont on note R > 0 le rayon de convergence. On suppose qu’il existe 6 € [0, 27] tel
que 3 an R"e™® converge.
Alors, la série entiere Y anz™ converge uniformément sur le segment [0, Rew] du plan complexe :

En particulier, la série entiére est continue sur ce segment du plan complexe et :

“+oo +oo
lim anz"e™® = S(R) = Z anR"e™
n=0

z—R™ =0

2. Application Etablir que la fonction x — arctan(z) est développable en série entiére sur | — 1, 1], puis justifier que :

—+oo

Théoréme de Bernstein

On rappelle que si une fonction est de classe C°° sur un intervalle I, alors on peut appliquer la formule de Taylor a tout

ordre et ainsi, avec I =] — a, a[, on a par exemple pour une telle fonction :
o f(k)
f(z) = Z ! k'(O) 2" + R, (z), ot R,(z) désigne le reste intégral
k=0 ’
En particulier, on peut obtenir une CNS naive pour qu'une telle fonction C* soit DSE sur | — a, af :
STAUCON
fest DSE sur | —a,a] < Vz€]—a,al, f(z)= kZ_OTI < Vz €] —a,al, Rn(z) el 0
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On va alors essayer de montrer cette convergence simple du reste intégral vers 0 pour une classe de fonctions particulieres :
les fonctions absolument monotones, des fonctions de classe C° sur un intervalle I telles que :

veel, VneN, f™(z)>0

3. Etablir que les fonctions f:x € R— e et g: z € [0, %[}—) tan(z) sont absolument monotones sur leur intervalle de

définition.
Soit f une telle fonction de classe C°° qu’on suppose absolument monotone sur | — a, a[ avec a > 0.

4. (a) En utilisant la formule de Taylor avec reste intégral en 0, justifier que le reste intégral vérifie :

mn+1

Vz €] — a,a], Rn(z) =

/ (1= ) 7 (g
0

n!

(b) Soit = €] — a,a[ et notons r > 0 tel que |z| < r < a. Montrer que :

‘I|n+1
(Ba()] < D Rur)
(c) En déduire alors que R,(z) — 0 de sorte que f est développable en série entiére sur | — a, af.

n—-+oo

Remarques

1. Finalement, on essaiera de retenir différentes fagons de justifer qu’une fonction est développable en série entieére :

e on peut toujours justifier qu'une fonction est développable en série entiere par opérations algébriques sur les
DSE des fonctions usuelles... et on fera attention au domaine de convergence.

e on peut se ramener a la formule de Taylor avec reste intégral sur un intervalle centré en 0 et montrer que le reste
intégral converge simplement vers 0 sur cet intervalle.

Par exemple, on a montré :

si les dérivées de f sont uniformément bornées, alors R, (x) —+> 0 et donc f est bien DSE.
n—+0oo

si f est absolument monotone, alors R, (z) —+> 0 et par le théoreme de Bernstein, f est bien DSE.
n— oo

. . ’ s N ™ . ez
2. On retiendra notamment que la fonction tan est développable en série entiére sur [0, 5[ et par imparité de tan, elle est
™

méme DSE sur | — 3 5[
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