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CONCOURS COMMUNS POLYTECHNIQUES 2018

Epreuve de mathématiques PSI, quatre heures
Corrigé

Dans tout ce document, on note B, la base canonique de R, [X].
1. Pour tout k € [0,n], on a A(X*) = kX"

2. On doit démontrer 'identité :
VP e R[X], X?P"=Ao(A—-I1d)(P). (%)

Comme P +— XP" et Ao (A —1d) sont des applications linéaires, il suffit de démontrer (x) sur
la. famille génératrice <Xk)k:eN de R[X]. Or :

VkeN, Ao(A—1d)(X") = (k- 1DAXF) =k(k—1)X"=X?x k(k—1)X"2,

donc () est vérifiée sur une famille génératrice de R[X] : elle est vraie pour tout P € R[X].

3. Rappelons que la famille (X*)iep,, engendre R, [X]. Comme, pour tout k& € [0,n], on a
A(XF) = kX* € R,[X], par linéarité on a A(P) € R,[X] pour tout P € R,[X].

4. D’apres la question Q1, on a :

0 0

0 n
On remarque que A, est diagonalisable, et la base canonique de R, [X] est une base de vecteurs

propres de A,,.

5. D’apres lidentité (%), on a :
d=Ao(A—1Id)+aA =A% A+aA=A*+(a—1)A,

d’ott le résultat. Comme A est un endomorphisme de R[X], c’est aussi le cas de A?, et par suite
de @ qui en est une combinaison linéaire.

6. Nous avons vu, dans la question Q 3, que A laisse stable R,,[X], donc A? également, ainsi que
leur combinaison linéaire ®. Par conséquent ® induit un endomorphisme de R, [X], noté ®,,.

7. Nous avons vu, dans la question Q 4, que la matrice de A,, dans la base canonique de R,,[X], que
nous notons ici D, est diagonale. La matrice de ®,, dans cette méme base est donc D*+(a—1)D,
qui est également diagonale. Ceci démontre que ®,, est diagonalisable, et la base canonique de
R,,[X] est une base de vecteurs propres de ®,,.
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8.

10.

Ona: ¢ = &+bld. Comme D et bld laissent stable R,,[X], il en est de méme de leur somme ¢, qui
induit donc un endomorphisme de R, [X] noté ¢, et on a : ¢, = @, +bld = A%+ (a—1)A+bId.

. Reprenant la question Q 4 et I'identité ¢, = A% + (@ — 1)A + bId, on a :

MBn ((pn) = /\2 ’

ou:Vke[0,n], \y =k*+(a—1) -k+0.

Soit P € R,[X], qu’on écrit sous la forme : P = Y q;X*. Alors, sans faire pour le moment
i=0
d’hypothese sur les racines de I'équation s> + (a —1)s+b =0, on a :

Qo 0
aq 0

P e ker(p,) <= on(P)=0<= Mg, (on)| . | =|.| <= Vk€[0,n], \ear=0.
an, 0

d’apres la matrice de ¢,, obtenue dans la question précédente. Comme, pour tout k € [0, n], on
aM,=k*>+ (a—1)-k+b, on peut décrire le noyau de ¢, ainsi :

P = zn:aiXi € ker(p,) <= Vk € [0,n], (k*+ (a—1)-k+b)a = 0. (1)

=0

A présent, puisque 1’énoncé nous y invite, supposons existence de deux solutions entiéres
my,me € [0,n] a Iéquation :
s>+ (a—1)s+b=0. (1)

On a donc m?+ (a—1)m; +b = m3+ (a —1)my +b = 0. Comme cette équation est polynomiale
et de degré 2, il n'y a dans ce cas pas d’autre solution; on en déduit que pour tout k € [0, n]
distinet de m; et mg, on a k* + (a — 1)k + b # 0 et donc, d’apres () :

n ' vk c [[O,TL]] \ {ml,mg}, ap — 0
P=> a; X' €ker(p,) <= (mi+(a—1)mi+blay, =0 <= Vke [0,n]\{mi,ms}, a, =0,
i=0 (m3 + (a — 1)my + b)ay,, =0

les deux dernieéres égalités étant vraies indépendamment de a,,, et a,,,. En résumé, P € ker(ip,,)
si et seulement si P est combinaison linéaire de X™ et X2, c¢’est-a-dire :

ker(p,) = Vectg (X™, X™2).
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(On peut procéder autrement : la matrice de p, étant diagonale, avec ici deuz coefficients dia-
gonauz, on observe aisément qu’on peut l’échelonner avec n — 1 pivots non nuls et 2 nuls, donc
on a immédiatement dim(ker(v,)) = 2, la nullité de deux colonnes permettant d’en déduire une
famille génératrice ; de méme pour la question suivante)

11. La description de ker(y,) donnée dans (t) reste valable. Si, cette fois-ci, il existe une et une
seule racine entiere m € [0,n] a I’équation (1), alors :

P =Y a;X'€ker(p,) < Vk € [0,n] \ {m}, ar =0,

=0
donc P € ker(p,,) si et seulement si P est proportionnel a X™, c’est-a-dire :

ker(y,) = Vectg (X™).

12. Si, pour un certain n € N, un polynéme P € R,[X] vérifie p,(P) = 0, alors p(P) = 0 en

particulier, donc ker(y,) C ker(¢). Ceci vaut pour tout n € N, donc U ker(p,) C ker(p)
neN

(méme si ce fait ne nous importe pas tant que cela ici, notons que cette union est bien un
espace vectoriel, grace a I'inclusion successive des noyaux). Réciproquement, si P € R[X] vérifie
@(P) = 0, alors @qgeg(p)(P) = 0 et donc ker(y) C ker(¢aeg(r)) S U ker(y,). Donc :

neN

ker(yp) = U ker(p,,)

neN

(Cette description n’est peut-étre pas la plus simple, mais elle est en quelque sorte intrinséque).

D’apres les deux questions qui précedent, soit I’équation (1) n’a pas de solution entiére positive,

auquel cas ker(y,) = {0} pour tout n € N et donc ker(¢) = {0}; soit, en notant m’ la plus

grande solution entiere de (1), on a ker(¢) = ker(p,,). Cet espace vectoriel est, on 'a vu, de

dimension finie; égale a 1 s’il existe une seule solution entiere positive, et a 2 s’il en existe deux.
. - oo JNO—= R

Pour résumer, sil’on définit f : { s sP+(a—1Ds+b’

possibles du noyau de ¢, plus ou moins compactes :

dim(ker(p)) = card ({s EN|s’+(a—1)s+b= 0}) = card (f_l({()}))

2 si (1) admet deux solutions entieres,
= ¢ 1si (1) admet une solution entiere,
0 si (1) admet aucune solution entiere.

alors on a ces différentes descriptions

13. Soient I =]0,+o0o[ et J =] — 00, 0[. Considérons I'équation différentielle linéaire :
Ve eI, 2%)/'(x)+ avy (z)+ by(z) =0, (2)

et soit H; ’ensemble de ses solutions de classe C? sur I. C’est un espace vectoriel sur R.
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14.

15.

16.

Soit tg € I. Le théoreme de Cauchy implique que 'application suivante, manifestement linéaire :

H;y — R?
y(to)
—
Y (y,@o))
est un isomorphisme, la surjectivité provenant de 'existence des solutions a un probleme de
Cauchy, et I'injectivité provenant de I'unicité de ces solutions. Par conséquent, on a dim(Hy) = 2 :

I'ensemble des solutions a I’équation (2) est un espace vectoriel de dimension 2. On définit de
méme H, et alors : dim(H,) = 2.

Avec les notations ci-dessus, soit y € H;. Notons g = y o exp. Alors :
Vrel, ¢'(x)=e"y'(e"), g"(x) ="y (") + ¥y ("),
donc en particulier : Vz € I, e**y"(e”) = ¢"(x) — ¢/(x). Or, comme y vérifie (2), on a :
Vo € R, ¥y (e") + ae™y'(e") + by(e”) = 0 <= Vz € R, ¢"(z) — ¢ (x) + ag'(x) + bg(z) = 0,
si et seulement si g est solution de I’équation différentielle linéaire :
u” + (@ — 1)u' + bu = 0. (3)

Nous avons non seulement des implications directes, mais des équivalences dans la question
précédente : I'application y est solution de (2) si et seulement si g = y o exp est solution sur R
de (3). Or :

g=yoexp<=y=goln,
les applications logarithme et exponentielle étant réciproques I'une de 'autre. Donc ’application
g est solution sur R de (3) si et seulement si y = g o In est solution de (2).

Cas a = 3 et b = 1. 1l s'agit d’'une équation différentielle linéaire d’ordre 2 a coefficients
constants. Dans ce cas, I'équation caractéristique 72 + 2r + 1 = 0 a pour solution unique —1,
donc 'ensemble des solutions de (3) est :

{R—>R

z o (At pz)e® ’()\,M)GRZ}.

D’apres la correspondance établie, dans les deux questions qui précedent, entre les solutions de
(2) et de (3), on en déduit que I'ensemble des solutions de ’équation différentielle (2) est :

I — R )
H; = A 1 A ) €R S
o o AtehE) (O

ou l'on a utilisé I'identité : Vo € I, e7™) = 1,
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Cas a = 1 et b = 4. Cette fois, I’équation caractéristique r? + 4 = 0 a pour solutions 2i et —2i,
donc I'ensemble des solutions a valeurs réelles de (3) est :

R —- R 9
{x —  Acos(2z) + psin(2x) [ (A n) R } '
On en déduit que l'ensemble des solutions a valeurs réelles de 1'équation différentielle (2) est :
JI = R 2
Hr = {x —  Acos(2In(z)) + psin(21n(x)) (A n) eR }
17. On procede exactement comme dans la question Q 14, mutatis mutandis.
18. On montre aisément que 1’ensemble des solutions sur R de v” — 4u = 0 est :

{R—>R

2
T = )\621+'u672$ ’()‘7M)€R}

D’apres la question Q 14, 'ensemble des solutions a valeurs réelles de I'équation différentielle :

Veel, 2%y'(x)+ay(z)—4y(x) =0,

I - R
H; = o (A p) eR?

est :
r )\1’2 + )
x
tandis que, en reprenant la question Q 17 et en imitant la résolution de la question Q 15 (pour

s’assurer qu’on obtient ainsi toutes les solutions : on considere cette fois x +— In(—z) au lieu de
In), on montre que I'ensemble des solutions a valeurs réelles de I’équation différentielle :

Ve J, 2%y'(z) +ay(x) — 4y(x) =0,

est :

J — R , J — R ,
Hj;= T )\(_x)2+/1,)2 \(A,M)GR = T )\%2—1-& ‘()\7M)€R :

(—x 2
Déduisons-en les solutions sur R par recollement : une telle solution y est de classe C? sur R, et
est en particulier une solution sur I et J. Il existe donc (A, N, i, i) € R* tel que :

/

K
x?’

Ve e, y(x)z)ﬁf—l—%, et: VYoreJ vyx)=Nr?+
T

Cette application est continue en 0 a la condition nécessaire que p = p/ = 0 (sinon la limite de
y en 0 est infinie), et est de classe C? au voisinage de 0 a la condition nécessaire que y” soit
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continue en 0 : comme lim y"(z) = Aet lim y”(x) = N, cela impose A = N. Une solution y
z—0 z—0~

sur R est donc nécessairement de la forme x — A\a?; réciproquement une telle fonction est de

classe C? et vérifie I’équation différentielle étudiée sur R.

Pour résumer, I’ensemble des solutions a valeurs réelles de 1’équation différentielle :

Ve e R, z%)/(x) + 2y (z) — 4y(x) = 0,

est :
{R - R

r = Ar? |/\ER}'

19. Soit Y a,z™ une série entiere. L'ensemble {p € R, | (a,p")nen est bornée} est un sous-ensemble
n=0

de R non vide puisqu’il contient 0. Le rayon de convergence de Y a,2" est, par définition, la
n>0

borne supérieure de cet ensemble s’il est majoré, et 400 sinon.
20. Pour tout x €] — R, R[, on a :

+o0o +oo
= Z ek, Jy(x) = Z kepa® 1, J§ (z Z k(k — 1)cpa®2.
k=0 k=1

Alors, Jy vérifie :
Vo €] - R, R[, 2*y"(z) +ay/(z) + 2y(x) = 0, (4)

si et seulement si :

+00 +o0 too
V€] - R, R|, Z k(k — Dega® + 3 kepa® + 3 gaf™ =0

k=1 k=0
+o0
«=Vz €] — R,R|, Z k(k — 1)cpa® + (Z keyx® + cm:) +> 02t =0
k=2 k=2
+oo
<—Vzr €] - R, R|, Z (kQCk + ck,g) zF + iz = 0.
k=2

De I'unicité des coefficients d’une somme de série entiere sur un voisinage de 0, on déduit :

-1
Vk 2 2, k:zck + Cip—2 = O, Yk = 2, Cr — ﬁck,z,
= 0. C1 = 0.

De la premiere relation on déduit par récurrence, en distinguant la parité des indices :

-1 -1 1 o i »
(QT)QCZ(k—l) (2k)2 X 0 = 1))262(k—2) = 2h? X e XX o

vk € N\ {0}, cop =
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9 N . <_1)k ’ o, 2 .
c’est-a-dire : V& € N\ {0}, cor = mco, I’égalité restant valable pour k = 0; ensuite, comme
C1 = 0: ‘
Vk €N eVt SV . SO
C = .« e —C = .
P k412 T (26— 1)2 32
Finalement, comme par hypothese ¢y = 1, on a d’apres ce qui précede :
Corr1 =0,
Vk € N, (-1)* _ (D" ()

21.

22.

23.

2= o2k (g2 T 4k(kI)2

Déterminons le rayon de convergence de la série enticre Y ca® = 30 co,2%*, ol les coefficients
k>0 k>0

sont définis par les égalités de (1), a l'aide de la regle de D’Alembert : si z = 0, la série converge
trivialement (de somme égale a 1), et si x # 0 :

2(k+1)

IR UHE
T ((k+ 1))

C2(k+1)T

|[?
— 0«1
Copa2k )

4(/€ + 1)2 k—+o0

2 _
2‘Jf| -

donc Y cqr2?* converge pour tout z € R : le rayon de convergence de cette série entiére est
k>0

infini.

Notons d’abord que Jy étant une somme de série entiere, elle est continue (et méme de classe

C*) sur son intervalle ouvert de convergence, en 'occurrence R. Une application continue sur

un segment est bornée, par conséquent Jy est bornée sur tout segment de R, et en particulier au

voisinage de 0.

A présent, soit (o, 3) € R?\ {(0,0)} tel que :
Vo €]0,r], af(z)+ BJo(z) =0.

On ne peut pas avoir @ = 0 : sinon, pour tout = €]0,7[, on a SJy(x) = 0, et quand = — 0 on
obtient 8Jy(0) = 5 = 0, ce qui est exclu puisque («, ) # (0,0). On peut donc écrire f = —gJo;
I’application J, étant bornée au voisinage de 0 d’aprés ce qui précede, il en est de méme de f.

Puisque, par hypothese, les séries entieres Y agz® et 3 Byz* sont de rayons de convergence

k>0 k>0
R, et Rp strictement positifs, leur produit de Cauchy est également de rayon de convergence

R > min(R,, Rg) strictement positif. Notons ce produit de Cauchy > ~v,2". Alors on a, par

n=0
hypothese sur les deux séries entieres ci-dessus :

+o00 +o0o +o0o
Vz €] - R,R[, > "= (Z akxk> <Z qu:k> =1.
n—=0 k=0 k=0
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De I'unicité des coefficients d’une somme de série entiere sur un voisinage de 0, on déduit v9 = 1,
et : Vn > 1, v, = 0. Or, par définition d’'un produit de Cauchy, on a :

Vn € N7 Yn = Z akﬁnflm
k=0
d’ou le résultat désiré (on suppose ici que ag = 1).
24. Par définition du rayon de convergence, pour tout r €]0, R,[ la suite (akrk>k€N est bornée; il
existe donc M > 0 tel que :
VkeN, |apr*| < M,
M
d'ott : Vk € N, Jag| < —.
r
25. On raisonne par récurrence. Posons d’abord y = 1. Ensuite, soit n € N; supposons avoir défini

des réels [y, ..., 3, tels que :

i M(M + 1)F1
Bo=1, Vme[ln], > apbni=0, et Vke[1,n], |Gl < (rk)
k=0
On pose alors :
1 n+1 n+1
5n+1 = - Z akﬁn-&-l—k = = Z O‘kzﬁn-ﬁ-l—k- (5)
Qo 5 k=1
Alors on a bien la relation :
n+1 n+1

> Btk = D futi—k + b1 =0
k=0 k=1

par définition de S,,.1. De plus :

n+1 n
Brral <D lanl - [Bnsrrl = lansal - |Bol + D o] - |Bnra i
k=1 ‘;’1“ k=1

et donc, d’apres (5) et la majoration de la question Q 24 :

M (M4 M MA(M )"

2
Bl < yntl +M kz_:l rhpntl—k = pn+l yntl

-

7 N

<

+ —

—_

SN—
e

Mo oMy 11— ()

pntl yn+l M+1 _ ﬁ
M MM +1)" (1 ( 1 )”)
gl pntl M+1
C M(M 1)

- prntl )



PSI

CCP 2018

26.

27.

ainsi les propriétés énoncées dans (5) s’étendent au rang n+ 1. On construit ainsi par récurrence
une suite (8, )nen vérifiant les propriétés (5) pour tout n € N.
n
Pour 'unicité, on observe que pour tout n € N\ {0}, la relation Y a5,—r = 0 impose égalité
k=0

n—1
Bn = — > aif,—k; partant de la condition Sy = 1, on conclut rapidement par récurrence.

M(M + 1)+ M M+1)\"
Le rayon de convergence de la série entiere Z u@"k - Z M+1 <x< : >> est

%
k>0 r k>0 r

r
M+1

> ( : on reconnait, a une constante multiplicative pres, une série géométrique. Puisque

M(M + 1)kt
1Bk] < (7:) pour tout k£ € N\ {0}, on en déduit par comparaison que la série entiere

& r
z® est de rayon de convergence Rg > ———
kgo ﬁk Yy g B = M n 17

Si y = AJy, out X est de classe C? sur |0, r[, alors y est elle-méme de classe C? sur ]0,7[ en tant
que produit de fonctions de classe C?. On a alors :

donc Rg est strictement positif.

Y = NJo MLy = N+ 2N T+ AL
donc y vérifie 'équation différentielle linéaire de (4) sur |0, r| si et seulement si :

V:L'E] 770[71'34 )+x@/()+x29(x)20
SV €0, 2? ()\"( )Jo(@) 42X () Jo(x) + M) Jg (2)) + = (X' (2) Jo() + A(z) Jo(x))

+ 22 \(2)Jo(z) =

sV €]0,r[, A(z) (:v J(’)'(x) + xJy(z) + ZEQJO(IE)> + 22 (N () Jo () 4+ 2N () J4(2)) + 2N (2) Jo(2)

et comme Jj est elle-méme solution de (4) sur R, on a : Vz €]0,7[, 2*JJ (z)+zJ}(z)+2*Jo(z) = 0,
donc :

Vo €]0, 7], 2%y (z) + 2y (2) + 2%y(2) =
<=V €)0,7[, 2N (2)Jo(z) + 22°N (x)J}(x ) + 2N (z)Jo(x) =0

JQ(ZL')

Apres multiplication par , on en déduit que si y vérifie (4) alors :

Vo €]0,r[, X' (z)(Jo(x))? + 2J5(x)Jo(z)2N () + X(x)(JO(:c))2 =0

(notons qu’on perd a priori I’équivalence puisque rien n’assure que o2) 3& 0). On remarque que
le membre de gauche de cette derniere égalité est la dérivée de I’ apphcatlon x = z(Jo(2))*N(x),
donc : si I'application y : # — \(z)Jo(z) est solution de (4) sur ]0, r[, alors x — x(Jo(z))?*N ()
est de dérivée nulle sur |0, 7.

=0
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28.

29.

A présent, supposons que application = — z(Jo(x))2N () soit de dérivée nulle, c’est-a-dire,
apres factorisation :

Vo €]0,r[, Jo(z) (@' (z)Jo(z) + 2J5(x)zN (x) + N (2) Jo(x)) = 0,

Nous aimerions diviser par Jy(z) # 0 afin de reconnaitre 'égalité z%y"(x) + zy/(x) + 2%y(z) = 0,
mais nous ne savons pas si Jy s’annule sur ]0,7]. Nous devons donc suivre des voies détournées
pour obtenir le résultat voulu : raisonnons par I’absurde, et supposons que la quantité en facteur
de Jyo(z) est non nulle en un réel =y €]0, r[; alors par continuité elle est non nulle en un voisinage
V de zg. L’égalité ci-dessus implique ensuite que pour tout x € V, on a Jy(x) = 0. Alors
J{(z) = 0 pour tout x € V, et en particulier pour x = xg € V on a Jy(z) = Jj(xo) = 0; or
on sait que Jy est solution de I'équation différentielle (4), donc Jy est solution du probléme de
Cauchy :

{ Va €0, r[, ay"(x) +y' () + xy(x) =0,

y(@o) = y'(w0) =0,

mais la fonction identiquement nulle en est également une solution ; par unicité des solutions a
un probleme de Cauchy, on a donc Jy(x) = 0 pour tout = €]0,7[ : ¢’est le théoreme de Cauchy
linéaire. Mais c’est impossible : 'application Jy étant continue en 0, quand z — 0 I'égalité
précédente donnerait : Jo(0) = 0, or Jo(0) = 1 # 0. Nous avons une absurdité.
Ainsi, pour tout z €]0,7[ on a : x\"(x)Jo(z) + 2Ji(x)z N (x) + N (x)Jo(x) = 0. Mais d’apres les
calculs qui précedent, cette équation se réécrit :

va €]0,r[,  2%y"(x) + 2y (v) + 2?y(z) =0,

donc y est solution de (4) sur |0, 7] : d’ou 'implication réciproque.

En conclusion : l'application y : x + A(z)Jy(z) est solution de (4) sur 0, r[ si et seulement si

I'application z — z(Jo(z))?N (x) est de dérivée nulle sur |0, 7[.

La série entiere Y. c,z* est de rayon de convergence infini, comme nous I’avons démontré a la
k>0

question Q 21, donc le produit de Cauchy de Y c¢zz* par lui-méme est également de rayon de
k>0

convergence infini, et sa somme est J3. Le produit de Cauchy d’une série enticre est une série
entiére, donc J3 est la somme d’une série entiere. On a Jy(0)* = 12 = 1.

Analyse. Pour que = — x(Jy(x))?N (z) soit de dérivée nulle sur |0, r[, il faut et il suffit qu’elle
soit constante sur |0, r[; il suffit par exemple qu’elle soit constante égale a 1. Dans ce cas :

Vo €]0,r], (Jo(z))? x (xN(z)) = 1.

Or JZ est développable en série entiere en 0 d’aprés la question précédente, et égale 1 en 0, donc
d’apres les questions Q 23 a Q 26 il existe une fonction .S développable en série entiere en 0 telle
que, dans un voisinage Ig de O :

Vo € Is, (Jo(z))* x S(z) = 1.

10
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30.

Donc : Vz €]0,7[Nls, 2N (x) = S(z). L’application A est donc une primitive de x SSC). Ce
n’est pas une application développable en série entiere en 0, puisque x +— % admet une limite
infinie en 0 (rappelons que S(0) = 5 = 1) ; on fait donc apparaitre une application développable
en série entiere en 0 en décomposant S sous la forme : Vz €]0,r[, S(x) = 1+ 2T (z), on T est
développable en série entiere.

Synthése. Soit Y- Bra la série entiere inverse de la série entiére dont la somme égale JZ ; notons
k=0

R son rayon de convergence, et pour tout x €] — R, R[ posons :
+oo +00
S =Y. Arat =142y frat.
k=0 k=1
Pour tout €] — R, R[, on a (Jy(x))?>S(x) = 1. Donc, si 'on définit :

o SE),,  mdt = IR e
v €]0, R], )\(x)f/l == tf/l 7+/1 kz:jlﬁkt dt,

pour tout x €]0, R[ on a : X (z) = S(xx) = 20 1(x))2’ donc z — x(Jo(z))?N () est une applica-
0

tion constante sur |0, R].
De plus, Jy ne s’annule pas sur |0, B[, sinon on aurait J2S # 1 sur |0, R[. On en déduit, suivant
I’équivalence de la question Q 27, que 'application :

x To0

Yz <ln(:1:) + /1 kz::lﬂkt’“_ldt> To(a)

est une solution de (4) sur ]0, R|. Il reste a poser, pour tout = €]0, R|,

x 100
n(z) = /1 3 Bt ldt x Jo(x)
k=1

pour avoir y sous la forme annoncée : y = n+ Jy - In; montrons que comme voulu, 'application n
x T

est la somme d’une série entiere : 'application x +— / Z Brt*1dt est une primitive de somme
1
k=1
de série entiere, donc est la somme d’'une série entiere, et Jy également ; leur produit n 1’est donc

aussi, via le produit de Cauchy des deux séries entieres en jeu, qui est de rayon de convergence
R, supérieur ou égal a min(R, +00) = R > 0 : d’ou le résultat.
Soit R le réel introduit dans la question précédente. Comme la dimension de 1’espace vectoriel
des solutions de :

vz €]0, R, 2*y'(x) + 2y (2) + 2y(z) = 0 (6)

est égale a 2 d’apres le théoreme de Cauchy, il suffit d’en trouver une famille libre de cardinal
2 pour en avoir une base. Notons f =7+ Jp - In la solution sur |0, R| obtenue dans la question
précédente : montrons que la famille (f, Jy) est libre.

11



PSI

CCP 2018

31.

32.

33.

34.

Pour cela, on remarque que f n’est pas bornée. En effet,
Jo(z) In(x) ~ In(x) = 00,

et n étant développable en série entiere en 0, elle est bornée au voisinage de 0 par le méme
argument que celui utilisé dans la question Q 22; on en déduit f(x) =y~ donc f n’est pas
T—r

bornée sur |0, R[; en considérant la contraposée du résultat démontré dans cette méme question,
on en déduit que la famille (f, Jy) est libre, de cardinal 2, donc engendre I’espace vectoriel des
solutions de (6) : une application y de C? sur |0, R est solution de (6) si et seulement s’il existe
A€ R tels que y = A f + .

On a | X| < 1 par hypothese, et 1 admet une espérance en tant que variable aléatoire a support
fini (et cette espérance égale 1), donc par comparaison X en admet également une.

L’inégalité de Markov énonce que si Y est une variable aléatoire réelle discrete a valeurs positives
et ayant une espérance, alors pour tout o > 0 on a :

On la démontre comme suit : notons {y, | n € N} C R, un ensemble contenant 'image de Y,
et soit a > 0. Alors :

B(Y) =3 yP(Y =y) = 3 uP(Y = 3) + 3 vaP(Y = y2)
n=0 n=0 n=0

Yn = Yn<a

20

+0o0
>a > PY =y, =aPY >a),
ynza
d’ou I'inégalité désirée en divisant par o > 0. Cette démonstration englobe le cas d’une image
finie.

Si X est une variable aléatoire admettant une espérance, alors | X| en admet également une, et
est a valeurs positives. Par conséquent, d’apres 'inégalité de Markov, on a :
(IX1)

FE
P(IX| > a) < |
Y

Soient ¢,t > 0 et n € N\ {0}. Tout d’abord, vérifions que e** admet bien une espérance : on
a0 < e < e et la variable aléatoire constante e’ admet une espérance parce qu’elle est a
support fini. Par comparaison, c’est aussi le cas de e*X.

On applique cette fois I'inégalité de Markov & la variable aléatoire ™ (qui est bien discréte
parce que S, l'est, et & valeurs positives parce que I'exponentielle est positive) et avec o = €<,

On a alors :
E(etnsn)

tnSp tne
P (e =e ) < oz

12
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35.

36.

Par hypothese, les variables aléatoires X7,..., X, sont mutuellement indépendantes, donc les

variables aléatoires X1, ..., !X le sont également. Donc :

) - (5] < (%) fLe () - ()"
i=1 =1

Enfin, Papplication x +— e!™ étant croissante pour tous t et n strictement positifs, on a

(etnSn > etns> = (S, > ¢), donc :

P(Sn > 8) —Pp (etnsn > etm) < E(etnSn) B (E (etX>)n

etns etm—:

9

d’ou le résultat.

1—2z
2

Iapplication z — a® = e*™@ est dérivable sur R en tant que composition des applications

x+— xln(a) et x — exp(x). Leur différence g, est donc dérivable sur R également, et on a :

-1

x
Soit @ > 1. L’application = a est dérivable sur R car polynomiale, et

1
Ve eR, g (x)= i(a —a ') —In(a)a®.

On a a > 1, donc In(a) > 0. Ainsi 'application z — a® est strictement croissante sur R en
tant que composée de l'application affine x +— zln(a), de pente strictement positive, et de
I'application exponentielle. On en déduit que = — — In(a)a” est strictement décroissante sur R,
donc ¢/, également.

De plus, g.(—1) = ¢(1) = 0 comme le montre un calcul immédiat, donc d’apres le théoreme de
Rolle dont g, vérifie bien les hypotheses, il existe zq €] — 1, 1] tel que ¢ (zo) = 0; comme ¢/, est
strictement décroissante, on peut résumer le comportement de g, ainsi :

T —1 o 1

ga () + 0 -

" /\

0 0

En particulier, pour tout x € [—1,1] on a g,(x) > 0.
Soit t > 0. On pose ici a = €' > 1, et la question précédente implique I'inégalité : Vz € [—1,1],
ga(x) = 0, c’est-a-dire :
l—2z , 1+=x .
5 et Tet—et >0,

et c’est précisément le résultat désiré, apreés avoir ajouté e a chaque membre de 'inégalité.

Vo e [-1,1],

13
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37. Soit t > 0. Si, pour tout w € £ on applique I'inégalité précédente & x = X (w), qui appartient
toujours a [—1, 1] par hypothese sur X, on a :

1—-X 1+ X
X —t t
€ S 9 e "+ 5 e
Comme 'espérance est linéaire et positive, on en déduit :
et et
E (%) < 5 (BE() = B(X)) + 3 (B(1) + B(X))
Or E(1) =1, et X est centrée donc E(X) =0, et on a finalement :
E (etX) < eite cosh(t)
~X 2 .

38. L’inégalité attendue revient a démontrer que (2k)! > 2% - k! pour tout k& € N. Montrons-le par
récurrence sur k : si k = 0, c’est évident, puisqu'on a 0! =1 > 2°-0! (il y a méme égalité ici). A
présent, soit k € N, et supposons que (2k)! > 2% - k!. Alors :

2k + 1)) = (2k +2)(2k + 1)(2k)! = 2k + 1) 2" -kl = 2(k + 1) - 2% - k! = 25+ (K + 1)),
——
>1
d’ott 'hérédité. On en déduit : Vk € N, (2k)! > 2% . k!. Ensuite :
t2k t2k
vVt € R, Vk € N, <
(2k)! ~ 2F . k!
parce que t2* > 0 pour tout t € R. On écrit ensuite t2* = (#2)* pour avoir le résultat voulu. En
reprenant 'inégalité de la question précédente, on a donc :
+o0 t2k t2 2 9
E (etX) < cosh(t) =) < Z / —e7
= (2k)! !
d’apres les développements en série entiere en 0 des fonctions usuelles exponentielle et cosinus
hyperbolique.
. 2
39. Etudions les variations de ¢ — e ™77 sur R. 1’ application t — —nte + n— est polynomlale

donc dérivable sur R, et sa dérivée est t — —ne+nt = n(t—e¢). On en déduit que t — nt€+n5
est strictement décroissante sur | — oo, £], puis strictement croissante sur [e, +oo[. L’exponen-

tielle étant strictement croissante, on en déduit que l'application composée t +— e —ntetnly gt

strictement décroissante sur | — 0o, €], puis strictement croissante sur [e, +oo[. Elle admet donc

ne

un minimum en €, qui vaut e~ "2 .

14
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40. Les questions Q 34, Q 38 et Q 39 impliquent :
(B() _ e
VteR, P(S,>¢)<—,-< ez ine,
e ne
En prenant ¢t = ¢, on en déduit :
P(S, >¢) <e 2
TLE2

Le méme raisonnement permet de démontrer que P(—S,, > ¢) < e™ z : il suffit de remplacer les

X; par les —X;, qui restent mutuellement indépendantes et de méme loi que —X dont I'image

est également incluse dans [—1, 1] ; autrement dit, ces variables aléatoires vérifient les hypotheses

de I’énoncé, donc la méme conclusion. Alors, comme :

(I5n] Z €) = (Sn 2 €) U (Sn < =€) = (Sp Z &) U (=5 =€),
I'union étant disjointe, on en déduit :
’ﬂ€2
P(|Su| = ¢e)=P(S, = ¢) +P(=S, >¢) <2 z.
n52 52
41. Soit € > 0. La série Y- e~ 2 est géométrique, de raison e~ 2 €] —1, 1[, donc elle est convergente.
n>1
Or, en utilisant la question précédente et 'inclusion (|S,| > ) C (|S,| =€), on a :
n52
Vn e N\ {0}, O0<P(|Sy] >¢) <P(|Sy] =€) <2 2
donc, par comparaison de séries a termes positifs, la série 3 P(|.S,| > €) converge.
n>1

42. Pour tout n € N\ {0}, puisque |S,| est une variable aléatoire, I’ensemble (|S,| > €) est un

évenement. Par conséquent, pour tout n € N\ {0}, l'ensemble B, = U (|Sn| > ¢) est un

m>2n
évenement en tant qu'union dénombrable d’évenements.

De plus, on vérifie directement que pour tout n € N\ {0} on a B,1; C B, (on unit de moins en
moins d’ensembles parmi ceux de la collection (([S,| > €)),,en (o)) donc, d’apreés le théoréme de
continuité décroissante :

]P’( N Bn) = lim P(B,).

neN\{0}

Or, par sous-additivité, on a :

vn € N\ {0}, 0<]P’(Bn)=P(U (15m] >8)) < ioP(ISmI >€),

m>=n
et le membre de droite est le reste d’indice n — 1 d’une série convergente (d’apres la question
+00
précédente), donc : liIP > P(|Sim| > €) = 0. D’apres le théoréme des gendarmes, on en déduit :
n—+o00 m=n
lim P(B,) =0, d’ou le résultat.

n—-+o0o
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43.

44.

Soit k£ € N\ {0}. On peut décrire ) ainsi :

1 1 _
%= U N(Sd<i)= U U(isl>5)= U B. (")
neN\{0} m=n neN\{0} m=n neN\{0}

ot 'on a posé € = L. Pour tout n € N'\ {0}, I'ensemble B, est un évenement parce que B, en

est un, donc £, est un évenement en tant qu’union dénombrable d’évenements.

Par définition de la limite (ot I'on prend € = 1), si w € Q vérifie 1_131 Sp(w) =0, alors :

B

k

Vk € N\ {0}, 3n € N\ {0}; Vm > n, |S,(w)| < -, (8)

| =

Donc :
A={we Q]| lim S,(w)=0}C (] u,
norheo keN\{0}

et 'inclusion réciproque se vérifie en remarquant que la propriété (8) implique :
Ve >0, In e N\ {0}; Vm > n, |S,(w)| <e.

Il suffit, pour cela, d’observer que pour tout € > 0, il existe k € N\ {0} tel que % < €, puisque

lim % = 0. Donc :
k——+oo

A={we Q| nl_l)I_{loo Sp(w) =0} = kENQ{O} Q.

En tant qu’intersection dénombrable d’évenements, A est un éveénement.

Pour éviter les confusions, notons B, . = U (|Sn| > ¢) au lieu de B,,. D’apres (7), on a :

A= ﬂ Q) = ﬂ U Bn, - ﬂ ﬂ B, 1= U ﬂ Bn,%?

keN\{0} keN\{0} neN\{0} keN\{0} neN\{0} keN\{0} neN\{0}

P(A) = —]P( U N Bmi).
keN\{0} neN\{0}

+00
IP(A)>1—ZIP>(  B. )
neN\{0}

k=1

BN
=

donc :

Par sous-additivité, on a :

=

et nous avons démontré, dans la question Q 42, que P ( N Bnﬁ) = 0 indépendamment de
neN\{0}
e >0, donc P(A) > 1; mais on a aussi P(A) < 1 puisque P est une probabilité. On en déduit :

P(A) = 1.
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