
PSI CCP 2018

Concours Communs Polytechniques 2018
Épreuve de mathématiques PSI, quatre heures

Corrigé

Dans tout ce document, on note Bn la base canonique de Rn[X].
1. Pour tout k ∈ J0, nK, on a ∆(Xk) = kXk.
2. On doit démontrer l’identité :

∀P ∈ R[X], X2P ′′ = ∆ ◦ (∆− Id)(P ). (∗)

Comme P 7→ XP ′′ et ∆ ◦ (∆− Id) sont des applications linéaires, il suffit de démontrer (∗) sur
la famille génératrice

(
Xk
)
k∈N

de R[X]. Or :

∀k ∈ N, ∆ ◦ (∆− Id)(Xk) = (k − 1)∆(Xk) = k(k − 1)Xk = X2 × k(k − 1)Xk−2,

donc (∗) est vérifiée sur une famille génératrice de R[X] : elle est vraie pour tout P ∈ R[X].
3. Rappelons que la famille (Xk)k∈J0,nK engendre Rn[X]. Comme, pour tout k ∈ J0, nK, on a

∆(Xk) = kXk ∈ Rn[X], par linéarité on a ∆(P ) ∈ Rn[X] pour tout P ∈ Rn[X].
4. D’après la question Q 1, on a :

MBn(∆n) =



0 0
1

2
. . .

0 n


.

On remarque que ∆n est diagonalisable, et la base canonique de Rn[X] est une base de vecteurs
propres de ∆n.

5. D’après l’identité (∗), on a :

Φ = ∆ ◦ (∆− Id) + a∆ = ∆2 −∆ + a∆ = ∆2 + (a− 1)∆,

d’où le résultat. Comme ∆ est un endomorphisme de R[X], c’est aussi le cas de ∆2, et par suite
de Φ qui en est une combinaison linéaire.

6. Nous avons vu, dans la question Q 3, que ∆ laisse stable Rn[X], donc ∆2 également, ainsi que
leur combinaison linéaire Φ. Par conséquent Φ induit un endomorphisme de Rn[X], noté Φn.

7. Nous avons vu, dans la question Q 4, que la matrice de ∆n dans la base canonique de Rn[X], que
nous notons ici D, est diagonale. La matrice de Φn dans cette même base est donc D2 +(a−1)D,
qui est également diagonale. Ceci démontre que Φn est diagonalisable, et la base canonique de
Rn[X] est une base de vecteurs propres de Φn.
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8. On a : ϕ = Φ+bId. Comme Φ et bId laissent stable Rn[X], il en est de même de leur somme ϕ, qui
induit donc un endomorphisme de Rn[X] noté ϕn, et on a : ϕn = Φn+bId = ∆2 +(a−1)∆+bId.

9. Reprenant la question Q 4 et l’identité ϕn = ∆2 + (a− 1)∆ + bId, on a :

MBn(ϕn) =



λ0 0
λ1

λ2
. . .

0 λn


,

où : ∀k ∈ J0, nK, λk = k2 + (a− 1) · k + b.

10. Soit P ∈ Rn[X], qu’on écrit sous la forme : P =
n∑
i=0

aiX
i. Alors, sans faire pour le moment

d’hypothèse sur les racines de l’équation s2 + (a− 1)s+ b = 0, on a :

P ∈ ker(ϕn)⇐⇒ ϕn(P ) = 0⇐⇒ MBn(ϕn)


a0
a1
...
an

 =


0
0
...
0

⇐⇒ ∀k ∈ J0, nK, λkak = 0.

d’après la matrice de ϕn obtenue dans la question précédente. Comme, pour tout k ∈ J0, nK, on
a λk = k2 + (a− 1) · k + b, on peut décrire le noyau de ϕn ainsi :

P =
n∑
i=0

aiX
i ∈ ker(ϕn)⇐⇒ ∀k ∈ J0, nK, (k2 + (a− 1) · k + b)ak = 0. (†)

À présent, puisque l’énoncé nous y invite, supposons l’existence de deux solutions entières
m1,m2 ∈ J0, nK à l’équation :

s2 + (a− 1)s+ b = 0. (1)
On a donc m2

1 + (a− 1)m1 + b = m2
2 + (a− 1)m2 + b = 0. Comme cette équation est polynomiale

et de degré 2, il n’y a dans ce cas pas d’autre solution ; on en déduit que pour tout k ∈ J0, nK
distinct de m1 et m2, on a k2 + (a− 1)k + b 6= 0 et donc, d’après (†) :

P =
n∑
i=0

aiX
i ∈ ker(ϕn)⇐⇒


∀k ∈ J0, nK \ {m1,m2}, ak = 0
(m2

1 + (a− 1)m1 + b)am1 = 0
(m2

2 + (a− 1)m2 + b)am2 = 0
⇐⇒ ∀k ∈ J0, nK\{m1,m2}, ak = 0,

les deux dernières égalités étant vraies indépendamment de am1 et am2 . En résumé, P ∈ ker(ϕn)
si et seulement si P est combinaison linéaire de Xm1 et Xm2 , c’est-à-dire :

ker(ϕn) = VectR (Xm1 , Xm2) .
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(On peut procéder autrement : la matrice de ϕn étant diagonale, avec ici deux coefficients dia-
gonaux, on observe aisément qu’on peut l’échelonner avec n− 1 pivots non nuls et 2 nuls, donc
on a immédiatement dim(ker(ϕn)) = 2, la nullité de deux colonnes permettant d’en déduire une
famille génératrice ; de même pour la question suivante)

11. La description de ker(ϕn) donnée dans (†) reste valable. Si, cette fois-ci, il existe une et une
seule racine entière m ∈ J0, nK à l’équation (1), alors :

P =
n∑
i=0

aiX
i ∈ ker(ϕn)⇐⇒ ∀k ∈ J0, nK \ {m}, ak = 0,

donc P ∈ ker(ϕn) si et seulement si P est proportionnel à Xm, c’est-à-dire :

ker(ϕn) = VectR (Xm) .

12. Si, pour un certain n ∈ N, un polynôme P ∈ Rn[X] vérifie ϕn(P ) = 0, alors ϕ(P ) = 0 en
particulier, donc ker(ϕn) ⊆ ker(ϕ). Ceci vaut pour tout n ∈ N, donc ⋃

n∈N
ker(ϕn) ⊆ ker(ϕ)

(même si ce fait ne nous importe pas tant que cela ici, notons que cette union est bien un
espace vectoriel, grâce à l’inclusion successive des noyaux). Réciproquement, si P ∈ R[X] vérifie
ϕ(P ) = 0, alors ϕdeg(P )(P ) = 0 et donc ker(ϕ) ⊆ ker(ϕdeg(P )) ⊆

⋃
n∈N

ker(ϕn). Donc :

ker(ϕ) =
⋃
n∈N

ker(ϕn)

(Cette description n’est peut-être pas la plus simple, mais elle est en quelque sorte intrinsèque).
D’après les deux questions qui précèdent, soit l’équation (1) n’a pas de solution entière positive,
auquel cas ker(ϕn) = {0} pour tout n ∈ N et donc ker(ϕ) = {0} ; soit, en notant m′ la plus
grande solution entière de (1), on a ker(ϕ) = ker(ϕm′). Cet espace vectoriel est, on l’a vu, de
dimension finie ; égale à 1 s’il existe une seule solution entière positive, et à 2 s’il en existe deux.

Pour résumer, si l’on définit f :
{
N → R
s 7→ s2 + (a− 1)s+ b

, alors on a ces différentes descriptions

possibles du noyau de ϕ, plus ou moins compactes :

dim(ker(ϕ)) = card
({
s ∈ N | s2 + (a− 1)s+ b = 0

})
= card

(
f−1({0})

)
=


2 si (1) admet deux solutions entières,
1 si (1) admet une solution entière,
0 si (1) admet aucune solution entière.

13. Soient I =]0,+∞[ et J =]−∞, 0[. Considérons l’équation différentielle linéaire :

∀x ∈ I, x2y′′(x) + axy′(x) + by(x) = 0, (2)

et soit HI l’ensemble de ses solutions de classe C2 sur I. C’est un espace vectoriel sur R.
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Soit t0 ∈ I. Le théorème de Cauchy implique que l’application suivante, manifestement linéaire :

HI → R2

y 7→
(
y(t0)
y′(t0)

)

est un isomorphisme, la surjectivité provenant de l’existence des solutions à un problème de
Cauchy, et l’injectivité provenant de l’unicité de ces solutions. Par conséquent, on a dim(HI) = 2 :
l’ensemble des solutions à l’équation (2) est un espace vectoriel de dimension 2. On définit de
même HJ , et alors : dim(HJ) = 2.

14. Avec les notations ci-dessus, soit y ∈ HI . Notons g = y ◦ exp. Alors :

∀x ∈ I, g′(x) = exy′(ex), g′′(x) = exy′(ex) + e2xy′′(ex),

donc en particulier : ∀x ∈ I, e2xy′′(ex) = g′′(x)− g′(x). Or, comme y vérifie (2), on a :

∀x ∈ R, e2xy′′(ex) + aexy′(ex) + by(ex) = 0⇐⇒ ∀x ∈ R, g′′(x)− g′(x) + ag′(x) + bg(x) = 0,

si et seulement si g est solution de l’équation différentielle linéaire :

u′′ + (a− 1)u′ + bu = 0. (3)

15. Nous avons non seulement des implications directes, mais des équivalences dans la question
précédente : l’application y est solution de (2) si et seulement si g = y ◦ exp est solution sur R
de (3). Or :

g = y ◦ exp⇐⇒ y = g ◦ ln,
les applications logarithme et exponentielle étant réciproques l’une de l’autre. Donc l’application
g est solution sur R de (3) si et seulement si y = g ◦ ln est solution de (2).

16. Cas a = 3 et b = 1. Il s’agit d’une équation différentielle linéaire d’ordre 2 à coefficients
constants. Dans ce cas, l’équation caractéristique r2 + 2r + 1 = 0 a pour solution unique −1,
donc l’ensemble des solutions de (3) est :{

R → R
x 7→ (λ+ µx)e−x | (λ, µ) ∈ R2

}
.

D’après la correspondance établie, dans les deux questions qui précèdent, entre les solutions de
(2) et de (3), on en déduit que l’ensemble des solutions de l’équation différentielle (2) est :

HI =


I → R

x 7→ λ+ µ ln(x)
x

| (λ, µ) ∈ R2

 ,
où l’on a utilisé l’identité : ∀x ∈ I, e− ln(x) = 1

x
.
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Cas a = 1 et b = 4. Cette fois, l’équation caractéristique r2 + 4 = 0 a pour solutions 2i et −2i,
donc l’ensemble des solutions à valeurs réelles de (3) est :{

R → R
x 7→ λ cos(2x) + µ sin(2x) | (λ, µ) ∈ R2

}
.

On en déduit que l’ensemble des solutions à valeurs réelles de l’équation différentielle (2) est :

HI =
{
I → R
x 7→ λ cos(2 ln(x)) + µ sin(2 ln(x)) | (λ, µ) ∈ R2

}
.

17. On procède exactement comme dans la question Q 14, mutatis mutandis.
18. On montre aisément que l’ensemble des solutions sur R de u′′ − 4u = 0 est :{

R → R
x 7→ λe2x + µe−2x | (λ, µ) ∈ R2

}
.

D’après la question Q 14, l’ensemble des solutions à valeurs réelles de l’équation différentielle :

∀x ∈ I, x2y′′(x) + xy′(x)− 4y(x) = 0,

est :

HI =

I → R
x 7→ λx2 + µ

x2
| (λ, µ) ∈ R2


tandis que, en reprenant la question Q 17 et en imitant la résolution de la question Q 15 (pour
s’assurer qu’on obtient ainsi toutes les solutions : on considère cette fois x 7→ ln(−x) au lieu de
ln), on montre que l’ensemble des solutions à valeurs réelles de l’équation différentielle :

∀x ∈ J, x2y′′(x) + xy′(x)− 4y(x) = 0,

est :

HJ =

J → R
x 7→ λ(−x)2 + µ

(−x)2
| (λ, µ) ∈ R2

 =

J → R
x 7→ λx2 + µ

x2
| (λ, µ) ∈ R2

 .
Déduisons-en les solutions sur R par recollement : une telle solution y est de classe C2 sur R, et
est en particulier une solution sur I et J . Il existe donc (λ, λ′, µ, µ′) ∈ R4 tel que :

∀x ∈ I, y(x) = λx2 + µ

x2 , et : ∀x ∈ J, y(x) = λ′x2 + µ′

x2 .

Cette application est continue en 0 à la condition nécessaire que µ = µ′ = 0 (sinon la limite de
y en 0 est infinie), et est de classe C2 au voisinage de 0 à la condition nécessaire que y′′ soit
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continue en 0 : comme lim
x→0+

y′′(x) = λ et lim
x→0−

y′′(x) = λ′, cela impose λ = λ′. Une solution y
sur R est donc nécessairement de la forme x 7→ λx2 ; réciproquement une telle fonction est de
classe C2 et vérifie l’équation différentielle étudiée sur R.
Pour résumer, l’ensemble des solutions à valeurs réelles de l’équation différentielle :

∀x ∈ R, x2y′′(x) + xy′(x)− 4y(x) = 0,

est : {
R → R
x 7→ λx2 | λ ∈ R

}
.

19. Soit ∑
n>0

anz
n une série entière. L’ensemble {ρ ∈ R+ | (anρn)n∈N est bornée} est un sous-ensemble

de R non vide puisqu’il contient 0. Le rayon de convergence de ∑
n>0

anz
n est, par définition, la

borne supérieure de cet ensemble s’il est majoré, et +∞ sinon.
20. Pour tout x ∈]−R,R[, on a :

J0(x) =
+∞∑
k=0

ckx
k, J ′0(x) =

+∞∑
k=1

kckx
k−1, J ′′0 (x) =

+∞∑
k=2

k(k − 1)ckxk−2.

Alors, J0 vérifie :
∀x ∈]−R,R[, x2y′′(x) + xy′(x) + x2y(x) = 0, (4)

si et seulement si :

∀x ∈]−R,R[,
+∞∑
k=2

k(k − 1)ckxk +
+∞∑
k=1

kckx
k +

+∞∑
k=0

ckx
k+2 = 0

⇐⇒∀x ∈]−R,R[,
+∞∑
k=2

k(k − 1)ckxk +
(+∞∑
k=2

kckx
k + c1x

)
+

+∞∑
k=2

ck−2x
k = 0

⇐⇒∀x ∈]−R,R[,
+∞∑
k=2

(
k2ck + ck−2

)
xk + c1x = 0.

De l’unicité des coefficients d’une somme de série entière sur un voisinage de 0, on déduit :
{
∀k > 2, k2ck + ck−2 = 0,

c1 = 0. ⇐⇒

 ∀k > 2, ck = −1
k2 ck−2,

c1 = 0.

De la première relation on déduit par récurrence, en distinguant la parité des indices :

∀k ∈ N\{0}, c2k = −1
(2k)2 c2(k−1) = −1

(2k)2×
−1

(2(k − 1))2 c2(k−2) = −1
(2k)2×

−1
(2(k − 1))2×· · ·×

−1
22 c0,
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c’est-à-dire : ∀k ∈ N\{0}, c2k = (−1)k
22k(k!)2 c0, l’égalité restant valable pour k = 0 ; ensuite, comme

c1 = 0 :
∀k ∈ N, c2k+1 = −1

(2k + 1)2 ×
−1

(2k − 1)2 × · · · ×
−1
32 c1 = 0.

Finalement, comme par hypothèse c0 = 1, on a d’après ce qui précède :

∀k ∈ N,


c2k+1 = 0,

c2k = (−1)k
22k(k!)2 = (−1)k

4k(k!)2 .
(‡)

21. Déterminons le rayon de convergence de la série entière ∑
k>0

ckx
k = ∑

k>0
c2kx

2k, où les coefficients

sont définis par les égalités de (‡), à l’aide de la règle de D’Alembert : si x = 0, la série converge
trivialement (de somme égale à 1), et si x 6= 0 :∣∣∣∣∣c2(k+1)x

2(k+1)

c2kx2k

∣∣∣∣∣ = 4k(k!)2

4k+1((k + 1)!)2 |x|
2 = |x|2

4(k + 1)2 −→k→+∞
0 < 1,

donc ∑
k>0

c2kx
2k converge pour tout x ∈ R : le rayon de convergence de cette série entière est

infini.
22. Notons d’abord que J0 étant une somme de série entière, elle est continue (et même de classe

C∞) sur son intervalle ouvert de convergence, en l’occurrence R. Une application continue sur
un segment est bornée, par conséquent J0 est bornée sur tout segment de R, et en particulier au
voisinage de 0.
À présent, soit (α, β) ∈ R2 \ {(0, 0)} tel que :

∀x ∈]0, r[, αf(x) + βJ0(x) = 0.

On ne peut pas avoir α = 0 : sinon, pour tout x ∈]0, r[, on a βJ0(x) = 0, et quand x → 0 on
obtient βJ0(0) = β = 0, ce qui est exclu puisque (α, β) 6= (0, 0). On peut donc écrire f = −β

α
J0 ;

l’application J0 étant bornée au voisinage de 0 d’après ce qui précède, il en est de même de f .
23. Puisque, par hypothèse, les séries entières ∑

k>0
αkx

k et ∑
k>0

βkx
k sont de rayons de convergence

Rα et Rβ strictement positifs, leur produit de Cauchy est également de rayon de convergence
R > min(Rα, Rβ) strictement positif. Notons ce produit de Cauchy ∑

n>0
γnx

n. Alors on a, par
hypothèse sur les deux séries entières ci-dessus :

∀x ∈]−R,R[,
+∞∑
n=0

γnx
n =

(+∞∑
k=0

αkx
k

)(+∞∑
k=0

βkx
k

)
= 1.

7



PSI CCP 2018

De l’unicité des coefficients d’une somme de série entière sur un voisinage de 0, on déduit γ0 = 1,
et : ∀n > 1, γn = 0. Or, par définition d’un produit de Cauchy, on a :

∀n ∈ N, γn =
n∑
k=0

αkβn−k,

d’où le résultat désiré (on suppose ici que α0 = 1).
24. Par définition du rayon de convergence, pour tout r ∈]0, Rα[ la suite

(
αkr

k
)
k∈N

est bornée ; il
existe donc M > 0 tel que :

∀k ∈ N, |αkrk| 6M,

d’où : ∀k ∈ N, |αk| 6
M

rk
.

25. On raisonne par récurrence. Posons d’abord β0 = 1. Ensuite, soit n ∈ N ; supposons avoir défini
des réels β0, . . . , βn tels que :

β0 = 1, ∀m ∈ J1, nK,
m∑
k=0

αkβm−k = 0, et ∀k ∈ J1, nK, |βk| 6
M(M + 1)k−1

rk
.

On pose alors :

βn+1 = − 1
α0

n+1∑
k=1

αkβn+1−k = −
n+1∑
k=1

αkβn+1−k. (5)

Alors on a bien la relation :
n+1∑
k=0

αkβn+1−k =
n+1∑
k=1

αkβn+1−k + α0βk+1 = 0

par définition de βn+1. De plus :

|βn+1| 6
n+1∑
k=1
|αk| · |βn+1−k| = |αn+1| · |β0|︸︷︷︸

=1

+
n∑
k=1
|αk| · |βn+1−k|

et donc, d’après (5) et la majoration de la question Q 24 :

|βn+1| 6
M

rn+1 +M2
n∑
k=1

(M + 1)n−k
rkrn+1−k = M

rn+1 + M2(M + 1)n
rn+1

n∑
k=1

( 1
M + 1

)k

= M

rn+1 + M2(M + 1)n
rn+1

1
M + 1

1−
(

1
M+1

)n
1− 1

M+1

= M

rn+1 + M(M + 1)n
rn+1

(
1−

( 1
M + 1

)n)
= M(M + 1)n

rn+1 ,
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ainsi les propriétés énoncées dans (5) s’étendent au rang n+1. On construit ainsi par récurrence
une suite (βn)n∈N vérifiant les propriétés (5) pour tout n ∈ N.
Pour l’unicité, on observe que pour tout n ∈ N \ {0}, la relation

n∑
k=0

αkβn−k = 0 impose l’égalité

βn = −
n−1∑
k=0

αkβn−k ; partant de la condition β0 = 1, on conclut rapidement par récurrence.

26. Le rayon de convergence de la série entière
∑
k>0

M(M + 1)k−1

rk
xk =

∑
k>0

M

M + 1

(
x(M + 1)

r

)k
est

r

M + 1 > 0 : on reconnaît, à une constante multiplicative près, une série géométrique. Puisque

|βk| 6
M(M + 1)k−1

rk
pour tout k ∈ N \ {0}, on en déduit par comparaison que la série entière∑

k>0
βkx

k est de rayon de convergence Rβ >
r

M + 1, donc Rβ est strictement positif.

27. Si y = λJ0, où λ est de classe C2 sur ]0, r[, alors y est elle-même de classe C2 sur ]0, r[ en tant
que produit de fonctions de classe C2. On a alors :

y′ = λ′J0 + λJ ′0, y′′ = λ′′J0 + 2λ′J ′0 + λJ ′′0 ,

donc y vérifie l’équation différentielle linéaire de (4) sur ]0, r[ si et seulement si :

∀x ∈]0, r[, x2y′′(x) + xy′(x) + x2y(x) = 0
⇔∀x ∈]0, r[, x2 (λ′′(x)J0(x) + 2λ′(x)J ′0(x) + λ(x)J ′′0 (x)) + x (λ′(x)J0(x) + λ(x)J ′0(x))

+ x2λ(x)J0(x) = 0,
⇔∀x ∈]0, r[, λ(x)

(
x2J ′′0 (x) + xJ ′0(x) + x2J0(x)

)
+ x2 (λ′′(x)J0(x) + 2λ′(x)J ′0(x)) + xλ′(x)J0(x) = 0

et comme J0 est elle-même solution de (4) sur R, on a : ∀x ∈]0, r[, x2J ′′0 (x)+xJ ′0(x)+x2J0(x) = 0,
donc :

∀x ∈]0, r[, x2y′′(x) + xy′(x) + x2y(x) = 0
⇐⇒∀x ∈]0, r[, x2λ′′(x)J0(x) + 2x2λ′(x)J ′0(x) + xλ′(x)J0(x) = 0

Après multiplication par J0(x)
x

, on en déduit que si y vérifie (4) alors :

∀x ∈]0, r[, xλ′′(x)(J0(x))2 + 2J ′0(x)J0(x)xλ′(x) + λ′(x)(J0(x))2 = 0

(notons qu’on perd a priori l’équivalence puisque rien n’assure que J0(x)
x
6= 0). On remarque que

le membre de gauche de cette dernière égalité est la dérivée de l’application x 7→ x(J0(x))2λ′(x),
donc : si l’application y : x 7→ λ(x)J0(x) est solution de (4) sur ]0, r[, alors x 7→ x(J0(x))2λ′(x)
est de dérivée nulle sur ]0, r[.

9
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À présent, supposons que l’application x 7→ x(J0(x))2λ′(x) soit de dérivée nulle, c’est-à-dire,
après factorisation :

∀x ∈]0, r[, J0(x) (xλ′′(x)J0(x) + 2J ′0(x)xλ′(x) + λ′(x)J0(x)) = 0,

Nous aimerions diviser par J0(x) 6= 0 afin de reconnaître l’égalité x2y′′(x) +xy′(x) +x2y(x) = 0,
mais nous ne savons pas si J0 s’annule sur ]0, r[. Nous devons donc suivre des voies détournées
pour obtenir le résultat voulu : raisonnons par l’absurde, et supposons que la quantité en facteur
de J0(x) est non nulle en un réel x0 ∈]0, r[ ; alors par continuité elle est non nulle en un voisinage
V de x0. L’égalité ci-dessus implique ensuite que pour tout x ∈ V , on a J0(x) = 0. Alors
J ′0(x) = 0 pour tout x ∈ V , et en particulier pour x = x0 ∈ V on a J0(x) = J ′0(x0) = 0 ; or
on sait que J0 est solution de l’équation différentielle (4), donc J0 est solution du problème de
Cauchy : {

∀x ∈]0, r[, xy′′(x) + y′(x) + xy(x) = 0,
y(x0) = y′(x0) = 0, ,

mais la fonction identiquement nulle en est également une solution ; par unicité des solutions à
un problème de Cauchy, on a donc J0(x) = 0 pour tout x ∈]0, r[ : c’est le théorème de Cauchy
linéaire. Mais c’est impossible : l’application J0 étant continue en 0, quand x → 0 l’égalité
précédente donnerait : J0(0) = 0, or J0(0) = 1 6= 0. Nous avons une absurdité.
Ainsi, pour tout x ∈]0, r[ on a : xλ′′(x)J0(x) + 2J ′0(x)xλ′(x) + λ′(x)J0(x) = 0. Mais d’après les
calculs qui précèdent, cette équation se réécrit :

∀x ∈]0, r[, x2y′′(x) + xy′(x) + x2y(x) = 0,

donc y est solution de (4) sur ]0, r[ : d’où l’implication réciproque.
En conclusion : l’application y : x 7→ λ(x)J0(x) est solution de (4) sur ]0, r[ si et seulement si
l’application x 7→ x(J0(x))2λ′(x) est de dérivée nulle sur ]0, r[.

28. La série entière ∑
k>0

ckx
k est de rayon de convergence infini, comme nous l’avons démontré à la

question Q 21, donc le produit de Cauchy de ∑
k>0

ckx
k par lui-même est également de rayon de

convergence infini, et sa somme est J2
0 . Le produit de Cauchy d’une série entière est une série

entière, donc J2
0 est la somme d’une série entière. On a J0(0)2 = 12 = 1.

29. Analyse. Pour que x 7→ x(J0(x))2λ′(x) soit de dérivée nulle sur ]0, r[, il faut et il suffit qu’elle
soit constante sur ]0, r[ ; il suffit par exemple qu’elle soit constante égale à 1. Dans ce cas :

∀x ∈]0, r[, (J0(x))2 × (xλ′(x)) = 1.

Or J2
0 est développable en série entière en 0 d’après la question précédente, et égale 1 en 0, donc

d’après les questions Q 23 à Q 26 il existe une fonction S développable en série entière en 0 telle
que, dans un voisinage IS de 0 :

∀x ∈ IS, (J0(x))2 × S(x) = 1.

10
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Donc : ∀x ∈]0, r[∩IS, xλ′(x) = S(x). L’application λ est donc une primitive de x 7→ S(x)
x

. Ce
n’est pas une application développable en série entière en 0, puisque x 7→ S(x)

x
admet une limite

infinie en 0 (rappelons que S(0) = β0 = 1) ; on fait donc apparaître une application développable
en série entière en 0 en décomposant S sous la forme : ∀x ∈]0, r[, S(x) = 1 + xT (x), où T est
développable en série entière.
Synthèse. Soit ∑

k>0
βkx

k la série entière inverse de la série entière dont la somme égale J2
0 ; notons

R son rayon de convergence, et pour tout x ∈]−R,R[ posons :

S(x) =
+∞∑
k=0

βkx
k = 1 + x

+∞∑
k=1

βkx
k−1.

Pour tout x ∈]−R,R[, on a (J0(x))2S(x) = 1. Donc, si l’on définit :

∀x ∈]0, R[, λ(x) =
∫ x

1

S(t)
t

dt =
∫ x

1

dt
t

+
∫ x

1

+∞∑
k=1

βkt
k−1dt,

pour tout x ∈]0, R[ on a : λ′(x) = S(x)
x

= 1
x(J0(x))2 , donc x 7→ x(J0(x))2λ′(x) est une applica-

tion constante sur ]0, R[.
De plus, J0 ne s’annule pas sur ]0, R[, sinon on aurait J2

0S 6= 1 sur ]0, R[. On en déduit, suivant
l’équivalence de la question Q 27, que l’application :

y : x 7→
(

ln(x) +
∫ x

1

+∞∑
k=1

βkt
k−1dt

)
J0(x)

est une solution de (4) sur ]0, R[. Il reste à poser, pour tout x ∈]0, R[,

η(x) =
∫ x

1

+∞∑
k=1

βkt
k−1dt× J0(x)

pour avoir y sous la forme annoncée : y = η+J0 · ln ; montrons que comme voulu, l’application η

est la somme d’une série entière : l’application x 7→
∫ x

1

+∞∑
k=1

βkt
k−1dt est une primitive de somme

de série entière, donc est la somme d’une série entière, et J0 également ; leur produit η l’est donc
aussi, via le produit de Cauchy des deux séries entières en jeu, qui est de rayon de convergence
Rη supérieur ou égal à min(R,+∞) = R > 0 : d’où le résultat.

30. Soit R le réel introduit dans la question précédente. Comme la dimension de l’espace vectoriel
des solutions de :

∀x ∈]0, R[, x2y′′(x) + xy′(x) + x2y(x) = 0 (6)
est égale à 2 d’après le théorème de Cauchy, il suffit d’en trouver une famille libre de cardinal
2 pour en avoir une base. Notons f = η + J0 · ln la solution sur ]0, R[ obtenue dans la question
précédente : montrons que la famille (f, J0) est libre.

11
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Pour cela, on remarque que f n’est pas bornée. En effet,

J0(x) ln(x) ∼
x→0

ln(x) →
x→0
−∞,

et η étant développable en série entière en 0, elle est bornée au voisinage de 0 par le même
argument que celui utilisé dans la question Q 22 ; on en déduit f(x) →

x→0
−∞, donc f n’est pas

bornée sur ]0, R[ ; en considérant la contraposée du résultat démontré dans cette même question,
on en déduit que la famille (f, J0) est libre, de cardinal 2, donc engendre l’espace vectoriel des
solutions de (6) : une application y de C2 sur ]0, R[ est solution de (6) si et seulement s’il existe
λ, µ ∈ R tels que y = λf + µJ0.

31. On a |X| 6 1 par hypothèse, et 1 admet une espérance en tant que variable aléatoire à support
fini (et cette espérance égale 1), donc par comparaison X en admet également une.

32. L’inégalité de Markov énonce que si Y est une variable aléatoire réelle discrète à valeurs positives
et ayant une espérance, alors pour tout α > 0 on a :

P(Y > α) 6 E(Y )
α

.

On la démontre comme suit : notons {yn | n ∈ N} ⊆ R+ un ensemble contenant l’image de Y ,
et soit α > 0. Alors :

E(Y ) =
+∞∑
n=0

ynP(Y = yn) =
+∞∑
n=0
yn>α

ynP(Y = yn) +
+∞∑
n=0
yn<α

ynP(Y = yn)

︸ ︷︷ ︸
>0

> α
+∞∑
n=0
yn>α

P(Y = yn) = α · P(Y > α),

d’où l’inégalité désirée en divisant par α > 0. Cette démonstration englobe le cas d’une image
finie.

33. Si X est une variable aléatoire admettant une espérance, alors |X| en admet également une, et
est à valeurs positives. Par conséquent, d’après l’inégalité de Markov, on a :

P(|X| > α) 6 E(|X|)
α

.

34. Soient ε, t > 0 et n ∈ N \ {0}. Tout d’abord, vérifions que etX admet bien une espérance : on
a 0 6 etX 6 et, et la variable aléatoire constante et admet une espérance parce qu’elle est à
support fini. Par comparaison, c’est aussi le cas de etX .
On applique cette fois l’inégalité de Markov à la variable aléatoire etnSn (qui est bien discrète
parce que Sn l’est, et à valeurs positives parce que l’exponentielle est positive) et avec α = etnε.
On a alors :

P
(
etnSn > etnε

)
6
E(etnSn)
etnε

.
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Par hypothèse, les variables aléatoires X1, . . . , Xn sont mutuellement indépendantes, donc les
variables aléatoires etX1 , . . . , etXn le sont également. Donc :

E
(
etnSn

)
= E

et
n∑

i=1
Xi

 = E

(
n∏
i=1

etXi

)
=

n∏
i=1

E
(
etXi

)
=
(
E
(
etX

))n
.

Enfin, l’application x 7→ etnx étant croissante pour tous t et n strictement positifs, on a(
etnSn > etnε

)
= (Sn > ε), donc :

P (Sn > ε) = P
(
etnSn > etnε

)
6
E(etnSn)
etnε

=

(
E
(
etX

))n
etnε

,

d’où le résultat.
35. Soit a > 1. L’application x 7→ 1− x

2 a−1 + 1 + x

2 a est dérivable sur R car polynomiale, et
l’application x 7→ ax = ex ln(a) est dérivable sur R en tant que composition des applications
x 7→ x ln(a) et x 7→ exp(x). Leur différence ga est donc dérivable sur R également, et on a :

∀x ∈ R, g′a(x) = 1
2(a− a−1)− ln(a)ax.

On a a > 1, donc ln(a) > 0. Ainsi l’application x 7→ ax est strictement croissante sur R en
tant que composée de l’application affine x 7→ x ln(a), de pente strictement positive, et de
l’application exponentielle. On en déduit que x 7→ − ln(a)ax est strictement décroissante sur R,
donc g′a également.
De plus, ga(−1) = ga(1) = 0 comme le montre un calcul immédiat, donc d’après le théorème de
Rolle dont ga vérifie bien les hypothèses, il existe x0 ∈]− 1, 1[ tel que g′a(x0) = 0 ; comme g′a est
strictement décroissante, on peut résumer le comportement de ga ainsi :

x

g′a(x)

ga

−1 x0 1

+ 0 −

00 00

En particulier, pour tout x ∈ [−1, 1] on a ga(x) > 0.
36. Soit t > 0. On pose ici a = et > 1, et la question précédente implique l’inégalité : ∀x ∈ [−1, 1],

ga(x) > 0, c’est-à-dire :

∀x ∈ [−1, 1], 1− x
2 e−t + 1 + x

2 et − etx > 0,

et c’est précisément le résultat désiré, après avoir ajouté etx à chaque membre de l’inégalité.
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37. Soit t > 0. Si, pour tout ω ∈ Ω on applique l’inégalité précédente à x = X(ω), qui appartient
toujours à [−1, 1] par hypothèse sur X, on a :

etX 6
1−X

2 e−t + 1 +X

2 et.

Comme l’espérance est linéaire et positive, on en déduit :

E
(
etX

)
6
e−t

2 (E(1)− E(X)) + et

2 (E(1) + E(X))

Or E(1) = 1, et X est centrée donc E(X) = 0, et on a finalement :

E
(
etX

)
6
e−t + et

2 = cosh(t).

38. L’inégalité attendue revient à démontrer que (2k)! > 2k · k! pour tout k ∈ N. Montrons-le par
récurrence sur k : si k = 0, c’est évident, puisqu’on a 0! = 1 > 20 · 0! (il y a même égalité ici). À
présent, soit k ∈ N, et supposons que (2k)! > 2k · k!. Alors :

(2(k + 1))! = (2k + 2)(2k + 1)(2k)! > (2k + 1)︸ ︷︷ ︸
>1

·2k · k! > 2(k + 1) · 2k · k! = 2k+1(k + 1)!,

d’où l’hérédité. On en déduit : ∀k ∈ N, (2k)! > 2k · k!. Ensuite :

∀t ∈ R, ∀k ∈ N,
t2k

(2k)! 6
t2k

2k · k!

parce que t2k > 0 pour tout t ∈ R. On écrit ensuite t2k = (t2)k pour avoir le résultat voulu. En
reprenant l’inégalité de la question précédente, on a donc :

E
(
etX

)
6 cosh(t) =

+∞∑
k=0

t2k

(2k)! 6
+∞∑
k=0

(t2/2)k
k! = e

t2
2

d’après les développements en série entière en 0 des fonctions usuelles exponentielle et cosinus
hyperbolique.

39. Étudions les variations de t 7→ e−ntε+n
t2
2 sur R. L’application t 7→ −ntε + n t

2

2 est polynomiale,
donc dérivable sur R, et sa dérivée est t 7→ −nε+nt = n(t−ε). On en déduit que t 7→ −ntε+n t22
est strictement décroissante sur ] − ∞, ε], puis strictement croissante sur [ε,+∞[. L’exponen-
tielle étant strictement croissante, on en déduit que l’application composée t 7→ e−ntε+n

t2
2 est

strictement décroissante sur ]−∞, ε], puis strictement croissante sur [ε,+∞[. Elle admet donc
un minimum en ε, qui vaut e−nε2

2 .
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40. Les questions Q 34, Q 38 et Q 39 impliquent :

∀t ∈ R, P(Sn > ε) 6

(
E
(
etX

))n
etnε

6 en
t2
2 −tnε.

En prenant t = ε, on en déduit :
P(Sn > ε) 6 e−

nε2
2 .

Le même raisonnement permet de démontrer que P(−Sn > ε) 6 e−
nε2

2 : il suffit de remplacer les
Xi par les −Xi, qui restent mutuellement indépendantes et de même loi que −X dont l’image
est également incluse dans [−1, 1] ; autrement dit, ces variables aléatoires vérifient les hypothèses
de l’énoncé, donc la même conclusion. Alors, comme :

(|Sn| > ε) = (Sn > ε) ∪ (Sn 6 −ε) = (Sn > ε) ∪ (−Sn > ε),

l’union étant disjointe, on en déduit :

P(|Sn| > ε) = P(Sn > ε) + P(−Sn > ε) 6 2e−nε2
2 .

41. Soit ε > 0. La série ∑
n>1

e−
nε2

2 est géométrique, de raison e− ε2
2 ∈]−1, 1[, donc elle est convergente.

Or, en utilisant la question précédente et l’inclusion (|Sn| > ε) ⊆ (|Sn| > ε), on a :

∀n ∈ N \ {0}, 0 6 P(|Sn| > ε) 6 P(|Sn| > ε) 6 2e−nε2
2

donc, par comparaison de séries à termes positifs, la série ∑
n>1

P(|Sn| > ε) converge.

42. Pour tout n ∈ N \ {0}, puisque |Sn| est une variable aléatoire, l’ensemble (|Sn| > ε) est un
évènement. Par conséquent, pour tout n ∈ N \ {0}, l’ensemble Bn = ⋃

m>n
(|Sm| > ε) est un

évènement en tant qu’union dénombrable d’évènements.
De plus, on vérifie directement que pour tout n ∈ N \ {0} on a Bn+1 ⊆ Bn (on unit de moins en
moins d’ensembles parmi ceux de la collection ((|Sn| > ε))n∈N\{0}) donc, d’après le théorème de
continuité décroissante :

P

 ⋂
n∈N\{0}

Bn

 = lim
n→+∞

P(Bn).

Or, par sous-additivité, on a :

∀n ∈ N \ {0}, 0 6 P(Bn) = P

 ⋃
m>n

(|Sm| > ε)
 6

+∞∑
m=n

P (|Sm| > ε) ,

et le membre de droite est le reste d’indice n − 1 d’une série convergente (d’après la question
précédente), donc : lim

n→+∞

+∞∑
m=n

P (|Sm| > ε) = 0. D’après le théorème des gendarmes, on en déduit :
lim

n→+∞
P(Bn) = 0, d’où le résultat.
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43. Soit k ∈ N \ {0}. On peut décrire Ωk ainsi :

Ωk =
⋃

n∈N\{0}

⋂
m>n

(
|Sm| 6

1
k

)
=

⋃
n∈N\{0}

⋃
m>n

(
|Sm| >

1
k

)
=

⋃
n∈N\{0}

B̄n, (7)

où l’on a posé ε = 1
k
. Pour tout n ∈ N \ {0}, l’ensemble B̄n est un évènement parce que Bn en

est un, donc Ωk est un évènement en tant qu’union dénombrable d’évènements.
Par définition de la limite (où l’on prend ε = 1

k
), si ω ∈ Ω vérifie lim

n→+∞
Sn(ω) = 0, alors :

∀k ∈ N \ {0}, ∃n ∈ N \ {0}; ∀m > n, |Sm(ω)| 6 1
k
, (8)

Donc :
A = {ω ∈ Ω | lim

n→+∞
Sn(ω) = 0} ⊆

⋂
k∈N\{0}

Ωk,

et l’inclusion réciproque se vérifie en remarquant que la propriété (8) implique :

∀ε > 0, ∃n ∈ N \ {0}; ∀m > n, |Sm(ω)| 6 ε.

Il suffit, pour cela, d’observer que pour tout ε > 0, il existe k ∈ N \ {0} tel que 1
k
6 ε, puisque

lim
k→+∞

1
k

= 0. Donc :

A = {ω ∈ Ω | lim
n→+∞

Sn(ω) = 0} =
⋂

k∈N\{0}
Ωk.

En tant qu’intersection dénombrable d’évènements, A est un évènement.
44. Pour éviter les confusions, notons Bn,ε = ⋃

m>n
(|Sm| > ε) au lieu de Bn. D’après (7), on a :

A =
⋂

k∈N\{0}
Ωk =

⋂
k∈N\{0}

⋃
n∈N\{0}

B̄n, 1
k

=
⋂

k∈N\{0}

⋂
n∈N\{0}

Bn, 1
k

=
⋃

k∈N\{0}

⋂
n∈N\{0}

Bn, 1
k
,

donc :

P(A) = 1− P

 ⋃
k∈N\{0}

⋂
n∈N\{0}

Bn, 1
k

 .
Par sous-additivité, on a :

P(A) > 1−
+∞∑
k=1

P

 ⋂
n∈N\{0}

Bn, 1
k

 ,
et nous avons démontré, dans la question Q 42, que P

( ⋂
n∈N\{0}

Bn,ε

)
= 0 indépendamment de

ε > 0, donc P(A) > 1 ; mais on a aussi P(A) 6 1 puisque P est une probabilité. On en déduit :

P(A) = 1.
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