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Séries entières : théorème d’Abel radial et théorème de Bernstein

Les séries entières sont un prétexte à de nombreux sujets de concours. Pour aller plus loin, nous verrons ici deux théorèmes
pratiques : le théorème d’Abel radial qui nous livre la convergence uniforme sur un segment jusqu’au bord du domaine de
convergence et le théorème de Bernstein qui nous permet d’affirmer que certaines classes de fonctions sont nécessairement
développables en série entière au voisinage de 0.

Théorème d’Abel radial et exemple d’application

1. On considère une série entière complexe
∑
anz

n de rayon de convergence R > 0 et on suppose qu’il existe θ ∈ [0, 2π]
tel que

∑
anR

neinθ converge. En particulier, on définit le reste partiel pour tout n ∈ N par :

ρn =

+∞∑
k=n

ak(Reiθ)k

(a) Soit z un nombre complexe du segment [0, Reiθ] de sorte que z = tReiθ, avec t ∈ [0, 1]. Etablir pour N ∈ N que :

+∞∑
n=N

anz
n = ρN t

N +

+∞∑
n=N+1

ρn(tn − tn−1)

(b) En déduire que la série d’une variable réelle
∑
ant

nRneinθ converge uniformément sur le segment [0, 1].

Remarque Ici, on a prouvé la convergence uniforme en se ramenant à la convergence uniforme du reste partiel en 0, et on
pourra retenir ce résultat qui permet notamment de prolonger par continuité nos développements en série entière
en un point du cercle d’incertitude :

Soit
∑
anz

n une série entière complexe dont on note R > 0 le rayon de convergence. On suppose qu’il existe θ ∈ [0, 2π] tel
que

∑
anR

neinθ converge.
Alors, la série entière

∑
anz

n converge uniformément sur le segment [0, Reiθ] du plan complexe :

En particulier, la série entière est continue sur ce segment du plan complexe et :

lim
x→R−

+∞∑
n=0

anx
neinθ = S(R) =

+∞∑
n=0

anR
neinθ

Théorème 1 (d’Abel radial dans le plan complexe).

2. Application Etablir que la fonction x 7−→ arctan(x) est développable en série entière sur ]− 1, 1[, puis justifier que :

π

4
=

+∞∑
k=0

(−1)k
1

2k + 1

Théorème de Bernstein

On rappelle que si une fonction est de classe C∞ sur un intervalle I, alors on peut appliquer la formule de Taylor à tout
ordre et ainsi, avec I =]− a, a[, on a par exemple pour une telle fonction :

f(x) =

n∑
k=0

f (k)(0)

k!
xk +Rn(x), où Rn(x) désigne le reste intégral

En particulier, on peut obtenir une CNS näıve pour qu’une telle fonction C∞ soit DSE sur ]− a, a[ :

f est DSE sur ]− a, a[ ⇔ ∀x ∈]− a, a[, f(x) =

+∞∑
k=0

f (k)(0)

k!
xk ⇔ ∀x ∈]− a, a[, Rn(x) −→

n→+∞
0
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On va alors essayer de montrer cette convergence simple du reste intégral vers 0 pour une classe de fonctions particulières :
les fonctions absolument monotones, des fonctions de classe C∞ sur un intervalle I telles que :

∀x ∈ I, ∀n ∈ N, f (n)(x) ≥ 0

3. Etablir que les fonctions f : x ∈ R 7−→ ex et g : x ∈ [0,
π

2
[ 7−→ tan(x) sont absolument monotones sur leur intervalle de

définition.

Soit f une telle fonction de classe C∞ qu’on suppose absolument monotone sur ]− a, a[ avec a > 0.

4. (a) En utilisant la formule de Taylor avec reste intégral en 0, justifier que le reste intégral vérifie :

∀x ∈]− a, a[, Rn(x) =
xn+1

n!

∫ 1

0

(1− u)nf (n+1)(xu) du

(b) Soit x ∈]− a, a[ et notons r > 0 tel que |x| < r < a. Montrer que :

|Rn(x)| ≤ |x|
n+1

rn+1
Rn(r)

(c) En déduire alors que Rn(x) −→
n→+∞

0 de sorte que f est développable en série entière sur ]− a, a[.

Remarques

1. Finalement, on essaiera de retenir différentes façons de justifer qu’une fonction est développable en série entière :

• on peut toujours justifier qu’une fonction est développable en série entière par opérations algébriques sur les
DSE des fonctions usuelles... et on fera attention au domaine de convergence.

• on peut se ramener à la formule de Taylor avec reste intégral sur un intervalle centré en 0 et montrer que le reste
intégral converge simplement vers 0 sur cet intervalle.

Par exemple, on a montré :si les dérivées de f sont uniformément bornées, alors Rn(x) −→
n→+∞

0 et donc f est bien DSE.

si f est absolument monotone, alors Rn(x) −→
n→+∞

0 et par le théorème de Bernstein, f est bien DSE.

2. On retiendra notamment que la fonction tan est développable en série entière sur [0,
π

2
[ et par imparité de tan, elle est

même DSE sur ]− π

2
,
π

2
[.
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