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EXERCICE I
X est une variable aléatoire á valeurs dans N d’espérance finie

Q1. Soit k ∈ N∗ .
• On a [X > k − 1] = [X > k] ∪ [X = k] et [X > k] ∩ [X = k] = ∅ , donc

P(X > k − 1) = P(X > k) + P(X = k)

par suite P(X = k) = P(X > k − 1) − P(X > k) .
• Soit n ∈ N on a

n∑
k=1

kP(X = k) =
n∑

k=1
k (P(X > k − 1) − P(X > k))

=
n∑

k=1
kP(X > k − 1) −

n∑
k=1

kP(X > k)

=
n−1∑
k=0

(k + 1)P(X > k) −
n∑

k=1
kP(X > k)

dans la première somme on change k en k − 1 et dans la deuxième on rajoute le terme k = 0 , on obtient

n∑
k=1

kP(X = k) =
n−1∑
k=0

(k + 1)P(X > k) −
n∑

k=0
kP(X > k)

=
n−1∑
k=0

P(X > k) − nP(X > n)

• Montrons que nP(X > n) →
n→+∞

0 .

On a P(X > n) =
+∞∑

k=n+1
P(X = k) donc

0 ≤ nP(X > n) = n
+∞∑

k=n+1
P(X = k) ≤

+∞∑
k=n+1

kP(X = k)

X admet une espérance donc la série
∑

nP(X = n) converge par suite le reste
+∞∑

k=n+1
kP(X = k) tend vers

0 en +∞.

Par comparaison on a nP(X > n) →
n→+∞

0 .

Ainsi la série
∑

P(X > n) converge et par passage à la limite on a

E(X) =
+∞∑
k=0

kP(X = k) =
+∞∑
k=0

P(X > k).

Q2. Soit n ∈ N et p ∈ N∗.

• Posons pour i ∈ [[1, p]], Yi la variable aléatoire qui donne le résultat du i eme tirage .
1https://tinyurl.com/2qyzzrbd
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On a alors pour tout k ∈ [[1, n]]

[X ≤ k] =
p⋂

i=1
[Yi ≤ k]

le tirage est avec remise donc les Yi sont mutuellement indépendantes , ce qui donne

P (X ≤ k) =
p∏

i=1
P (Yi ≤ k)

les Yi suivent la loi uniforme U ([1, n]) donc P (Yi ≤ k) =
k∑

j=1
P (Yi = j) = k

n
, d’où

P (X ≤ k) =
(

k

n

)p

• Pour tout k ∈ [[1, n]] on a P (X = k) = P (X ≤ k) − P (X ≤ k − 1) donc

P (X = k) = kp − (k − 1)p

np

Q3.

• Remarquons que 1
n

n−1∑
k=0

(
k

n

)p

est la somme de Riemann d’ordre n de la fonction x 7→ xp sur l’intervalle

[0, 1] donc

lim
n→+∞

1
n

n−1∑
k=0

(
k

n

)p

=
∫ 1

0
xpdx = 1

p + 1 (1)

• La question Q1 donne E(X) =
n∑

k=1
P(X > k) et on a P(X > k) = 1− P (X ≤ k) = 1 −

(
k

n

)p

, donc

E(X) =
n∑

k=1
1 −

(
k

n

)p

= n −
n∑

k=1

(
k

n

)p

de la relation (1) on a
n∑

k=1

(
k

n

)p

∼
n→+∞

n

p + 1 ,d’où E(X) ∼
n→+∞

pn

p + 1 .

EXERCICE II

On considère, sur I = ]0, +∞[ , les équations différentielles:

(E) : x2y′′ + 4xy′ + (2 − x2)y = 1
(H) : x2y′′ + 4xy′ + (2 − x2)y = 0

Q4. Sur I l’équation (H) s’écrit : y′′ = −4
x y′ + 2−x2

x2 y , c’est une équation homogène linéaire d’ordre 2 à
coefficients définis et continus sur I , donc SI(H) est R espace vectoriel de dimension 2.

Q5. Soit f une solution de (E) développable en série entière , écrivons f(x) =
+∞∑
n=0

anxn de rayon de

convergence R > 0 , donc on a pour x ∈ ]−R, R[
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f ′(x) =
∞∑

n=0
annxn−1 et f ′′(x) =

∞∑
n=0

ann(n − 1)xn−2

par suite

x2f ′′(x) =
∞∑

n=2
ann(n − 1)xn , 4xf ′(x) =

∞∑
n=1

4annxn

et

(2 − x2)f(x) = 2
+∞∑
n=0

anxn −
+∞∑
n=0

anxn+2

dans la deuxième somme on change n + 2 en n , ce qui donne

(2 − x2)f(x) = 2
+∞∑
n=0

anxn −
+∞∑
n=2

an−2xn

= 2a0 + 2a1x +
+∞∑
n=2

(2an − an−2) xn

ainsi

x2f ′′(x) + 4xf ′(x) + (2 − x2)f(x) = 2a0 + 6a1x +
∞∑

n=2
[an (n(n − 1) + 4n + 2) − an−2] xn

= 2a0 + 6a1x +
∞∑

n=2
[an (n + 1)(n + 2) − an−2] xn

f une solution de (E) , donc

∀x ∈ ]−R, R[ , 2a0 − 1 + 6a1x +
∞∑

n=2
[an (n + 1)(n + 2) − an−2] xn = 0

par suite 
2a0 − 1 = 0

a1 = 0
an (n + 1) (n + 2) − an−2 = 0 , ∀n ≥ 2

ce qui donne 
a0 = 1

2
a1 = 0

an = an−2
(n + 1) (n + 2) , ∀n ≥ 2

• Si n = 2p + 1 alors a2p+1 = a2p−1
(2p + 2) (2p + 2) , comme a1 = 0 alors a2p+1 = 0 pour tout p ≥ 1 .

• Si n = 2p alors a2p =
a2(p−1)

(2p + 1) (2p + 2) pour tout p ≥ 1 , ce qui donne

a2p = 1
(2p + 2) (2p + 1)

1
(2p) (2p − 1) ...

1
4.3

1
2 = 1

(2p + 2)! .

Ainsi f(x) =
+∞∑
p=0

1
(2p + 2)!x

2p . Ce qui donne R = +∞ par suite f est solution de (E) sue I .

Pour tout x ∈ I on a f(x) = 1
x2

+∞∑
p=0

1
(2p + 2)!x

2p+2 = 1
x2

+∞∑
p=1

1
(2p)!x

2p , or ch (x) =
+∞∑
p=0

1
(2p)!x

2p donc

f(x) = ch (x) − 1
x2 .
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Q6. On note pour x ∈ I, g(x) = −1
x2 et h(x) = sh (x)

x2 .On admet que g ∈ SI(E) et h ∈ SI(H).
Une solution de (E) est la somme d’une solution particulière de (E) et d’une solution de (H).

Une autre solution de (H) est donnée par q = f − g , donc q(x) = ch (x)
x2 .

Le Wronskien de la famille (q, h) est donné par

W (x) =
∣∣∣∣∣q(x) h(x)
q′(x) h′(x)

∣∣∣∣∣
= cosh(x)

x2

(
−2 sinh (x)

x3 + cosh (x)
x2

)
− sinh(x)

x2

(
−2 cosh (x)

x3 + sinh (x)
x2

)
= 1

x4

W (x) 6= 0 pour tout x ∈ I ce qui assure que (q, h) est un système fondamental de solutions de (H) donc
SI(H) = vect(q, h) .
Ainsi SI(E) =

{
y = g + αq + βh , (α, β) ∈ R2} .

Q7. Soit y ∈ SR(H) .

• La restriction y|I ,de y sur I , est une solution de (H) sur I , donc il existe (α, β) ∈ R2 tel que
y|I = αq + βh , ainsi pour tout x ∈ I (= ]0, +∞[)

y|I(x) = y(x) = α
ch (x)

x2 + β
sh (x)

x2 (*)

y est dans SR(H) donc elle est de classe C2 sur R en particulier en 0 , au voisinage de 0 on a

α
ch (x)

x2 + β
sh (x)

x2 =
α(1 + 1

2x2 + o(x3)) + β(x + 1
6x3 + o(x3))

x2

=
α + βx + α

2 x2 + β
6 x3 + o(x3)

x2

qui n’admet de limite en 0 que si α = β = 0 d’où y = 0 .

• La restriction y|(−I) ,de y sur ]−∞, 0[ donne une solution z de (H) I par z(x) = y|(−I)(−x) =
y(−x) ,pour tout x ∈ ]0, +∞[ . Donc y|(−I) admet une expression de la forme (*) , par le même raisonnementon
trouve y|(−I) = 0 . Donc y = 0 sur R par suite SR(H) = {0} .
La dimension de SR(H) est zéro et pas 2 car on ne peut pas écrire l’équation (H) sous la forme y′′ =
a(x)y′ + b(x)y avec a et b des fonctions définies et continues sur R.

PROBLEME

Q8. On écrit
+∞∑
n=0

1
n2 =

+∞∑
k=0

1
(2k + 1)2 +

+∞∑
k=0

1
(2k)2

donc
3
4

+∞∑
n=0

1
n2 =

+∞∑
k=0

1
(2k + 1)2 = π2

8

ainsi
+∞∑
n=0

1
n2 = π2

6 .

4



Partie I

Q9. On a
(
(sin(x))n+1)′ = (n + 1) cos(x) (sin(x))n , par une intégration par parties on trouve

Wn+2 =
∫ π

2

0
(sin(x))n+2 dx

=
∫ π

2

0
(− cos(x))′ (sin(x))n+1 dx

=
[
− cos(x) (sin(x))n+1

]π
2

0
+ (n + 1)

∫ π
2

0
cos2(x) (sin(x))n dx

= (n + 1)
∫ π

2

0
(1 − sin2(x)) (sin(x))n dx

= (n + 1)(Wn − Wn+2)

On a donc (n + 2)Wn+2 = (n + 1)Wn .
Par suite (2n + 1)W2n+1 = (2n)W2n−1 ce qui donne

W2n+1 = 2n

2n + 1
2n − 2
2n − 1 ...

2
3W1

W1 =
∫ π

2

0
(sin(x))n+2 dx = 1 donc

W2n+1=(2 × 4 × ... × 2n)2

(2n + 1)! = 22n(n!)2

(2n + 1)!

Q10.
• Soit x ∈ ]−1, 1[ ,on a 1√

1 − x2
= (1 − x2)− 1

2 donc

1√
1 − x2

= 1 +
+∞∑
n=1

(
−1

2
n

)
(−x2)n

avec (
−1

2
n

)
=

(
−1

2

) (
−1

2 − 1
)

...
(
−1

2 − n + 1
)

n!

= (−1)n 1 × 3 × ...(2n − 1)
n!

= (−1)n (2n)!
(2 × 4 × ... × 2n)n!

= (−1)n (2n)!
22n(n!)2

ainsi on a 1√
1 − x2

=
+∞∑
n=0

(2n)!
22n(n!)2 x2n .

• Par intégration entre 0 et x on obtient Arcsin (x) =
+∞∑
n=1

(2n)!
22n−1(n!)2(2n + 1)x2n+1 , ∀x ∈ ]−1, 1[

Q11. Soit x ∈
[
0,

π

2

[
, on a sin(x) ∈ [0, 1[ la question précédente donne

x = Arcsin (sin(x)) =
+∞∑
n=0

(2n)!
22n (n!)2 (2n + 1)

(sin(x))2n+1.
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Q12. Utilisons le théorème d’intégration des séries de fonctions sur un intervalle quelconque qui permet
l’interversions des symboles

∑
et
∫

.
Posons pour tout x ∈

[
0,

π

2

[
, fn(x) = (2n)!

22n(n!)2(2n+1)(sin(x))2n+1 .

• Pour tout n ∈ N , fn est continue intégrable et positive sur
[
0,

π

2

[
.

• Le série
∑

fn converge simplement sur
[
0,

π

2

[
vers une fonction continue.

•
∫[

0, π
2

[ |fn(x)| dx = W2n+1
(2n)!

22n (n!)2 (2n + 1)
,or W2n+1 = 22n(n!)2

(2n+1)! donc
∫[

0, π
2

[ |fn(x)| dx = 1
(2n + 1)2

par suite la série
∑∫[

0, π
2

[ |fn(x)| dx converge .

Ainsi par le théorème d’intégration des séries de fonctions on a

∫[
0, π

2

[ (+∞∑
n=0

fn(x)
)

dx. =
+∞∑
n=0

(∫[
0, π

2

[ fn(x)dx.

)

d’où l’on a
∫ π

2

0

[+∞∑
n=0

(2n)!
22n (n!)2 (2n + 1)

(sin(x))2n+1
]

dx =
+∞∑
n=0

∫ π
2

0

(2n)!
22n (n!)2 (2n + 1)

(sin(x))2n+1dx.

Q13. Les questions Q11.et Q12.donnent

∫ π
2

0
xdx =

+∞∑
n=0

(2n)!
22n (n!)2 (2n + 1)

W2n+1.

donc
+∞∑
n=1

1
(2n + 1)2 = π2

8 et d’après Q8. ona
+∞∑
n=1

1
n2 = π2

6 .

Partie II

Q14.
• Pour tout x ∈ ]−1, 1[ on a 1

x2 − 1 =
+∞∑
n=0

−x2n.

• Soit f : x 7→ ln(x)
x2 − 1 pour tout x ∈ ]0, 1[ .

La relation précédente donne pour tout x ∈ ]0, 1[ f(x) =
+∞∑
n=0

− ln(x)x2n . Posons fn(x) = − ln(x)x2n .

• Pour tout n ∈ N , fn est continue et positive sur ]0, 1] . On a
√

x fn(x) →
n→+∞

0 , par la règle de
Riemann fn est intégrable sur ]0, 1] et sur ]0, 1[ .

• Soit x ∈ ]0, 1] , on a

∫ 1

x
ln(t)t2ndt =

[
ln(t) t2n+1

2n + 1

]1

x

−
∫ 1

x

t2n

2n + 1dt = − ln(x) x2n+1

2n + 1 − 1
(2n + 1)2 + x2n+1

(2n + 1)2

par suite ∫
]0,1[

|fn(t)| dt =
∫

]0,1]
|fn(t)| dt = lim

x→0+

∫ 1

x
− ln(t)t2ndt = 1

(2n + 1)2

Donc la série
∑∫

]0,1[
|fn(t)| dt converge .

Le théorème d’intégration des séries de fonctions sur un intervalle quelconque donne

∫ 1

0
f(x)dx =

+∞∑
n=0

∫
]0,1[

fn(t)dt
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doù
∫ 1

0

ln(x)
x2 − 1dx =

+∞∑
n=0

1
(2n + 1)2 .

Q15. On pose pour x ∈ [0, +∞[ , f(x) =
∫ +∞

0

Arctan(xt)
1 + t2 dt .

Soit pour (x, t) ∈ ([0, +∞[)2 , g(x, t) = Arctan(xt)
1 + t2 .

• Pour tout (x, t) ∈ ([0, +∞[)2 on a
∣∣∣∣Arctan(xt)

1 + t2

∣∣∣∣ ≤ π

2
1

1 + t2 , la fonction ϕ : t 7→ π

2
1

1 + t2 est intégrable

sur [0, +∞[ donc la fonction t 7→ Arctan(xt)
1 + t2 est intégrable sur [0, +∞[ pour tout x ∈ [0, +∞[ .

Donc f est bien définie sur [0, +∞[ .
• On a g est continue sur ([0, +∞[)2 et |g(x, t)| ≤ ϕ(t) pout tout (x, t) ∈ ([0, +∞[)2, avec ϕ intégrable

sur [0, +∞[ . Donc f est continue sur [0, +∞[.
Q16. On a g est de classe C1 sur ([0, +∞[)2 et ∂

∂x
g(x, t) = t

(1 + t2) (1 + x2t2) .

Si (x, t) ∈ ]0, 1] × [0, +∞[ alors
∣∣∣∣ ∂

∂x
g(x, t)

∣∣∣∣ ≤ 1
1 + t2 = 2

π ϕ(t) ,qui est intégrable sur [0, +∞[ .

Ce qui prouve que f est de classe C1 sur]0, 1] et f ′(x) =
∫ +∞

0

t

(1 + t2) (1 + x2t2)dt .

Q17. On vérifie facilement que t

1 + t2 − x2t

1 + t2x2 =
(
1 − x2) t

(t2x2 + 1) (t2 + 1) .

De la question précédente on a pour tout x ∈ ]0, 1[

f ′(x) = 1
(1 − x2)

∫ +∞

0

(
t

1 + t2 − x2t

1 + t2x2

)
dt

Les deux fonctions sous le signe intégral ne sont pas intégrables sur [0, +∞[ , prenons un A > 0 alors∫ A

0

(
t

1 + t2 − x2t

1 + t2x2

)
dt = 1

2 ln
(

1 + A2

1 + A2x2

)

ce qui donne par passage à la limite∫ +∞

0

(
t

1 + t2 − x2t

1 + t2x2

)
dt = − ln (x)

On en déduit que pour tout x ∈ ]0, 1[ , f ′(x) = ln(x)
x2 − 1 .

Q18.
• On a

f(1) =
∫ +∞

0

Arctan(t)
1 + t2 dt =

[1
2Arctan2(t)

]+∞

0
= π2

8

• La fonction f est de classe C1 sur]0, 1] et pour tout x ∈ ]0, 1[ , f ′(x) = ln(x)
x2 − 1 donc f(x) =

∫ x

0

ln(t)
t2 − 1dt

, la continuité en 1 donne f(1) =
∫ 1

0

ln(t)
t2 − 1dt .

• La question Q14. donne f(1) =
+∞∑
n=0

1
(2n + 1)2 = π2

8 , d’après la question Q14. on a
+∞∑
n=1

1
n2 = π2

6 .
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