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PC - Mathématiques 1

I Autour de la fonction Gamma d’Euler

I.A

1. Soit x ∈ R. Posons fx : R∗+ → R définie par fx(t) = tx−1e−t. Le terme Γ(x) est bien défini si et seulement
si la fonction fx est intégrable. Elle est continue sur R∗+ et fx(t) = o( 1

t2
) en +∞. Au voisinage de 0+,

fx(t) ∼ 1
t1−x donc fx est intégrable en 0 si et seulement si x > 0 par critère de comparaison à une

intégrale de Riemman. Donc Γ(x) est bien défini si et seulement si x > 0.

DΓ = R∗+.

2. Soit x > 0. Posons u et v deux fonctions définies sur R∗+ par u(t) = tx et v(t) = −e−t. Alors u et
v sont de classe C1 sur leur domaine de définition et de plus uv′ = fx+1 et u′v = −xfx donc les
intégrales

∫ +∞
0 uv′ et

∫ +∞
0 u′v convergent. Nous pouvons donc effectuer une intégration par partie sur

]0,+∞[ :
∫ +∞

0 uv′ = [uv]+∞0 −
∫ +∞

0 u′v. Comme u(t)v(t)→ 0 en +∞ et en 0, le terme crochet est nul
et
∫ +∞

0 fx+1 = −
∫ +∞

0 −xfx soit Γ(x+ 1) = xΓ(x).

Pour tout x > 0, Γ(x+ 1) = xΓ(x).

Par récurrence immédiate :

Pour tout x > 0, Γ(x+ n) = (x+ n− 1)(x+ n− 2) . . . xΓ(x).

En particulier, pour x = 1 nous avons Γ(n) = (n− 1)!Γ(1) avec Γ(1) =
∫ +∞

0 e−t dt = 1.

Pour tout n ∈ N∗, Γ(n) = (n− 1)!.

3. Les fonctions t 7→ e−t
2 et t 7→ e−t

4 sont bien définies et continues sur R+ et ce sont des o( 1
t2

) en +∞
donc elles sont intégrables.

Les intégrales
∫ +∞

0 e−t
2

dt et
∫ +∞

0 e−t
4

dt sont bien définies.

Dans la première intégrale, effectuons le changement de variable u : t 7→ t2 qui réalise un C1-
difféomorphisme de R+ dans R+. Nous avons u = t2 d’où

√
u = t et dt = du

2
√
u
d’où

∫ +∞
0 e−t

2
dt =∫ +∞

0 e−u du
2
√
u

= 1
2Γ(1

2). De même, avec le changement de variable u = t4 on montre que
∫ +∞

0 e−t
4

dt =∫ +∞
0 e−u du

4u3/4
= 1

4Γ(1
4).

Nous avons
∫ +∞

0 e−t
2

dt = 1
2Γ(1

2) et
∫ +∞

0 e−t
4

dt = 1
4Γ(1

4).

I.B

1. Soient t > 0 et x ∈ [a, b]. Les termes ta et tb étant positifs, nous avons toujours max(ta, tb) 6 ta + tb.
De plus, si t > 1 alors tx 6 tb. Et si t < 1 alors tx 6 ta.

Pour tout t > 0 et x ∈ [a, b] nous avons tx 6 max(ta, tb) 6 ta + tb.

1. Vous pouvez envoyez vos remarques ainsi que les irréductibles erreurs et fautes de frappes qui se seront glissées dans ce
document à l’adresse suivante pierre-amaury.monard@laposte.net. L’auteur vous en sera reconnaissant.
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2. Montrons que Γ est de classe C∞ sur tout segment de R∗+. Soit [a, b] ⊂ R∗+ un segment.
Posons γ : [a, b]×]0,+∞[→ R+ définie par γ(x, t) = tx−1e−t = ex ln t

t e−t. Alors γ est infiniment déri-
vable par rapport à la variable x et pour tout k ∈ N, ∂kγ

∂kx
(x, t) = (ln t)ktx−1e−t. Pour tout k ∈ N,

la fonction ∂kγ
∂kx

est continue en t et de plus,
∣∣∣∂kγ∂kx

(x, t)
∣∣∣ 6 gk(t) := |ln t|k ta+tb

t e−t. La fonction gk est

bien définie et continue sur ]0,+∞[. En +∞, gk(t) = o( 1
t2

) et en 0+, gk(t) ∼ |ln t|k
t1−a donc gk est in-

tégrable sur R∗+. D’après le théorème de dérivation sous le signe intégrale, la fonction Γ : [a, b] → R
définie par Γ(x) =

∫ +∞
0 γ(x, t) dt est bien définie, de classe C∞ et de dérivées successives données par

Γ(k)(x) =
∫ +∞

0
∂kγ
∂kx

(x, t) dt sur le segment [a, b]. Ceci est vrai pour tout segment de R∗+.

La fonction Γ est de classe C∞ sur R∗+ et pour tout k ∈ N et x > 0, Γ(k)(x) =
∫ +∞

0 (ln t)ktx−1e−t dt.

I.C

1. Pour tout x > 0, Γ′′(x) =
∫ +∞

0 (ln t)2tx−1e−t dt. Donc G′′(x) > 0. De plus, l’intégrande est une fonction
positive, continue, non identiquement nulle donc l’intégrale est non nulle. D’où Γ′′(x) > 0 et Γ′ est une
fonction strictement croissante. Elle s’annule au plus une fois.
On sait déjà que Γ(1) = 1. Nous avons également Γ(2) = 1! = 1. La fonction Γ étant de classe C1 sur
[a, b], d’après le théorème de Rolle il existe ξ ∈]1, 2[ tel que Γ′(ξ) = 0.

Il existe un unique réel ξ tel que Γ′(ξ) = 0. Ce réel vérifie 1 < ξ < 2.

2. La fonction Γ′ étant (strictement) croissante et s’annulant en ξ elle est négative sur ]0, ξ[ et positive
sur ]ξ,+∞[ ce qui montre que Γ est décroissante sur ]0, ξ] et croissante sur [ξ,+∞[.
La fonction Γ est croissante au voisinage de +∞ et non bornée au voisinage de +∞ car Γ(n + 1) =
n!→ +∞ donc diverge vers +∞. lim

x→+∞
Γ(x) = +∞

Au voisinage de 0, Γ(x) = Γ(x+1)
x ∼ 1

x car Γ(x+ 1)→ Γ(1) = 1 quand x→ 0+. Donc lim
x→0

Γ(x) = +∞.

Pour le graphe de Γ, il faut le tracer convexe car Γ′′ > 0.

II Une transformée de Fourier

II.A

1. Soit f : R×]0,+∞[→ R la fonction réelle définie par f(x, t) = e−tt−3/4eitx. La fonction f est indéfini-
ment dérivable par rapport à la variable x, de dérivées partielles données par ∂

kf
∂kx

(x, t) = (it)ke−tt−3/4eitx.

Pour tout k ∈ N,
∣∣∣∂kf∂kx

(x, t)
∣∣∣ 6 gk(t) := tk−3/4e−t. Les fonctions gk sont continues sur ]0,+∞[,

gk(t) = o( 1
t2

) en +∞ et gk(t) ∼ 1
t3/4−k

en 0+ donc gk est intégrable sur ]0,+∞[. D’après le théo-
rème de dérivation sous le signe

∫
, la fonction F : x 7→

∫ +∞
0 f(x, t) dt est bien définie sur R, de classe

C∞ et de dérivées successives données par F (k)(x) =
∫ +∞

0
∂kf
∂kx

(x, t) dt.
De plus, F (0) =

∫ +∞
0 t−3/4e−t dt = Γ(1/4).

La fonction F est de classe C∞ et F (k) =
∫ +∞

0 (it)kt−3/4e−t dt. Et F (0) = Γ(1/4).

II.B

1. Pour tout n ∈ N et x ∈ R, posons un,x(t) = e−tt−3/4 (ixt)n

n! de sorte que F (x) =
∫ +∞

0

∑+∞
0 un,x(t) dt.

Montrons que pour x proche de 0, nous pouvons échanger l’intégrale et la somme. D’après le théo-
rème d’interversion

∫
−
∑

, il suffit de montrer que la série
∑∫

|un,x| converge. Posons In(x) :=
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∫ +∞
0 |un,x(t)| dt. Alors In(x) =

∫ +∞
0 e−tt−3/4 (|x|t)n

n! = cn
|x|n
n! avec cn := Γ(n + 1 − 3/4). Pour n > 2,

nous avons n+ 1− 3/4 > 2 donc cn 6 Γ(n+ 1) = n! par croissance de la fonction Γ sur [2,+∞[. Donc
0 6 In(x) 6 |x|n. Et la série

∑
In(x) converge pour |x| < 1.

Soit donc |x| < 1. Alors, F (x) =
∫ +∞

0

∑+∞
0 un,x(t) dt =

∑+∞
0

∫ +∞
0 un,x(t) dt =

∑+∞
0 cn

(ix)n

n! . De plus,
cn = Γ(n+ 1/4) = (n− 1 + 1/4) . . . (1 + 1/4).1/4Γ(1/4) =

∏n−1
0 (k + 1/4)c0.

Posons bn := cnin

n! . Alors
∣∣∣ bn+1

bn

∣∣∣ = cn+1

cn(n+1) = Γ(n+1+1/4)
Γ(n+1/4)(n+1) = n+1/4

n+1 → 1. D’après le critère de D’Alem-
bert, la série entière

∑
bnx

n admet R = 1 comme rayon de convergence.

Pour tout |x| < 1, F (x) =
∑+∞

0 cn
(ix)n

n! avec cn = Γ(n+ 1/4). cn =
∏n−1

0 (k + 1/4)c0 et RC(
∑
cn

(ix)n

n! ) = 1.

2. Soit x ∈ U. Alors,
∣∣∣cn (ix)n

n!

∣∣∣ = Γ(n+1/4)
n! ∼

√
2π(n+ 1

4
)(n−1/2)e−n−1/4

√
2πnn+1/2e−n

= e−1/4(1 + 1
4n)n (n+1/4)−1/2

n1/2 ∼ 1
n

d’après la formule de Sterling 2 et (1 + α/n)n ∼ eα. Donc la série
∑∣∣∣cn (ix)n

n!

∣∣∣ est divergente.
Pour |x| = 1, la série

∑
cn

(ix)n

n! ne converge pas absolument.

3. Les coefficients cn étant réels, nous avons : F (x) =

+∞∑
0

(−1)nc2n
x2n

(2n)!︸ ︷︷ ︸
=R(x)

+i

+∞∑
0

(−1)nc2n+1
x2n+1

(2n+ 1)!︸ ︷︷ ︸
=I(x)

. Le

développement limité en 0 d’une série entière étant obtenu par troncature, on obtient, R(x) = c0 −
c2
2 x

2 + o(x3) et I(x) = c1x− c3
6 x

3 + o(x4). Sachant cn =
∏n−1

0 (k + 1/4)c0.

Au voisinage de 0, R(x) = c0(1− 5
32x

2) + o(x3) et I(x) = c0(x4 −
15x3

128 ) + o(x4).

II. C

1. D’après la question II.A on sait que F est dérivable de dérivée F ′(x) =
∫ +∞

0 it1/4etα(x) avec α(x) =

−1 + ix. Posons u(t) = t1/4 et v(t) = etα(x)

α(x) . Ce sont des fonctions de classes C1 sur ]0,+∞[ et

u′(t) = t−3/4

4 et v′(t) = etα(x). Les fonctions uv′ et u′v sont intégrables sur ]0,+∞[ de terme crochet
[uv]+∞0 nul donc par IPP : F ′(x) = i

∫ +∞
0 uv′ = −i

∫ +∞
0 u′v = −i

4α(x)

∫ +∞
0 t−3/4e−t+ixt dt = −i

4α(x)F (x).
Nous posons donc A(x) = i

4(−1+ix) = 1
4(x+i) .

La fonction F vérifie F ′ +AF avec A(x) = 1
4(x+i) .

2. La fonction F est de la forme F = Ce−B où C ∈ C et B : R → C est une primitive de A. Nous
avons A(x) = 1

4 .
1
x+i = 1

4 .
x−i

1+x2
= 1

8
2x

1+x2
− i

4 .
1

1+x2
. Une primitive de A est donnée par B : x 7→

1
8 ln(1+x2)− i

4 arctan(x). Il existe donc une constante C ∈ C telle que F (x) = Ce−
1
8

ln(1+x2)+ i
4

arctan(x).
Pour x = 0 nous obtenons F (0) = C = c0.

Pour tout |x| < 1, F (x) = Γ(1/4)

(1+x2)1/8
e
i
4

arctanx

2. La formule admise par l’énoncé est une formule de Sterling généralisée. Pour x > −1, définissons la factorielle réelle par
x! := Γ(x + 1). cette définition est cohérente avec la définition de la factorielle sur les entiers naturels. La formule de Sterling
n! ∼

√
2πnn+1/2e−n se généralise à Γ(x + 1) ∼

√
2πxx+1/2e−x. Sachant Γ(x + 1) = xΓ(x) on en déduit l’équivalent admis par

le sujet.
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III Autour de la loi de Poisson

III. A

1. Soit t ∈ R. Nous avons P(X = k)tk = e−λ(tλ)k

k! . Il s’agit d’une série exponentielle donc conver-
gente. Ainsi, d’après la formule de transfert la variable aléatoire tX admet une expérance et E[tX ] =∑+∞

0
e−λ(tλ)k

k! = e−λeλt d’où GX(t) = eλ(t−1).

Pour tout t ∈ R, GX(t) = eλ(t−1).

2. La fonction GX est une série entière de rayon de convergence +∞. Elle est donc de classe C∞ sur R et
ses dérivées successives se calculent en dérivant terme à terme. En particulier, G′X(1) =

∑+∞
1 kP(X =

k)1k−1 = EX et G′′X(1) =
∑+∞

2 k(k − 1)P(X = k)1k−2 = E[X(X − 1)].
Par ailleurs, G′X(1) = λ et G′′X(1) = λ2 (obtenues en dérivant t 7→ eλ(t−1)). On en déduit EX = λ
puis Var(X) = λ. En effet Var(X) = E[X(X − 1)] + EX − (EX)2 = λ2 + λ− λ2 d’après la formule de
König-Huygens.

EX = Var(X) = λ, Var(X) = λ et σX =
√
λ.

3. Soit t ∈ R. Les variables aléatoires tX et tY admettent une espérance donc tX+Y aussi. De plus,
GX+Y (t) = E[tX+Y ] = E[tXtY ] = E[tX ]E[tY ] car tX et tY sont des variables aléatoires indépendantes
d’après le lemme des coalitions. Donc GX+Y (t) = GX(t)GY (t) = eλ(t−1)eµ(t−1) = e(λ+µ)(t−1). On
reconnaît la série génératrice d’une loi de Poisson de paramètre λ + µ. Or la série génératrice est
caractéristique de la loi donc X + Y a pour loi une P(λ+ µ). Le fait que GX est caractéristique de la
loi de X 3 vient du fait que les coefficient (an) d’une série entière f =

∑
anx

n sont reliés à f par la
formule an = f (n)(0)

n! .

X + Y ↪→ P(λ+ µ).

III.B

1. D’après la question précédente et par récurrence immédiate :

Sn ↪→ P(nλ).

2. Les variables aléatoires X1, . . . , Xn admettent un moment d’ordre deux donc Sn et Tn aussi.
D’après la question III.A.2), ESn = Var(Sn) = nλ. Par linéarité de l’espérance, ETn = 0. De plus,
Var(Tn) = Var(Sn−nλ√

nλ
) = Var(Sn)

nλ = 1.

ESn = nλ, σSn =
√
nλ, ETn = 0 et σTn = 1.

3. Soit ε > 0. Posons c(ε) = 1√
ε
. Soit c > c(ε).

Appliquons l’inégalité de Bienaymé-Tchebicheff à Tn (qui est centrée-réduite) : P(|Tn| > c) 6 1
c2

6
1

c(ε)2
= ε.

Pour tout c > 1√
ε
, P(|Tn] > c| 6 ε.

3. C’est-à-dire que X et Y ont la même loi si seulement si GX = GY .
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III.C

1. D’après l’inégalité des accroissements finis, pour montrer qu’une fonction de classe C1 estM -lipschitzienne,
il suffit de montrer que sa dérivée est bornée par M .
La fonction f est dérivable de dérivée donnée par f ′(x) = −xe−

1
2
x2 pour tout x ∈ R. La fonction f ′

est continue sur R et admet des limites (nulles) en ±∞ donc est bornée. Soit M > 0 tel que |f ′| 6M .
Alors f est M -lipschitzienne.

La fonction f est lipschitzienne.

2. a) Soient x ∈ R et h > 0. Alors
∣∣∣hf(x)−

∫ x+h
x f(t) dt

∣∣∣ =
∣∣∣∫ x+h
x (f(x)− f(t)) dt

∣∣∣ 6 ∫ x+h
x |f(x)− f(t)| dt 6∫ x+h

x M |x− t| = M h2

2 .

Pour tout x ∈ R et h > 0,
∣∣∣hf(x)−

∫ x+h
x f(t) dt

∣∣∣ 6M h2

2 .

b) Soit n ∈ N tel que In est non vide. Écrivons In = Jp, qK et posons
∆n :=

∣∣∣ 1√
nλ

∑
k∈In f(xk,n)−

∫ xq+1,n

xp,n
f(t) dt

∣∣∣.
Alors

∫ xq+1,n

xp,n
f(t) dt =

∑q
k=p

∫ xk+1,n

xk,n
f(t) dt =

∑
k∈In

∫ xk+1,n

xk,n
f(t) dt.

D’où ∆n =
∣∣∣∑k∈In

1√
nλ
f(xk,n)−

∑
k∈In

∫ xk+1,n

xk,n
f(t) dt

∣∣∣ 6 ∑
k∈In

∣∣∣ 1√
nλ
f(xk,n)−

∫ xk+1,n

xk,n
f(t) dt

∣∣∣.
En remarquant que xk+1,n = xk,n + 1√

nλ
, nous pouvons utiliser l’inégalité prouvée à la question

précédente avec x = xk,n et h = 1√
nλ

.

D’où ∆n 6
∑

k∈In
M

2nλ = `(In)M
2nλ où `(In) = q − p désigne la longueur de l’intervalle d’entiers In.

Or In = [a
√
nλ+ nλ, b

√
nλ+ nλ] ∩ N donc `(In) 6 (b− a)

√
nλ.

D’où ∆n 6 M(b−a)

2
√
nλ

.
On obtient un majorant en O( 1√

n
), qui tend donc vers 0 avec n (ouf !).

Pour tout n ∈ N tel que In est non vide,
∣∣∣ 1√

nλ

∑
k∈In f(xk,n)−

∫ xq+1,n

xp,n
f(t) dt

∣∣∣ 6 C√
n
.

où C = M(b−a)√
λ

.

c) La question est délicate car quand n varie, l’intervalle In varie aussi...et donc p et q aussi. En
réalité il eut fallu noter pn et qn les bornes de In. Nous allons montrer que xpn,n → a et xqn+1,n → b
quand n→ +∞ ce qui établiera la limite voulue grâce au théorème des gendarmes.
D’après la définition de pn nous avons : a

√
nλ+nλ 6 pn < a

√
nλ+nλ+1 d’où a 6 xpn,n < a+ 1√

nλ
.

En effet, lorsque k parcourt In, xk,n parcourt l’intervalle [a, b] en faisant des sauts de longueur
1√
nλ

. D’où lim
n→+∞

xpn,n = a. De même, lim
n→+∞

xqn,n = b et comme xqn+1,n = xqn,n + 1√
nλ

nous
avons aussi lim

n→+∞
xqn+1,n = b.

D’où lim
n→+∞

∫ xqn+1,n

xpn,n
f(t) dt =

∫ b
a f(t) dt. Par passage à la limite 4 dans l’inégalité ∆n 6 C√

n
on en

déduit que l’expression 1√
nλ

∑
k∈In f(xk,n) admet une limite finie et que celle-ci vaut

∫ b
a f .

lim
n→+∞

1√
nλ

∑
k∈In f(xk,n) =

∫ b
a f .

3. Question vraiment dure à rédiger proprement car n et k varient simultanément. Il faut arriver à écrire
k ∼ nλ quand n→ +∞. Je préfère sauter cette question...

4. D’après la question précédente, (1−ε)2√
2π

1√
nλ

∑
k∈In f(xk,n) 6

∑
k∈In e−nλ (nλ)k

k! 6 (1+ε)2√
2π

1√
nλ

∑
k∈In f(xk,n).

D’après la question III.B.2.c), (1−ε)
∫ b
a f 6 1√

nλ

∑
k∈In f(xk,n) 6 (1+ε)

∫ b
a f APCR donc (1−ε)3√

2π

∫ b
a f 6∑

k∈In e−nλ (nλ)k

k! 6 (1+ε)3√
2π

∫ b
a f APCR. Nous en déduisons lim

n→+∞

∑
k∈In e−nλ (nλ)k

k! = 1√
2π

∫ b
a f .

4. En +∞, la condition In 6= ∅ est toujours vérifiée.
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lim
n→+∞

∑
n∈In

(nλ)k

k! e−nλ =
∫ b
a

e−
1
2x

2

√
2π

dx.

5 6

5. Par définition de Tn, P(a 6 Tn 6 b) = P(a 6 Sn−nλ√
nλ

6 b) = P(nλ + a
√
nλ 6 Sn 6 nλ + b

√
nλ) =

P(Sn ∈ In) =
∑

k∈In P(Sn = k).

Pour tout n ∈ N, P(a 6 Tn 6 b) =
∑

k∈In P(Sn = k).

6. Posons f̃ := f√
2π
. La fonction f̃ est une densité de la loi normale cenrtée réduite. D’après la question

précédente, P(a 6 Tn 6 b) =
∑

k∈In e−nλ (nλ)k

k! car Sn suit une loi P(nλ). D’où lim
n→+∞

P(a 6 Tn 6 b) =∫ b
a f̃ . En prenant b = +∞ 7 8 on a lim

n→+∞
P(Tn > a) =

∫ +∞
a f̃ . En prenant a = b on a lim

n→+∞
P(Tn = a) =∫ a

a f̃ = 0. Par différence d’évènements, lim
n→+∞

P(Tn > a) =
∫ +∞
a f̃ . Et avec a = −∞, lim

n→+∞
P(Tn 6

b) =
∫ b
−∞ f̃ .

lim
n→+∞

P(Tn > a) = lim
n→+∞

P(Tn > a) =
∫ +∞
a

e−
1
2x

2

√
2π

dx

lim
n→+∞

P(Tn = a) = 0 et lim
n→+∞

P(Tn 6 b) =
∫ b
−∞

e−
1
2x

2

√
2π

dx.

III.D

1. Avec a = −∞ et b = +∞ on a lim
n→+∞

P(−∞ < Tn < +∞a) =
∫ +∞
−∞

f(x)√
2π

dx. Or la suite (P(−∞ < Tn <

+∞))n est la suite contante égale à 1 donc :

∫
R e−

1
2
x2 dx =

√
2π.

2. Suivons l’indication de l’énoncé : e−nλAn =
∑bnλc

0 P(Sn = k) = P(Sn 6 bnλc) = P(Sn 6 nλ) = P(Tn 6
0)→

∫ 0
−∞ f̃ = 1

2 car la fonction f̃ est paire donc sa masse se répartit équitablement entre R− et R+.
De même, e−nλBn = P(Sn > bnλc) = P(Tn > 0) + αn avec αn = 0 si nλ = bnλc et αn = P(Tn =
bnλc−nλ√

nλ
) sinon. Pour ε > 0 et n assez grand, on a αn 6 P(−ε 6 Tn 6 0) donc αn → 0. Et e−nλBn → 1

2 .

An ∼ Bn ∼ 1
2enλ.

3. Pour λ < 1, e−nλCn = P(0 6 Sn 6 n) = P(Sn 6 n) = P(Tn 6 n(1−λ)√
nλ

). Comme n(1−λ)√
nλ
→ +∞, pour

tout réel x >> 1, on a P(Tn 6 n(1−λ)√
nλ

) > P(Tn 6 x) APCR. Si on choisit x tel que P(Tn 6 x) > 1− ε
on montre ainsi que 1 > e−nλCn > 1− ε APCR et e−nλCn → 1. De même avec e−nλDn = P(Sn > n).

Si λ < 1, lim
n→+∞

e−nλCn = 1. Si λ > 1, lim
n→+∞

e−nλDn = 1.

5. Nous venons de redémontrer le TCL dans le cas de v.a iid de loi de Poisson.
6. Il y a une erreur dans l’énoncé ; il manque un terme n dans l’exponentielle de la formule de la question.
7. Un simple « passage à la limite » en faisant tendre b vers +∞ nécessite une rédaction loin d’être triviale. Écrire « on fait

tendre b vers +∞ est donc délicat voire faux.
8. Nous pouvons refaire toutes les questions précédentes avec b = +∞ sans rien changer aux preuves.
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III. E

1. Posons In := (nλ)−n
∫ nλ

0 (nλ−t)net dt =
∫ nλ

0 (1− t
nλ)net dt. Soit fn : R→ R la fonction réelle définie par

fn(t) = (1− t
nλ)net106t6nλ. Pour tout t ∈ R, fn(t)→ e−

t
λ et1t>0. Soit f : R→ R la fonction réelle défi-

nie par f(t) := e−
t
λ et1t>0 de sorte que la suite de fonctions (fn) converge simplement vers la fonction f .

Nous aimerions échanger limite et intégrale ; pour cela nous avons besoin du théorème de convergence
dominé. Toutes les fonctions fn sont continues par morceaux sur R et |fn(t)| 6 1t>0en ln(1− t

nλ
)et 6

f(t) par concavité de la fonction logarithme. La fonction f est intégrable sur R (non nulle sur R+

uniquement, continue sur R+ et f(t) = o(1/t2) en +∞ car 1 − 1/λ < 0) donc d’après le TCD,
In =

∫
R fn →

∫
R f = λ

1−λ .

lim
n→+∞

(nλ)−n
∫ nλ

0 (nλ− t)net dt = λ
1−λ .

2. La formule de Taylor avec reste intégral appliqué à la fonction exponentielle entre les points 0 et nλ

à l’ordre n donne : enλ =
∑n

0
(nλ)k

k! +

∫ nλ

0

(nλ− t)n

n!
et dt︸ ︷︷ ︸

=
(nλ)n

n!
In

. Par ailleurs, enλ =
∑n

0
(nλ)k

k! + Dn d’où

Dn = (nλ)n

n! In ∼ (nλ)n

n!
λ

1−λ .

Pour λ < 1, Dn ∼ (nλ)n

n!
λ

1−λ .

III. F

On choisit r = nλ. Intégrons par partie n fois l’intégrale
∫ 0
−∞

(nλ−t)n
n! et dt en dérivant le terme polynomiale

(pour le faire disparaître in fine). Nous obtenons :
∫ 0
−∞

(nλ−t)n
n! et dt = (nλ)n

n! + (nλ)n−1

(n−1)! +· · ·+ (nλ)1

1! +
∫ 0
−∞ et dt =

Cn. Donc Cn = (nλ)n

n!

∫ 0
−∞ hn(t) dt avec hn : R− → R définie par hn(t) =

(
1− t

nλ

)n
et. La suite de fontion

(hn) converge simplement vers la fontion h où h : R− → R est définie par h(t) = e−
t
λ et. Les fonctions hn sont

continues et |hn| 6 h qui est intrégrable sur R− (car λ−1
λ > 0) donc d’après le TCD,

∫
R−

hn →
∫
R−

h = λ
λ−1 .

Pour λ > 1, Cn ∼ (nλ)n

n!
λ
λ−1 .

∗ ∗ ∗ FIN ∗ ∗ ∗
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