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PARTIE A

1 . Formule de Vandermonde : Pour tous entiers m,n ,on obtient par identification des coefficients de (X + 1)n+m et

(X + 1)n(X + 1)m de degré p ∈ {0, . . . ,m+ n} :

(
m+ n

p

)
=

p∑
k=0

(
m

n

)(
n

p− k

)
en particulier pour n = m = p on a :

n∑
k=0

(
n

k

)2

=

(
2n

n

)

2 . Formule de Stirling :

n! ∼
n→+∞

√
2πn

(n
e

)n
Ce qui donne (

2n

n

)
∼

n→+∞

4n√
π
√
n

3 . Soit α ∈ R∗+et k ∈ N, k ≥ 2 . La fonction t 7→ 1

tα
est décroissante dans [k − 1, k] ce qui donne :

1

kα
≤
∫ k

k−1

dt

tα
≤ 1

(k − 1)α
. (1)

et ∫ k+1

k

dt

tα
≤ 1

kα
≤
∫ k

k−1

dt

tα
. (2)

• Si α ∈ ]0, 1[ , la relation (2) donne :

1 +

∫ n+1

2

dt

tα
≤

n∑
k=1

1

kα
≤ 1 +

∫ n

1

dt

tα

on a ∫ n

1

dt

tα
=
n1−α − 1

1− α
∼

n→+∞

n1−α

1− α
et ∫ n+1

2

dt

tα
=

(n+ 1)1−α − 21−α

1− α
∼

n→+∞

n1−α

1− α
ce qui donne

n∑
k=1

1

kα
∼

n→+∞

n1−α

1− α
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• Si α ∈ ]1,+∞[, la série
∑ 1

nα
et l’intégrale

∫ +∞

1

dt

tα
convergent, la relation (2) donne :

1

(α− 1)nα−1
=

∫ +∞

n

dt

tα
≤

n∑
k=1

1

kα
≤
∫ +∞

n−1

dt

tα
=

1

(α− 1)(n− 1)α−1

d’où
+∞∑

k=n+1

1

kα
∼

n→+∞

1

(α− 1)nα−1

4 . • Une intégration par partie donne pour x ∈ [2,+∞[,

I(x) =
x

ln(x)
− 2

ln(2)
+

∫ x

2

dt

(ln(t))2
(3)

• On a
1√
t

=
t→+∞

o(
1

ln(t)
),

1√
t

=
t→+∞

o(
1

(ln(t))2
) donc les fonctions t 7→ 1

ln(t)
,t 7→ 1

(ln(t))2
ne sont pas

intégrables sur [2,+∞[ ,de plus
1

(ln(t))2
=

t→+∞
o(

1

ln(t)
) donc

∫ x

2

dt

(ln(t))2
=

t→+∞
o(

∫ x

2

dt

ln(t)
)

• La relation (3) s’écrit I(x) =
x

ln(x)
− 2

ln(2)
+ o(I(x)) d’où

I(x) ∼
x→+∞

x

ln(x)

5 . Soit α ∈ R, on a (1 + x)α =

+∞∑
n=0

(
α

n

)
xn ∀x ∈ ]−1, 1[, avec

(
α

n

)
=
α(α− 1)...(α− n+ 1)

n!
.

Si α = −1

2
:

(−1

2
n

)
=

−1

2
(
−1

2
− 1)...(

−1

2
− n+ 1)

n!

=
(−1)n

2n
1.3...(2n− 1)

n!

=
(−1)n

2nn!

(2n)!

2.4...2n

=
(−1)n

22n

(2n)!

(n!)2

=
(−1)n

4n

(
2n

n

)
ce qui donne

1√
1− x

=

+∞∑
n=0

1

4n

(
2n

n

)
xn.
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PARTIE B
Les fonctions F et G sont définies par :

∀x ∈ ]−1, 1[ , F (x) =

+∞∑
n=0

P (Sn = 0d)x
n

∀x ∈ [−1, 1] , G(x) =

+∞∑
n=1

P(R = n)xn

6 . • On a pour tout n , 0 ≤ P (Sn = 0d) ≤ 1 et 0 ≤ P (R = n) ≤ 1 donc Rcv(

+∞∑
n=0

P (Sn = 0d)x
n) ≥ 1 et

Rcv(

+∞∑
n=0

P (R = n)xn) ≥ 1.

• La somme d’une série entière de rayon de convergence R > 0 est de classe C∞ sur ]−R,R[ au moins .

Donc F et G sont définies et de classe C∞ sur ]−1, 1[ .

• Les événements [R = n] = ” la marche aléatoire (Sn)n∈N revient en 0d, pour la première fois à l’instant n ”

sont deux à deux disjoints, donc

n∑
k=0

P (R = k) = P

(
n⋃
k=0

[R = k]

)
≤ 1.

La série
∑

P (R = n) est à termes positifs dont les sommes partielles sont majorées, donc elle converge et∑
(−1)nP (R = n) converge absolument, d’où G est définie sur [−1, 1] .

De plus sup
x∈[−1,1]

|P (R = n)xn| = P (R = n) et
∑

P (R = n) converge , donc
∑

P (R = n)xn converge nor-

malement donc converge uniformément sur [−1, 1], le théorème de continuité des séries de fonctions donne que

G est continue sur [−1, 1].

• On a [R = +∞] =
+∞⋃
k=0

[R = k] , donc [R 6= +∞] =
+∞⋃
k=0

[R = k] .

Ecrivons [R 6= +∞] comme réunion croissante d’événements : [R 6= +∞] =
+∞⋃
n=0

(
n⋃
k=0

[R = k]

)
, le théorème

de la limite monotone donne

P ([R 6= +∞]) = lim
n→+∞

P

(
n⋃
k=0

[R = k]

)

= lim
n→+∞

n∑
k=0

P (R = k)

= G(1)

• Soit 0 < k ≤ n, la relation est triviale si P (R = k) = 0,supposons P (R = k) 6= 0, on a

P ([Sn = 0d] ∩ [(R = k)]) = P(R = k).P (Sn = 0d | R = k)

Si l’événement [R = k] est réalisé alors Sk = X1 + ..+Xk = 0k donc

P (Sn = 0d | R = k) = P (Xk+1 + ..+Xn = 0n−k)

les variables aléatoires Xk sont mutuellement indépendantes et suivent la même loi donc

P (Xk+1 + ..+Xn = 0n−k) = P (X1 + ..+Xn−k = 0n−k)
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cette valeur commune est égale à
∑

(h1,..,hn−k)∈X(Ω)n−k

h1+..+hn−k=0d

n−k∏
i=1

P (X = hi) .

ce qui donne

P ([Sn = 0d] ∩ [(R = k)]) = P(R = k).P (Sn−k = 0d)

• La famille d’événements ([R = k])k∈N∗∪{+∞} constitue un système complet d’événements donc pour n ∈ N∗

on a

P (Sn = 0d) =
∑

k∈N∗∪{+∞}

P([Sn = 0d] ∩ [(R = k)])

remarquons que si k ≥ n+ 1 alors P ([Sn = 0d] ∩ [(R = k)]) = 0 ce qui donne

P (Sn = 0d) =

n∑
k=1

P([Sn = 0d] ∩ [(R = k)])

=

n∑
k=1

P(R = k).P (Sn−k = 0d)

• Soit x ∈ ]−1, 1[ , on a

F (x) = P (S0 = 0d) +

+∞∑
n=1

P (Sn = 0d)x
n

= 1 +

+∞∑
n=0

(
n∑
k=1

P(R = k).P (Sn−k = 0d)

)
xn

d’après le produit de Cauchy de deux séries entières on a :

F (x) = 1 + F (x)G(x)

• On a lim
x→1−

G(x) = G(1) = P ([R 6= +∞]) .

Si P ([R 6= +∞]) 6= 1 : comme G est continue alors G(x) 6= 1 au voisinage de 1,ce qui donne

F (x) =
1

1−G(x)
et

lim
x→1−

F (x) =
1

1− P ([R 6= +∞])

Si P ([R 6= +∞]) = 1 : pour tout 0 < x < 1 on a G(x) <

+∞∑
n=1

P (R = n) = 1 donc F (x) =
1

1−G(x)
et

lim
x→1−

F (x) = +∞.

7 . Soit (ck)k∈N une suite de R+ Rcv

(∑
ckx

k
)

= 1 et
∑

ck diverge.

On a donc

n∑
k=0

ck −→
n→+∞

+∞ , soit A > 0 il existe N > 0 vérifiant si n ≥ N alors

n∑
k=0

ck ≥ A+ 1 .
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Fixons n ≥ N , on a

n∑
k=0

ckx
k −→
x→1−

n∑
k=0

ck , donc pour ε = 1 il existe α > 0 tel que si x ∈ ]1− α, 1[ alors

∣∣∣∣∣
n∑
k=0

ckx
k −

n∑
k=0

ck

∣∣∣∣∣ ≤ ε
et

n∑
k=0

ckx
k ≥

n∑
k=0

ck − 1 ≥ A , finalement :

∀A > 0∃α > 0, x ∈ ]1− α, 1[⇒
+∞∑
k=0

ckx
k ≥ A

et

+∞∑
k=0

ckx
k −→
x→1−

+∞.

8 . • Si
∑

P (Sn = 0d) est divergente :

On sait que ρ = Rcv(
∑

P (Sn = 0d)x
n) ≤ 1 donc ρ = 1, la question 9. donne

F (x) =

+∞∑
n=0

P (Sn = 0d)x
n −→
x→1−

+∞

de la question 8. on a G(x) = 1− 1

F (x)
donc lim

x→1−
G(x) = 1 = G(1) = P ([R 6= +∞]).

• Si P ([R 6= +∞]) = 1 :

Supposons
∑

P (Sn = 0d) convergente alors F admet une limite finie en 1−,mais question 8. donne

lim
x→1−

F (x) = +∞ absurde, donc
∑

P (Sn = 0d) est divergente.

• Pour i ∈ N∗, posons Ai = [Si /∈ {Sk, 0 ≤ k ≤ i− 1}] et Yi = 1Ai
la variable de Bernoulli indicatrice de

l’événement Ai,on a :

P (Yi = 1) = P(Si 6= Si−1, .., Si 6= S0)

= P(Si − Si−1 6= 0, .., Si 6= 0)

= P

 ⋃
h0 6=0,...,hi−1 6=0

(Si − Si−1 = hi−1, . . . , Si = h0)


comme les événements considérés sont incompatibles alors

P (Yi = 1) =
∑

h0 6=0,...,hi−1 6=0

P (Si − Si−1 = hi−1, . . . , Si = h0)

=
∑

h0 6=0,...,hi−1 6=0

P (Xi = hi−1, Xi +Xi−1 = hi−2, . . . , Xi + ..+X1 = h0)

on remarque que 

Xi = hi−1

Xi +Xi−1 = hi−2

...

Xi + ..+X2 = h1

Xi + ..+X1 = h0

⇔



Xi = hi−1

Xi−1 = hi−2 − hi−1

...

X2 = h1 − h2

X1 = h0 − h1

5



les Xi sont indépendantes et de même loi que X,ce qui donne

P (Yi = 1) =
∑

h0 6=0,...,hi−1 6=0

P (X1 = h0 − h1, . . . , Xi−1 = hi−2 − hi−1, Xi = hi−1)

=
∑

h0 6=0,...,hi−1 6=0

P (X1 = h0 − h1) . . .P(Xi−1 = hi−2 − hi−1).P(Xi = hi−1)

=
∑

h0 6=0,...,hi−1 6=0

P (X = h0 − h1) . . .P(X = hi−2 − hi−1).P(X = hi−1)

=
∑

h0 6=0,...,hi−1 6=0

P (Xi = h0 − h1) . . .P(X2 = hi−2 − hi−1).P(X1 = hi−1)

de plus on a 

Xi = h0 − h1

Xi−1 = h2 − h1

...

X2 = hi−2 − hi−1

X1 = hi−1

⇔



X1 = hi−1

X1 +X2 = hi−2

...

X1 + ..+Xi−1 = h1

X1 + ..+Xi = h0

d’où

P (Yi = 1) =
∑

h0 6=0,...,hi−1 6=0

P (S1 = hi−1, . . . , Si = h0)

= P (S1 6= 0, . . . , Si 6= 0)

= P(R > i)

• Pour n dans N, Nn est le cardinal de {Sk, k ∈ {0, . . . , n}} , Nn est une variable aléatoire finie donc admet une

espérance . Remarquons que :

Sn /∈ {Sk, k ∈ {0, . . . , n− 1}} ⇔ Nn = Nn−1 + 1

et

Sn ∈ {Sk, k ∈ {0, . . . , n− 1}} ⇔ Nn = Nn−1

ce qui donne

Nn = Nn−1 + Yn

par suite E(Nn) = E(Nn−1) + E(Yn), de plus E(Yn) = P (Yn = 1) = P (R > n) , on obtient

E (Nn) = E(N0) +

n∑
i=1

P(R > i)

= 1 +

n∑
i=1

P(R > i)

9 . On a E (Nn) = 1 +

n∑
i=1

P (R > i) , les événements [R > i] sont décroissants , le théorème de la limite monotone

donne

lim
n→+∞

P(R > i) = P(

+∞⋂
i=1

[R > i]) = P(R = +∞)
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le théorème de Cesàro donne
E (Nn)

n
−→

n→+∞
P(R = +∞)

PARTIE C
On a p ∈]0, 1[, q = 1− p et la loi de X est donnée par

P(X = 1) = p et P(X = −1) = q

on pourra supposer X(Ω) = {−1, 1} .

10 . Pour ω ∈ Ω S2n+1(ω) est somme de 2n+1 termes prenant la valeur 1 ou −1 donc S2n+1(ω) = r−s avec r+s = 2n+1,

forcement r 6= s et S2n+1(ω) 6= 0 par suite P (S2n+1 = 0) = 0.

D’autre part on a

[S2n = 0] =
⋃

I⊂[[1,2n]]
Card(I)=n

(⋂
i∈I

[Xi = 1] ∩
⋂
i/∈I

[Xi = −1]

)

c’est une réunion d’événements disjoints et les Xi sont indépendantes et de même loi que X donc

P (S2n = 0) =
∑

I⊂[[1,2n]]
Card(I)=n

pnqn

=

(
2n

n

)
pnqn

11 . Pour x ∈]− 1, 1[,on a F (x) = 1 + F (x)G(x) et

F (x) =

+∞∑
n=0

(
2n

n

)
pnqnx2n

=

+∞∑
n=0

(
2n

n

)
4n

(
4pqx2

)n
=

1√
1− 4pqx2

remarquer que pq ≤ 1

4
. Donc

G(x) = 1−
√

1− 4pqx2

.

On a G(1) = P (R 6= +∞) = 1− P (R = +∞) donc P (R = +∞) =
√

1− 4pq = |2p− 1| = |p− q|.

P(R = +∞) = |p− q|.
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G(x) = 1−
√

1− 4pqx2 = −
+∞∑
n=1

(
1/2

n

)(
−4pqx2

)n
et

(
1/2

n

)
=

(−1)n−1

n22n−1

(
2n− 2

n− 1

)
ce qui donne

G(x) =

+∞∑
n=1

2

n

(
2n− 2

n− 1

)(
pqx2

)n
donc

P(R = 2n) =
2

n

(
2n− 2

n− 1

)
(pq)

n
, P(R = 2n+ 1) = 0

12 . p = q =
1

2
, donc

P(R = 2n) =
2

n4n

(
2n− 2

n− 1

)
∼

n→+∞

1√
2πn3/2

On a E (Nn) = 1 +

n∑
i=1

P (R > i) et P (R > i) =

+∞∑
n=i+1

P (R = n)

P (R > 2i+ 1) = P (R > 2i) =

+∞∑
n=2i+2

P (R = n) =

+∞∑
n=i+1

P (R = 2n) ∼ 2√
π(2i)1/2

, donc P (R > n) ∼ 2√
πn1/2

d’où

E (Nn) ∼
n→+∞

4n1/2

√
π

PARTIE D
13 . • Soient m et n deux entiers naturels tels que m > n.

an

n∑
k=0

bn−k ≤
n∑
k=0

akbn−k = 1

donc

an ≤
1

Bn

• On a

a0 (Bm −Bm−n) = a0

n−1∑
k=0

bm−k

≥
n−1∑
k=0

akbm−k

≥ 1−
m∑
k=n

akbm−k

≥ 1− an
m∑
k=n

bm−k

≥ 1− an
m−n∑
k=0

bk

d’où

1 ≤ anBm−n + a0 (Bm −Bm−n)
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14 . Soit (mn)n∈N vérifiant mn > n pour n assez grand et Bmn−n ∼
n→+∞

Bn et Bmn
−Bmn−n −→

n→+∞
0 .

Donc Bmn−n =
n→+∞

Bn + o(Bn) et a0 (Bm −Bm−n) = o(1). De la question précédente on a

1 + o(1)

Bn + o(Bn)
≤ an ≤

1

Bn

ce qui donne

an ∼
n→+∞

1

Bn

15 . On a bn ∼
n→+∞

C

n
donc Bn ∼

n→+∞
C ln(n) , on prend mn = n lnn qui vérifie facilement les conditions de 17, donc

an ∼
n→+∞

1

C ln(n)

PARTIE E
16 . Soit k ≤ n , par la même démarche de la question 11. on trouve

P(R > n− k) = P(S1 6= 0d, ..., Sn−k 6= 0d)

= P(Sk+1 − Sk 6= 0d, ..., Sn − Sk 6= 0d)

= P(Sk+1 6= 0d, ..., Sn 6= 0d | Sk = 0)

Posons Bi = [Si = 0d] ∩ [Si+1 6= 0d, ..., Sn 6= 0d] pour 0 ≤ i ≤ n.

Les Bisont deux à deux disjoints et
n⋃
i=0

Bi = Ω ( car pour tout ω ∈ Ω, l’ensemble A(ω) = {i ∈ [[0, n]] , Si = 0d} et

non vide car contient 0,soit k = max(A(ω)) alors ω ∈ Bk )

donc

1 =

n∑
k=0

P(Bk)

=

n∑
k=0

P(Si = 0d)P(Sk+1 6= 0d, ..., Sn 6= 0d | Sk = 0)

=

n∑
k=0

P (Sk = 0d)P(R > n− k)

17 . P (X = (0, 1)) = P (X = (0,−1)) = P (X = (1, 0)) = P (X = (−1, 0)) =
1

4
.

Dans [S2n = 0] il y’a une symétrie, le nombre de fois ou (0, 1) est atteint et le même que (0,−1) , notons ce nombre

p ∈ [[0, n]] , ainsi (1, 0)et (−1, 0) sont atteint exactement n− p fois ce qui donne :

[S2n = 0] =
⋃

0≤p≤n

⋃
I⊂[[1,2n]]
Card(I)=2p

[CI ∩DI ]

avec

CI =
⋃
J⊂I

Card(J)=p

⋂
i∈J

[Xi = (0, 1)] ∩
⋂
i∈I\J

[Xi = (0− 1)]


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et

DI =
⋃
J⊂I

Card(J)=n−p

⋂
i∈J

[Xi = (1, 0)] ∩
⋂
i∈I\J

[Xi = (−1, 0)]


par indépendance des Xi on a

P (S2n = 0) =
∑

0≤p≤n

∑
I⊂[[1,2n]]
Card(I)=n

P(CI)P(DI)

et P (CI)P (DI) =
∑
J⊂I

Card(J)=p

(
1

4

)card(I)

×
∑
J⊂I

Card(J)=p

(
1

4

)card(I)

=
1

42n

(
n

p

)(
n

n− p

)
donc

P (S2n = 0) =
∑

0≤p≤n

∑
I⊂[[1,2n]]
Card(I)=n

1

42n

(
n

p

)(
n

n− p

)

=
1

42n

∑
0≤p≤n

(
n

p

)(
n

n− p

) ∑
I⊂[[1,2n]]
Card(I)=n

1

=
1

42n

(
2n

n

) ∑
0≤p≤n

(
n

p

)2

la formule de Vandermonde donne

P (S2n = 02) =

(
2n

n

)2

42n

18 . De la question 19. on a

1 =

n∑
k=0

P (S2k = 0d)P(R > 2n− 2k)

et P (S2n = 02) =

(
2n

n

)2

42n ∼
n→+∞

1

πn
, la question 18. donne P (R > 2n) ∼

n→+∞

1

π lnn
, comme

P (R > 2n) = P (R > 2n+ 1) alors P (R > n) ∼
n→+∞

1

π lnn
.

On sait que E (Nn) = 1 +

n∑
i=1

P (R > i) , la série
∑ 1

lnn
est divergente donc E (Nn) ∼

n→+∞

n∑
k=2

1

π ln k
, par

comparaisons avec une intégrale on obtient E (Nn) ∼
n→+∞

1

π
I(n) d’où

E (Nn) ∼
n→+∞

n

π lnn

FIN DU PROBLÈME
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