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Autour de la décomposition spectrale

Pour réduire un endomorphisme ou une matrice carrée, on a vu qu’on cherchait d’abord à obtenir une décompostion de
l’espace en somme directe de sous-espaces stables... C’est là un des intérêts du théorème de Cayley-Hamilton, puisqu’il nous
livre une telle décomposition de l’espace en somme directe de sous-espaces caractéristiques : c’est la décomposition
spectrale.

On se place dans E un K-espace vectoriel de dimenion finie n ≥ 1, on note f ∈ L(E) et on suppose que le polynôme
caractéristique χf est scindé sur K de la forme :

χf (X) =

p∏
i=1

(X − λi)mλi

1. Justifier rapidement qu’on a :
E = ⊕pi=1Ec,f (λi)

où λ1, . . . , λp désignent les valeurs propres distinctes de f , et Ec,f (λi) est le sous-espace caractéristique associé à λi.

2. Fixons i ∈ J1, pK. On définit pi la projection sur Ec,f (λi) parallèlement à ⊕j 6=iEc,f (λj). Justifier rapidement que :{
idE =

∑p
i=1 pi (∗)

Im(pi) = Ec,f (λi) et Ker(pi) = ⊕j 6=iEc,f (λj)

3. On reprend la factorisation de χf . On se place dans le cas où p ≥ 2 et on note Qi(X) =
∏
j∈J1,pK,j 6=i(X − λj)

mλj .

(a) Montrer qu’il existe U1, . . . , Up ∈ K[X] tels que :

idE = U1(f) ◦Q1(f) + . . .+ Up(f) ◦Qp(f) (∗∗)

(b) On pose alors pour tout i ∈ J1, pK, p′i = Ui(f) ◦ Qi(f). Montrer que ces polynômes d’endomorphisme vérifient
pour tout (i, j) ∈ J1, pK2, i 6= j ⇒ p′i ◦ p′j = 0.

(c) En déduire que pour tout i ∈ J1, pK :{
p′i ◦ p′i = p′i

Im(p′i) = Ec,f (λi) et Ker(p′i) = ⊕j 6=iEc,f (λj)

Ainsi, p′i désigne encore la projection sur Ec,f (λi) parallèlement à ⊕j 6=iEc,f (λj), et on a pour tout i ∈ J1, pK, p′i = pi.

Remarques

1. Ces projecteurs p1, . . . , pp associés à la décompostion spectrale sont aussi appelés projecteurs spectraux et on pourra
retenir que pour tout i ∈ J1, pK, pi ∈ K[f ]. Autrement dit, ce sont des polynômes en f dont l’expression découle de
l’identité (∗∗).

2. Dans le cas particulier où f est diagonalisable, alors on a pour chaque valeur propre :{
Ef (λi) ⊂ Ec,f (λi)

dim(Ef (λi)) = mλi = dim(Ec,f (λi))
⇒ Ef (λi) = Ec,f (λi)

On en déduit quand f est diagonalisable à l’aide de l’égalité (∗) que :

f = f ◦ idE =

p∑
i=1

f ◦ pi =

p∑
i=1

λipi

Pour aller plus loin, on peut aussi utiliser la décomposition spectrale pour obtenir une décomposition de l’endomorphisme
f , à condition bien-sûr que son polynôme caractéristique soit scindé sur K, c’est le théorème de Dunford qu’on pourra
facilement étendre aux matrices carrées :

Soit E un K-espace vectoriel de dimension finie n ≥ 1 et considérons f ∈ L(E) tel que χf est scindé sur K. Alors, il existe
un unique couple (d, n) ∈ L(E)2 tel que :

f = d+ n, avec

{
d diagonalisable et n nilpotent

d ◦ n = n ◦ d

Théorème 1 (de décomposition de Dunford).
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4. En utilisant la décomposition spectrale, prouver l’existence et l’unicité d’une telle décomposition.

5. Applications aux matrices carrées
Le polynôme caractéristique étant toujours scindé sur Mn(C), on en déduit plus généralement que pour toute matrice
M ∈Mn(C), il existe un unique couple (D,N) ∈Mn(C)2 tel que :

M = D +N , avec

{
D diagonalisable et N nilpotente

DN = ND

(a) On considère la matrice A ∈M3(R) définie par :

A =

 1 4 −2
0 6 −3
−1 4 0


Montrer que A est trigonalisable sur R, puis en déduire une base de réduction de sorte que A = PTP−1, avec T
une matice triangulaire supérieure. Donner alors sa décomposition de Dunford.

(b) Soit A ∈ GLn(C). Montrer que A est diagonalisable si et seulement si A2 est diagonalisable.

(c) Soit M ∈Mn(C), on définit le rayon spectral par ρ(M) = max
λ∈Sp(M)

|λ|.

Montrer que :

ρ(M) < 1 ⇔ la suite (Mk) converge vers 0 ⇔ la série
∑
Mk est convergente.

En fait, on établit que (1)⇔ (2), puis on a trivialement que (2)⇔ (3).
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