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I Autour de la fonction Gamma d’Euler

I.A

1.

I.B

. Les fonctions t s e~ et t s e~

Soit z € R. Posons f, : R* — R définie par f,(t) = t*"te~'. Le terme I'(z) est bien défini si et seulement
si la fonction [ est intégrable. Elle est continue sur R et f.(t) = o( t12) en +o00. Au voisinage de 0T,
fa(t) ~ t1 - donc f, est intégrable en 0 si et seulement si x > 0 par critére de comparaison & une

intégrale de Riemman. Donc I'(x) est bien défini si et seulement si x > 0.

. Soit > 0. Posons u et v deux fonctions définies sur RY par u(t) = t* et v(t) = —e™". Alors u et
v sont de classe C! sur leur domaine de définition et de plus uv’ = fy41 et v'v = —xf, donc les
intégrales f0+o° uv’ et f0+oo u'v convergent. Nous pouvons donc effectuer une intégration par partie sur

10, +o0f : 0+OO uv' = [uw] > — 0+OO uw'v. Comme u(t)v(t) — 0 en +o0o et en 0, le terme crochet est nul

et f0+oo fra1=— f0+oo —x fy soit T'(z + 1) = z[(x).

‘Pour tout > 0, I'(x + 1) = 2I'(z). ‘

Par récurrence immédiate :

Pour tout x >0, 'z +n)=(z+n—1)(x+n—2)...2I(x). ‘

En particulier, pour = 1 nous avons I'(n) = (n — 1)!T'(1) avec I'(1) = f+oo “tdt =1.

‘Pour tout n € N*, I'(n) = (n — 1). ‘

4 . A . .
" sont bien définies et continues sur Ry et ce sont des o(t%) en +o00

donc elles sont intégrables.

. , _ 42 _44 . L
Les intégrales f0+oo e " dt et f;oc e~t" dt sont bien définies.

Dans la premiére intégrale, effectuons le changement de variable u : ¢ »—> t2 qui réalise un C'-
diffeomorphisme de R, dans R, . Nous avons u = t? d’otl y/u = t et dt = f d’ou f oo 6=t 4t =

O+°° e_u% = 1I'(3). De méme, avec le changement de variable u = ¢t* on montre que | oo o=t gt =

+o0 4 d
fo e u4u31j4 = %F(Z)'

Nous avons j;roo et dt = % % et j+°° -t qt = %LF(%l)'

. Soient t > 0 et € [a,b]. Les termes ¢ et t® étant positifs, nous avons toujours max(t?, %) < t* + ¢°.

De plus, si t > 1 alors t* < t*. Et si t < 1 alors ¢* < t°.

Pour tout ¢ > 0 et = € [a, b] nous avons t¥ < max(t%, %) < @ + 7.

1. Vous pouvez envoyez vos remarques ainsi que les irréductibles erreurs et fautes de frappes qui se seront glissées dans ce
document & ’adresse suivante pierre-amaury.monard@laposte.net. L’auteur vous en sera reconnaissant.
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2.

I.C

Montrons que I' est de classe C* sur tout segment de R . Soit [a, b] C R%
zlnt

Posons 7 : [a, b]x]0, +00[— R, définie par vy(x,t) = ta:—l —t _ evlnt

un segment.

-t Alors ~ est infiniment déri-
vable par rapport a la variable z et pour tout k € N, ak X (x,t) (lnt)ktr le=t. Pour tout k € N,
gk (z,1)| < gr(t) := [Int* Me_t. La fonction gj est

k
bien définie et continue sur ]0,+oo[. En +o0o, gi(t) = o(%) et en 07, gi(t) ~ glffla donc gy, est in-
tégrable sur R* . D’aprés le théoreme de dérivation sous le signe intégrale, la fonction I' : [a,b] — R

Tt

k
la fonction 22 est continue en t et de plus,

ak

définie par I'(z) = 0+°° ~(x,t) dt est bien définie, de classe C* et de dérivées successives données par
I (z) = 0+°O g,ﬂ(x t) dt sur le segment [a, b]. Ceci est vrai pour tout segment de R*.

La fonction I' est de classe C°° sur R’ et pour tout £ € N et x > 0, k) () = fOJrOO(ln t)ktr—le=t dt.

. Pour tout > 0, I'(z) = 0+°°(1n t)%t*~le~t dt. Donc G"(x) > 0. De plus, I'intégrande est une fonction

positive, continue, non identiquement nulle donc I'intégrale est non nulle. D’ou I'(z) > 0 et I est une
fonction strictement croissante. Elle s’annule au plus une fois.

On sait déja que I'(1) = 1. Nous avons également I'(2) = 1! = 1. La fonction I' étant de classe C! sur
[a, ], d’aprés le théoréme de Rolle il existe £ €]1,2[ tel que IV(€) = 0.

‘H existe un unique réel £ tel que TV(£) = 0. Ce réel vérifie 1 < € < 2. ‘

. La fonction I"” étant (strictement) croissante et s’annulant en ¢ elle est négative sur |0, & et positive

sur )¢, +o0o[ ce qui montre que I' est décroissante sur ]0,&] et croissante sur [£, +o00].
La fonction I' est croissante au voisinage de 400 et non bornée au voisinage de +o0o car I'(n + 1) =
n! — 400 donc diverge vers +oo. li1+n I'(z) = 400

T—>r+00

Au voisinage de 0, I'(z) = w ~ L carI'(z+1) - I'(1) = 1 quand z — 0%. Donc lim I'(z) = +oc.

z—0

Pour le graphe de T, il faut le tracer convexe car I > 0.

IT Une transformée de Fourier

I1I.A
1.

I1.B
1.

Soit f : Rx]0, +00[— R la fonction réelle définie par f(z,t) = e~‘t~3/4e™*. La fonction f est indéfini-

ment dérivable par rapport a la variable x, de dérivées partielles données par g:—i (z,t) = (it)ke—tt—3/4eite,

Pour tout & € N,

(x t)’ < gi(t) == tF=3/%et. Les fonctions gj sont continues sur |0, 4o,
gr(t) = o(t%) en +oo et gr(t) ~ 153/% en 07 donc g est intégrable sur ]0,+oo[. D’aprés le théo-
réme de dérivation sous le signe [, la fonction F : 2 f e r f(z,t)dt est bien définie sur R, de classe
C™ et de dérivées successives données par F*)(z) = f0+°° gkf (x,t)dt.

De plus, F(0) = [[7t3/4e~tdt = [(1/4).

La fonction F est de classe C® et F*) = fo—s_oo(it)k’t_:ﬁ/‘le_t dt. Et F(0) =T'(1/4).

Pour tout n € N et # € R, posons uy, . (t) = e~t3/4 (wt) de sorte que F(z) = [;7° S0 uno(t) dt.
Montrons que pour z proche de 0, nous pouvons echanger I'intégrale et la somme. D’aprés le théo-
réeme d’interversion [ — ", il suffit de montrer que la série Y [|uy | converge. Posons I,(z) :=



I1.

|=[™

Nn o (t)| dt. Alors I,(z) f+oo et~ 3/4(|a:\t)” = ¢ avec ¢, := [(n+1—3/4). Pour n > 2,
nous avons n+ 1 —3/4 > 2 donc ¢, < I'(n+ 1) = n! par croissance de la fonction I' sur [2, +o0o[. Donc
0 < I,(z) < |=|". Et la série > I,(z) converge pour |z| < 1.

Soit donc |z| < 1. Alors, F(z) = [;7°° 0™ up . (t) dt = 0+°° Un (1) dt =30 ¢, (zgn De plus,
n=T(n+1/4)=(n—1+1/4)... (1 +1/4).1/4T(1/4) = g‘ (k +1/4)co

bn+1 Cn+1 (n+1+1/4) _ n+1/4
bn en(ntl) — T(n+1/4)(n+l)  n+l

bert, la série entlere > bpa™ admet R =1 comme rayon de convergence.

Posons b, := C"Z . Alors — 1. D’apreés le critére de D’Alem-

)= 1.

Pour tout |z| < 1, F(z) = > ¢ cn(i':;?n avec ¢, = D(n+1/4). ¢ = [ (k4 1/4)co et RO( n(7;,)
. 1/4 V2nr(nt-1)(n=1/2)g—n-1/4 _ 1/4)-1/2
. Soit x € U. Alors, n(m ‘ = "Z./) ~ Ti/ﬁnnﬂ/ze: = 1/4( ) % ~ %
d’aprés la formule de Sterhng et (1+ a/n)" ~ e“. Donc la série ) en = ‘ est divergente.
Pour |z| =1, la série ) c,,,% ne converge pas absolument.
+o0 xZn +oo x2n+1
. Les coefficients ¢,, étant réels, nous avons : F'(z) = ZO:(—l)"ch(Qn)! —i—izo:(—l)"cznﬂw. Le
—R(x) —I(z)
développement limité en 0 d’une série entiére étant obtenu par troncature, on obtient, R(z) = ¢y —
222 +o(2%) et I(x) = cyw — $a® + o(a*). Sachant ¢, = gfl(k +1/4)co.
Au voisinage de 0, R(z) = co(1 — 52%) + o(z3) et I(z) = co(% — lfg) + o(z%).
C
1. D’apres la question I1.A on sait que F est dérivable de dérivée F'(x f+oo it/ 4eta(®) gyec a(z) =
—1 4 iz. Posons u(t) = t'/* et v(t) = Ot:z;z) Ce sont des fonctlons de classes C! sur ]0,+oo] et
u'(t) =t i '(t) = @) Les fonctions wv’ et w'v sont intégrables sur ]0, +oo[ de terme crochet
[uv]d®° nul donc par IPP : F'(z) =i +OO Zfo w'v = 7&) +oot 3/dettint g — YZ)F( x).

Nous posons donc A(z) = 4(—1i+m=) = 4(x1+i)~

La fonction F vérifie F' + AF avec A(x) = m

. La fonction F est de la forme F = Ce B ou C 6 C et B: R — C est une primitive de A. Nous

_ 11 _ 1 == _ 1 2x _ i
avons A(x) = 170 = 1142 — 8Tra? i HIQ Une primitive de A est donnée par B : = —

$In(1+2?)— £ arctan(z). Il existe donc une constante C' € C telle que F(z) = Ce~s In(+e?)+] arctan(z),
Pour x = 0 nous obtenons F'(0) = C = cy.

Pour tout |z| < 1, F(x) = %eq arctan

2. La formule admise par ’énoncé est une formule de Sterling généralisée. Pour x > —1, définissons la factorielle réelle par

z! :=I'(x + 1). cette définition est cohérente avec la définition de la factorielle sur les entiers naturels. La formule de Sterling
n! ~ v2rn"F/2e™™ se généralise a T'(x + 1) ~ v/27mz®+/2e 7. Sachant I'(x + 1) = 2T'(z) on en déduit 'équivalent admis par
le sujet.




IIT Autour de la loi de Poisson
IT1. A

- k
1. Soit t € R. Nous avons P(X = k)tk = ¢ ,S/\) . Il s’agit d’une série exponentielle donc conver-
gente. Ainsi, d’aprés la formule de transfert la variable aléatoire +¥ admet une expérance et E[tX] =

—A k
Foo g 13!9\) =eeM dont Gx(t) = M1,

Pour tout t € R, Gx(t) = eMt=1),

2. La fonction Gx est une série entiére de rayon de convergence +oo. Elle est donc de classe C*° sur R et
ses dérivées successives se calculent en dérivant terme a terme. En particulier, G’y (1) = .7 kP(X =
E)1FL =EX et G% (1) = S5 k(k — D)P(X = k)1" 2 = E[X (X — 1)].

Par ailleurs, G’y (1) = X et G% (1) = A\? (obtenues en dérivant ¢ ~ e*=1)). On en déduit EX = X
puis Var(X) = \. En effet Var(X) = E[X(X — 1)] + EX — (EX)? = A2 + XA — \? d’aprés la formule de
Konig-Huygens.

EX = Var(X) = A, Var(X) = A et ox = V.

3. Soit t € R. Les variables aléatoires t* et t¥ admettent une espérance donc tX*Y aussi. De plus,
Gxiy(t) = EtXTY] = EtXtY] = EtX]|E[tY] car tX et t¥ sont des variables aléatoires indépendantes
d’aprés le lemme des coalitions. Donc G,y (t) = Gx(t)Gy(t) = ertDerlt=1) = A+m=1) Op
reconnait la série génératrice d’une loi de Poisson de paramétre A\ 4+ p. Or la série génératrice est
caractéristique de la loi donc X + Y a pour loi une P(A + u). Le fait que Gx est caractéristique de la
loi de X E| vient du fait que les coefficient (a,) d’une série entiére f = > a,z™ sont reliés a f par la

(n)
formule a,, = fT(O).

(X +Y <P+ p)]

I11.B

1. D’aprés la question précédente et par récurrence immeédiate :
Sp = P(nA).

2. Les variables aléatoires X1, ..., X, admettent un moment d’ordre deux donc 5,, et T}, aussi.
D’aprés la question I11.A.2), ES,, = Var(S,) = nA. Par linéarité de l'espérance, ET,, = 0. De plus,

Var(T},) = Var(S:L/jT’;\)‘) = Va;(f") =1

‘ESn =n\, og, = Vvn\, ETl, =0et o, = 1. ‘

3. Soit € > 0. Posons ¢(¢) = \% Soit ¢ > ¢(e).
Appliquons l'inégalité de Bienaymé-Tchebicheff & T,, (qui est centrée-réduite) : P(|T,]| = ¢) < C% <
1

EON

Pour tout ¢ > ﬁ, P(|T,] > | < e.

3. C’est-a-dire que X et Y ont la méme loi si seulement si Gx = Gy.



IT1.C

1. D’aprés I'inégalité des accroissements finis, pour montrer qu’une fonction de classe C! est M-lipschitzienne,
il suffit de montrer que sa dérivée est bornée par M.
La fonction f est dérivable de dérivée donnée par f'(z) = —ge 27 pour tout z € R. La fonction f’
est continue sur R et admet des limites (nulles) en +o0o donc est bornée. Soit M > 0 tel que |f'| < M.
Alors f est M-lipschitzienne.

‘ La fonction f est lipschitzienne. ‘

2. a) Soient x € Ret h > 0. Alors ‘hf(:c) - ffrh f(t)
f;+hM\x—t]:M%2.

@) = f@) e < [ fw) — )] dt <

Pour tout r e R et h > 0,

Sy = [ ) at] < aly

b) Soit n € N tel que I,, est non vide. Ecrivons I,, = [p, q] et posons
B = | s Yoker, Flana) = 700 (0 dt‘

Tp,n

Alors fxq+1,n F(t)dt = ZZ pfa‘;r:j;ln Ft)dt den f;::1n F(t)dt
Drou A” - ‘Zkeln \ﬁf(xk n) Zke[n fzkﬂ " f( ) < Zke[n \/%f(xk,n) - f;:H " f( )

En remarquant que Tjy1, = Tgpn + \/7T’ nous pouvons utiliser I'inégalité prouvée a la question

L 1
T nte av = = .
précédente avec r = xy , et h T

D’ou A, Zkeln 2%\ (gz)/\M ou ¢(I,) = q — p désigne la longueur de 'intervalle d’entiers I,,.
Or I, = [avnA + nA, bvnA +nA| NN donc ((I,,) < (b—a)VnA.

I M(b—a)
Dou A, N

On obtlent un majorant en O( f) qui tend donc vers 0 avec n (ouf!).

Pour tout n € N tel que I, est non vide, \/% Sower, f(@rn) — ];;":1" ft)dt| < %

N _ M(b—a)
ou C = o

¢) La question est délicate car quand n varie, l'intervalle I,, varie aussi...et donc p et ¢ aussi. En
réalité il eut fallu noter p,, et g, les bornes de I,,. Nous allons montrer que x,,, , — a et g, 41, — b
quand n — 400 ce qui établiera la limite voulue grace au théoréme des gendarmes.
D’aprés la définition de p,, nous avons : avVnA4+nA < pp < avVnA+nA+1 dota < Tppn < a—i—\/%.
En effet, lorsque k parcourt I,,, xy, parcourt lintervalle [a,b] en faisant des sauts de longueur

1 ) _ 1
VX D’ou nll}rf Tp,n = a. De méme, ngrfoo Tg,m = b et comme Tg, 110 = Tg,n + i Dous

avons aussi hm L Tgptin = b.
n—+

Tpn,n

Tan+1,n 5 a4 A TiA el
D’ou hrf [Fa f() f f(t)dt. Par passage a la hmlte dans 'inégalité A,, < Jm on en

déduit que I’expression \/ﬁ > ker, f(Tkn) admet une limite finie et que celle-ci vaut f: f.

. b
lim \ﬁ > oker, f(Trn) f)]‘

n—-+o0o

3. Question vraiment dure a rédiger proprement car n et k varient simultanément. Il faut arriver a écrire
k ~ nX quand n — +o00. Je préfére sauter cette question...

4. D’aprés la question précédente, (1\/3 \ﬁZkGIn f(@pn) < Zkeln —nA( ];\,) <(1\72% \ﬁzkeln f(@rn)-

D’aprés la question IT1.B.2.c), (1—¢ f f< W >oker, f(rn) < (1+e) fbf APCR donc ¢ fa f<
P (nA 1 . oM (nA
> ker, © Al k:') < (ji f f APCR. Nous en déduisons lim 7, e Al k')

n—-+o0o

mff

4. En +o0, la condition I,, # () est toujours vérifiée.



: (nA)* e~ A — be 27 32
lim Znefn k! ja Vor

EEl

5. Par définition de T, P(a < T, < b) = P(a < 22722 < b) = P(nA + avnh < S, < nA + bVn)) =
P(Sn € In) = > ke, P(Sn = k).

Pour tout n € N, P(a < T, <b) =) 1, P(S, = k).

6. Posons f = \/% La fonction f est une densité de la loi normale cenrtée réduite. D’apreés la question
k
précédente, Pla < T, <b) =Y e e ™ ("l;\!) car S, suit une loi P(nA). D’ou lirf Pla < T, <b) =
ff f. En prenant b = +ooon a lirJIrl P(T, > a) = [ f.Enprenanta =bona lim P(T, =a) =
n—-—+00o

n—+o0o

f;f = 0. Par différence d’événements, ngrfoo P(T,, > a) = f;oo f. Bt avec a = —o0, lim P(T, <

n——+oo

b)= [l -

S

1
. o . +OO e 2° L
T}ggl_loo P(T,, > a) = TLEI—iI-loo P(T,, > a) - dr
b3

; — ) = ; _ e ”

REIEOCIP)(T,L =a)=0et ngrfoc P(T, <b) = ["__ 7 da.

IT1.D
1. Aveca= -0 etb=+4ocoona lim P(—oco < T, < +ooa) f+°° ) dm Or la suite (P(—oco0 < T, <

n——+o0o
+00))y, est la suite contante égale a 1 donc :

/R 027 dg = V2.

2. Suivons 1’indication de I’énoncé : e ™™ A,, = EM)‘J P(S, = k) =P(S, < [nA\]) =P(S, < n\) =P(T, <
) — f f= 2 car la fonction f est paire donc sa masse se répartit équitablement entre R_ et Ry.
De méme, e""B,, = P(S,, > [n)\]) = P(T}, = 0) + a,, avec ap, = 0 si nA = [nA| et a,, = P(T), =

%) sinon. Pour € > 0 et n assez grand, on a o, < P(—e < T}, < 0) donc o, — 0. Et e 7™ B,, — %

Ay ~ By ~ e

3. Pour A < 1,e™C, =P0< S, <n) =P, <n)=PT, < 71(17\/7%)‘)) Comme E}n—)‘) — 400, pour
<

tout réel z >> 1, on a P(T,, "(\}nf;\ ) = P(T,, < ) APCR. Si on choisit z tel que P(T,, < z) >1—¢

<
on montre ainsi que 1 > e "C,, > 1 —¢ APCR et e "*C,, — 1. De méme avec e "*D,, = P(S, > n).

SiA<1, lim e™C,=1.SiA>1, lim e ™D,=1.

n—4o0o n—-+00

5. Nous venons de redémontrer le TCL dans le cas de v.a iid de loi de Poisson.

6. Il y a une erreur dans I’énoncé ; il manque un terme n dans ’exponentielle de la formule de la question.

7. Un simple « passage & la limite » en faisant tendre b vers +oo nécessite une rédaction loin d’étre triviale. Ecrire « on fait
tendre b vers 400 est donc délicat voire faux.

8. Nous pouvons refaire toutes les questions précédentes avec b = +o0o sans rien changer aux preuves.



III. E

1. Posons I, := (nA)™" n)‘(n)\ t)yret dt = n’\(l Lnet dt. Soit f, : R — R la fonction réelle définie par
fa(t) = (1= 5)"e Locscna. Pour tout ¢ € R, f,,(t) — ef§et]lt>g. Soit f: R — R la fonction réelle défi-

nie par f(t) := e_ﬁet]l@o de sorte que la suite de fonctions (f,,) converge simplement vers la fonction f.

Nous aimerions échanger limite et intégrale ; pour cela nous avons besoin du théoréme de convergence
dominé. Toutes les fonctions f, sont continues par morceaux sur R et |f,(¢)| < Ht>oenln(1_ﬁ)et <
f(t) par concavité de la fonction logarithme. La fonction f est intégrable sur R (non nulle sur Ry
uniquement, continue sur Ry et f(t) = o(1/t?) en +oo car 1 — 1/\ < 0) donc d’aprés le TCD,

In:fan_)fRf:ﬁ'

lim (nA)™" n/\(n)\ t)"el dt = )\

n—-+o0o

2. La formule de Taylor avec reste intégral appliqué & la fonction exponentielle entre les points 0 et nA

n\ _\n
a l'ordre n donne : Zo k' / M
0 n!

e’ dt. Par ailleurs, "™ = Y n)‘) + D,, d’ou

_(n)"
!

In

D, = (n;\!)" I ~ (mA)”

A
n!  1-=-\"

) ()™ A
Pour )\ < 1, D” ~ —"

n!

II1. F

(nA—t)"

On choisit » = nA. Intégrons par partie n fois l'intégrale [~ OOO e’ dt en dérivant le terme polynomiale

(pour le faire disparaitre in ﬁne) Nous obtenons : f "/\ t) etdt = ) —i—(?)‘)n),l—i— +<nA + f etdt =

C,,. Donc C,, = ")‘) f t)dt avec h, : R_ — R deﬁme par hy,(t ) = (1 — m)net. La suite de fontion
(hy) converge sunplement vers la fontion hou h : R_ —> ]R est définie par h(t) = e~ xet. Les fonctions h,, sont
continues et |h,| < h qui est intrégrable sur R_ (car 232 > 0) donc d’apres le TCD, [, hp, — [ h= ﬁ

' (,”Ayw, A
POIII )\ > 17 Cn ~ —1-

n!

* % % FIN * %




