
MP - Lycée Chrestien de Troyes Questions de cours

Questions de cours aux écrits... à savoir refaire rapidement !

L’objectif de cette planche est de mettre en avant 50 résultats qui peuvent vous être demandés aux écrits. Il ne s’agit donc
pas d’exercices de recherche, mais de bien de savoir refaire la preuve rapidement.

Chapitre 1

1. L’application tr : M ∈Mn(K) 7−→ tr(M) ∈ K est une forme linéaire sur Mn(K).

2. Pour tous A,B ∈Mn(K), on a : tr(AB) = tr(BA).

Propriété 1 (de la trace).

I Il suffit de revenir aux coefficients diagonaux...

Soit n ∈ N∗. Alors, Sn(K) et An(K) sont des sous-espaces vectoriels de Mn(K) de dimensions respectives
n(n+ 1)

2
et

n(n− 1)

2
tels que :

Mn(K) = Sn(K)⊕An(K)

Théorème 2 (décomposition de Mn(K)).

I Pour le premier point, on essaie de les écrire sous forme de V ect. Il suffira alors de revenir à la caractérisation des sev
supplémentaires en dimension finie.

Soit E un K-espace vectoriel et considérons f, g ∈ L(E) tels que f ◦ g = g ◦ f . Alors, on a :{
Ker(f) et Im(f) sont stables par g

Ker(g) et Im(g) sont stables par f

Propriété 3 (endomorphismes qui commutent).

I On revient à la définition d’un sous-espace stable.

Soit E un K-espace vectoriel de dimension finie et considérons f un projecteur de E et s une symétrie vectorielle de E. Alors,
il existe des bases B et B′ de E dans lesquelles on a :

MatB(f) =

(
Ir Or,n−r

On−r,r On−r,n−r

)
et MatB′(s) =

(
Ir Or,n−r

On−r,r −In−r

)

Corollaire 4 (cas particulier des projecteurs et des symétries).

I On revient aux décompositions sous-jacentes de l’espace E, et on construit une base adaptée à ces décompositions.

Chapitre 2

Soit (E,+, .) un K-espace vectoriel et notons φ un produit scalaire sur E. Alors, pour tout (x, y) ∈ E2,

|φ(x, y)| ≤ ‖x‖2.‖y‖2

Théorème 5 (inégalité de Cauchy-Schwarz).

I Si x est nul, c’est immédiat. Sinon, on distingue les cas réel et complexe. Ainsi, si K = R, on peut introduire la fonction
polynôme P (λ) = ‖λx + y‖22 et invoquer le signe de cette fonction sur R. Si K = C, on peut montrer qu’il existe un unique
couple (λ, z) ∈ C× x⊥ tel que y = λx+ z, puis on en déduit l’inégalité à l’aide du théorème de Pythagore.

www.cpgemp-troyes.fr 1/12

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes Questions de cours

Soit (E, ‖.‖) un espace vectoriel normé. Alors, toute suite convergente est bornée.

Propriété 6 (convergente donc bornée).

I On traduit la convergence d’une telle suite pour ε = 1 > 0, puis on majore ‖un‖ = ‖un − `+ `‖ à partir d’un certain rang.

On se place dans E = Kn et on rappelle que les applications suivantes définissent des normes usuelles :

‖.‖1 : x ∈ E 7−→
n∑
i=1

|xi|, ‖.‖2 : x ∈ E 7−→

√√√√ n∑
i=1

|xi|2, ‖.‖∞ : x ∈ E 7−→ max
1≤i≤n

|xi|

De plus, on a pour tout x ∈ E, {
‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞

⇒ 1√
n
‖x‖2 ≤ ‖x‖1 ≤ n‖x‖2

et ainsi, ces trois normes sont équivalentes.

Propriété 7 (comparaison des normes usuelles sur l’espace des n-uplets).

I Pour les premières inégalités, il suffit d’encadrer la norme-1 ou 2. La dernière est obtenue par simple transitivité.

Chapitre 3

Soit x ∈ R. On appelle série de Riemann toute série de la forme
∑ 1

nx
et on a :

∑ 1

nx
converge ⇔ x > 1

Et dans ce cas, on définit la fonction zeta de Riemann sur ]1,+∞[ par ζ(x) =
∑+∞
k=1

1

kx
.

Propriété 8 (nature des séries de Riemann de paramètre réel).

I On raisonne par disjonction des cas en écartant rapidement les cas x < 0 et x = 0 pour lesquels la série diverge
grossièrement. Le reste tombe alors par comparaison série-intégrale.

Soit (un) ∈ CN qu’on suppose convergente de limite `. Alors, la moyenne de Césaro associée est convergente de sorte que:

1

n

n∑
k=1

uk −→
n→+∞

`

Théorème 9 (de Césaro).

I On revient à la définition de la limite et on cherche à contrôler la différence |(1/n)
∑n
k=1 uk − `| en séparant la somme

obtenue.
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On considère la série de Riemann
∑ 1

nα
avec α > 0. Alors, on rappelle que la série converge si et seulement si α > 1.

De plus,

1. si α = 1, alors la série diverge et on a : Sn ∼ ln(n).

2. si 0 < α < 1, alors la série diverge et on a : Sn ∼
n1−α

1− α .

3. si α > 1, alors la série converge et on a : Rn ∼
1

(α− 1)nα−1
.

Propriété 10 (équivalents du reste partiel ou de la somme partielle associée aux séries de Riemann).

I Le premier point a déjà été traité : c’est l’exemple de la série harmonique. Pour les deux autres points, on travaille par
comparaison série-intégrale avec f : t 7−→ 1/tα strictement décroissante sur ]0,+∞[.

Soit (un) ∈ RN une série alternée, c’est à dire que pour tout n ∈ N, unun+1 ≤ 0. On suppose de plus que la suite (|un|) est
décroissante avec |un| −→ 0. Alors,

1. la série
∑
un est convergente.

2. on peut contrôler le reste partiel en valeur absolue et ainsi, pour tout n ∈ N,

|Rn| = |
+∞∑

k=n+1

uk| ≤ |un+1|

Propriété 11 (critère spécial des séries alternées).

I Pour le premier point, il suffit de montrer que les suites extraites (S2n) et (S2n+1) sont adjacentes, avant d’invoquer le
théorème de convergence des suites adjacentes. Pour le second point, on distingue alors les cas n = 2p et n = 2p+ 1 à partir
de l’encadrement fourni par le théorème de convergence des suites adjacentes.

Chapitre 4

Soit f une fonction qu’on suppose de classe C1 sur [a, b] à valeurs complexes. On a l’inégalité :

|f(b)− f(a)| ≤ ‖f ′‖∞|b− a|

Corollaire 12 (inégalité des accroissements finis pour une fonction de classe C1).

I C’est immédiat : cela découle du théorème fondamental de l’analyse appliqué à la fonction dérivée. En effet,

|f(b)− f(a)| = |
∫ b

a

f ′(t) dt| ≤
∫ b

a

|f ′(t)| dt ≤
∫ b

a

‖f ′‖∞ dt = ‖f ′‖∞|b− a|
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Soit f une fonction définie sur [a, b] à valeurs dans C et considérons (xi) la subdivision à pas constant (b− a)/n. On appelle
somme de Riemann associée toute somme de la forme :

Sn(f) =

n−1∑
i=0

(xi+1 − xi)f(θi) =

n−1∑
i=0

(
b− a
n

)f(θi)

où pour tout i ∈ J0, n− 1K, θi ∈ [xi, xi+1].

1. Si f est de classe C1 sur [a, b], alors Sn(f) −→
n→+∞

∫ b

a

f(t) dt.

2. De la même façon, si f est seulement continue sur [a, b], alors on a encore :

Sn(f) −→
n→+∞

∫ b

a

f(t) dt

Théorème 13 (de convergence des sommes de Riemann).

I Dans les deux cas, on étudie la différence |Sn(f)−
∫ b
a
f | et il faudra contrôler la différence entre deux images que ce soit

à l’aide de l’inégalité des accroissements finis ou en invoquant l’uniforme continuité.

Soit α ∈ R.

1. L’intégrale

∫ +∞

1

1

tα
dt converge si et seulement si α > 1.

2. L’intégrale

∫ 1

0

1

tα
dt converge si et seulement si α < 1.

Propriété 14 (intégrales de Riemann de paramètre réel).

I Dans les deux cas, on introduit la fonction f : t 7−→ 1/tα et on se ramène à cran fini pour discuter de l’existence de la
limite.

Chapitre 5

Soient n ∈ N et f une fonction de classe Cn+1 sur I à valeurs dans K, a ∈ I. Alors, on a :

∀x ∈ I, f(x) =

n∑
k=0

f (k)(a)
(x− a)k

k!
+

∫ x

a

(x− t)n

n!
f (n+1)(t) dt

La fonction polynôme Tn,a : x 7−→
∑n
k=0 f

(k)(a) (x−a)k
k!

représente le polynôme de Taylor de degré n associé à la fonction
f au point a.

Théorème 15 (formule de Taylor avec reste intégral).

I On procède simplement par récurrence sur n ∈ N dans laquelle on mettra en place une intégration par parties bien choisie.

Soit f une fonction de classe C∞ sur un intervalle I, contenant un voisinage de 0, à valeurs dans K. On suppose de plus
qu’il existe r > 0 et M ∈ R+ tels que :

∀n ∈ N, ∀x ∈]− r, r[, |f (n)(x)| ≤M

Alors, f est développable en série entière sur ]− r, r[ et :

∀x ∈]− r, r[, f(x) =

+∞∑
k=0

f (k)(0)
xk

k!

Propriété 16 (condition suffisante pour une fonction de classe C∞ sur un intervalle réel).
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I Il suffit d’appliquer la formule de Taylor avec reste intégral, et on montre que le reste intégral définit une suite de fonctions
qui converge simplement vers 0.

Soit f une fonction définie sur un intervalle I à valeurs dans R, et considérons x0 < x1 < . . . < xn des points de I. Alors, il
existe un unique polynôme Pn ∈ R[X] de degré n tel que :

∀k ∈ J0, nK, P (xk) = f(xk)

Théorème 17 (existence et unicité du polynôme d’interpolation).

I On peut proposer 4 façons de faire... de l’isomorphisme à l’analyse-synthèse.

Chapitre 6

Soient E un K-espace vectoriel et f ∈ L(E). On considère de plus P,Q ∈ K[X] qu’on suppose premiers entre eux, alors on a
la décomposition :

Ker(PQ(f)) = Ker(P (f))⊕Ker(Q(f))

Théorème 18 (de décomposition des noyaux).

I On revient à la caractérisation d’une décomposition en somme directe de deux sous-espaces supplémentaires, mais on
pensera d’abord à invoquer le théorème de Bézout pour obtenir une relation entre P (f) et Q(f).

Soient E un K-espace vectoriel, f ∈ L(E) et considérons λ ∈ SpK(f), x un vecteur propre associé à la valeur propre λ.

1. Pour tout polynôme P ∈ K[X], on a :
P (f)(x) = P (λ).x

et ainsi, x représente un vecteur propre de P (f) associé à la valeur propre P (λ).

2. Si de plus P est un polynôme annulateur de f , alors P (λ) = 0, et ainsi, on a toujours :

SpK(f) ⊂ RacinesK(P )

Propriété 19 (valeurs propres et polynômes d’endomorphismes en f).

I Pour le premier point, on montre par récurrence que pour tout n ∈ N∗, fn(x) = λn.x, puis on calcule P (f)(x). Le second
point est immédiat puisque x 6= 0E, en tant que vecteur propre de f .

Soient E un K-espace vectoriel, f ∈ L(E) et considérons (λi)i∈I une famille de valeurs propres distinctes. Alors,

1. toute famille de vecteurs propres associés à (λi)i∈I est libre.

2. toute somme finie de sous-espaces propres associés est directe.

Propriété 20 (liberté des vecteurs propres associés à des valeurs propres distinctes).

I Pour le premier point, on montre par récurrence que toute sous-famille finie de n vecteurs propres associés à des valeurs
propres distinctes est libre. Pour le second point, on revient à l’unicité de la décompsoition du 0E.

Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). Alors, f est diagonalisable si et seulement si f annule
un polynôme scindé à racines simples dans K[X].

Théorème 21 (condition nécessaire et suffisante de diagonalisation à l’aide d’un polynôme annulateur).

I On procède par double implication. Le sens direct est immédiat puisque le polynôme minimal convient. Pour le sens
réciproque, on invoque encore le théorème des noyaux pour exhiber une décomposition de E en somme directe de sous-espaces
propres.
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Soient A,B ∈Mn(K) telles que AB = BA. Alors, on a :

exp(A+B) = exp(A) exp(B)

Propriété 22 (propriété algébrique pour deux matrices qui commutent).

I Les séries
∑
Ak/k! et

∑
Bk/k! étant absolument convergentes, on peut invoquer le théorème relatif au produit de Cauchy.

Soit A ∈ Mn(K) qu’on suppose diagonalisable. Alors, il existe P ∈ GLn(K) tel que A = PDP−1 avec D une matrice
diagonale de coeffients (λi)i∈J1,nK. Alors, on a immédiatement par opérations sur les matrices diagonales :

exp(A) = P exp(D)P−1 = P

e
λ1 (0)

. . .

(0) eλn

P−1

Ainsi, exp(A) est aussi diagonalisable et SpK(exp(A)) = {eλi , λi ∈ SpK(A)}, avec le même ordre de multiplicité pour les
valeurs propres distinctes.

Propriété 23 (cas particulier d’une matrice diagonalisable).

I On se ramène à cran fini afin d’opérer sur les coefficients et on reconnâıt la somme partielle d’une série exponentielle.

Chapitre 7

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et f ∈ L(E,F ). Alors, les assertions suivantes sont
équivalentes:

1. f est lipschitzienne sur E.

2. f est continue sur E.

3. f est continue en 0E .

4. f est bornée sur la boule unité fermée : ∃ k ≥ 0, ∀x ∈ Bf (0E , 1), ‖f(x)‖F ≤ k.

5. il existe k ≥ 0 tel que pour tout x ∈ E, ‖f(x)‖F ≤ k‖x‖E .

Théorème 24 (caractérisation de la continuité pour les applications linéaires).

I On procède là encore par cycle, et on n’hésitera pas à normaliser les vecteurs pour rentrer dans la boule unité.

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et f ∈ L(E,F ) qu’on suppose continue sur E. Alors, les réels
M1, M2 et M3 définis par :

M1 = sup{‖f(x)‖F
‖x‖E

, x 6= 0E} , M2 = sup{‖f(x)‖F , ‖x‖E ≤ 1} , M3 = sup{‖f(x)‖F , ‖x‖E = 1}

existent et on a M1 = M2 = M3. Ce réel sera aussi noté |||f ||| et il désigne la norme de f subordonnée aux normes
‖.‖E et ‖.‖F .

En particulier, on vérifie que celle-ci est sous-multiplicative : si f ∈ Lc(E,F ) et g ∈ Lc(F,G), alors g ◦ f ∈ Lc(E,G) et
|||g ◦ f ||| ≤ |||g|||.|||f |||.

Propriété 25 (norme subordonnée d’une application linéaire continue).

I L’existence est immédiate à l’aide des axiomes d’existence sur R. Pour les égalités, on travaille simplement par anti-
symétrie. Restera à prouver la sous-multiplicativité.
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Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés. Si de plus, E est de dimension finie n ≥ 1, alors toute
application linéaire f ∈ L(E,F ) est nécessairement continue.

Théorème 26 (cas particulier des applications linéaires en dimension finie).

I On revient à la caractérisation pour les applications linéaires, puis on cherche à contrôler ‖f(x)‖F à l’aide de la norme
infinie avant de conclure par équivalence des normes en dimension finie.

Soit (E, ‖.‖) un K-espace vectoriel normé et considérons K une partie non vide de E. Si de plus, E est de dimenison finie
n ≥ 1, alors les parties compactes sont exactement les parties fermées et bornées.

Théorème 27 (cas particulier des parties compactes en dimension finie).

I Le sens direct a été prouvé plus tôt. Pour le sens réciproque, on n’hésitera pas à réinvestir le théorème de Bolzano-
Weierstrass vu au chapitre 2.

Chapitre 8

Soit (fn) une suite de fonctions définies sur un segment [a, b] inclus dans R. On suppose de plus que :

• pour tout n ∈ N, fn est continue sur [a, b],

• (fn) converge uniformément sur [a, b] vers une fonction f .

Alors,

∫ b

a

fn(t) dt tend vers

∫ b

a

f(t) dt quand n→ +∞ de sorte que :

lim
n→+∞

∫ b

a

fn(t) dt =

∫ b

a

f(t) dt

Théorème 28 (d’intégration de la limite uniforme d’une suite de fonctions définies sur un segment).

I On note In =
∫ b
a
fn(t) dt et on majore la différence ‖In −

∫ b
a
f(t) dt‖ grâce aux propriétés de l’intégrale.

Soient I un intervalle de R et (fn) une suite de fonctions définies sur un intervalle I inclus dans R. On suppose de plus que :

• pour tout n ∈ N, fn est de classe C1 sur I,

• (fn) converge simplement sur I vers une fonction f ,

• (f ′n) converge uniformément sur tout segment [a, b] ⊂ I vers une fonction g.

Alors, f est encore de classe C1 sur I et on a f ′ = g.

Corollaire 29 (dérivation de la limite d’une suite de fonctions définies sur un intervalle).

I Fixons a ∈ I, alors fn(x) = fn(a) +
∫ x
a
f ′n(t) dt. On peut alors appliquer le théorème d’intégration des suites de fonctions

définies sur un segment.

Remarque Avec ces hypothèses, on montre qu’on récupère même la convergence uniforme sur tout segment [a, b] de la suite
(fn) vers f . En effet, on a pour tout x ∈ [a, b] ⊂ I :

fn(x)− f(x) = fn(a)− f(a) +

∫ x

a

f ′n(t)− f ′(t) dt⇒ 0 ≤ ‖fn − f‖∞ ≤ ‖fn(a)− f(a)‖+ (b− a)‖f ′n − f ′‖∞ −→ 0
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Soient I un intervalle de R, X une partie de E et f : X × I −→ K telle que f(x, .) soit continue par morceaux sur I pour
tout x ∈ X. On suppose de plus que :

• la fonction f(., t) : x 7−→ f(x, t) est continue sur X pour tout t ∈ I,

• il existe une fonction φ : I −→ R+ continue par morceaux et intégrable sur I telle que :

∀ (x, t) ∈ X × I, |f(x, t)| ≤ φ(t) (indépendante de x)

Alors, la fonction F : x 7−→
∫
I

f(x, t) dt est continue sur X.

Théorème 30 (de continuité des intégrales à paramètre).

I Fixons a ∈ X et (xn) ∈ XN telle que xn → a. On se ramène à la caractérisation séquentielle de la limite en montrant que
F (xn) −→ F (a) à l’aide du théorème de convergence dominée.

Chapitre 9

Soit
∑
anz

n une série entière d’une variable complexe, avec (an) ∈ CN. On suppose de plus qu’il existe z0 ∈ C∗ tel que
(anz

n
0 ) est bornée. Alors, pour tout z ∈ C tel que |z| < |z0|, la série

∑
anz

n converge absolument.

Théorème 31 (lemme d’Abel).

I On se ramène à une comparaison avec le terme général d’une série géométrique convergente.

Soit
∑
anz

n une série entière d’une variable complexe et notons R son rayon de convergence. Alors,

1. R désigne aussi la borne supérieure dans R de {r ∈ R+, anr
n −→ 0}.

2. R désigne aussi la borne supérieure dans R de {r ∈ R+,
∑
anr

n converge}.

3. R désigne aussi la borne supérieure dans R de {r ∈ R+,
∑
|anrn| converge}.

et finalement, on pourra retenir que dans le plan complexe :

Propriété 32 (autres interprétations du rayon de convergence).

I Tous ces ensembles contenant au moins 0, on peut noter R0, R1, R2 les bornes supérieures de ces ensembles dans R et
montrer que R ≥ R0 ≥ R1 ≥ R2 puis que R = R2, et ainsi on aura bien les égalités attendues.
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Soit
∑
anz

n une série entière d’une variable complexe et de rayon de convergence R > 0. Alors,

1. pour tout r < R, la série entière
∑
anz

n converge normalement, et donc uniformément sur la boule fermée Bf (0, r).

2. plus généralement, elle converge normalement, et donc uniformément sur tout compact K ⊂ B(0, R).

Théorème 33 (de convergence normale d’une série entière).

I Pour le premier point, c’est immédiat car il suffit de majorer le terme général |anzn|. Pour le second point, on pourra
appliquer le théorème des bornes atteintes à la fonction z 7→ |z|, avant de majorer le terme général.

Soit
∑
anx

n une série entière d’une variable réelle et de rayon de convergence R > 0 et on note f la somme de cette série
entière. On a pour tout n ∈ N,

an =
f (n)(0)

n!

Et ainsi, les coefficients du développement en série entière sont uniques.

Corollaire 34 (unicité des coefficients du développement en série entière).

I On utilise la formule de dérivation sur B(0, R) et on évalue en x = 0.

Chapitre 10

Soit (Ω,A, P ) un espace probabilisé. Si de plus A et B sont indépendants, alors :
A et B sont indépendants

A et B sont indépendants

A et B sont indépendants

Plus généralement, si (Ai)i∈I désigne une famille d’évènements mutuellement indépendants, alors en notant Bi = Ai ou Ai,
les évènements (Bi)i∈I sont encore mutuellement indépendants.

Propriété 35 (indépendance et évènements contraires).

I Pour le premier point, il suffit de revenir à la définition à l’aide du produit des probabilités.

Soit (Ω,A, P ) un espace probabilisé.

1. On considère X une variable aléatoire discrète sur Ω telle que X ∼ G(p), p ∈]0, 1[.
Alors, pour tout k ∈ N, P (X > k) = qk et ainsi,

∀ (k, `) ∈ N2, P(X>k)(X > k + `) = P (X > `) (∗)

On dit que X est une loi sans mémoire.

2. Réciproquement, considérons Y telle que Y (Ω) = N∗. Si de plus Y vérifie la condition (∗), alors Y suit une loi
géométrique de paramètre p = P (Y = 1).

Théorème 36 (caractérisation d’une loi géométrique).

I Pour le premier point, il suffit de décrire l’évènement (X > k) comme réunion d’évènements élémentaires, la formule
déécoule alors de la définition de la probabilité conditionnelle. Pour le second point, on cherche d’abord à obtenir une relation
de récurrence qui nous permettra d’obtenir P (Y = k).
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Soit (Ω,A, P ) un espace probabilisé, et considérons (Xn) une suite de variables aléatoires telles que Xn suit une loi binomiale
de paramètres n, pn vérifiant :

npn ∼
n→+∞

λ > 0

Alors, pour tout k ∈ N, limn→+∞ P (Xn = k) = e−λ
λk

k!
, et ainsi la suite (Xn) converge en loi vers une loi de Poisson.

Théorème 37 (approximation d’une loi de Poisson par une loi binomiale).

I On revient à la loi binomiale et on travaille sur le coefficient binomial afin de déterminer la limite à l’aide des fonctions
usuelles.

Exemple 1 On considère une variable aléatoire discrète X à valeurs dans N. Montrer que :

X admet une espérance finie ⇔
∑
n≥0

P (X > n) converge

et que dans ce cas, E(X) =
∑+∞
n=0 P (X > n) =

∑+∞
n=1 P (X ≥ n).

Soient (Ω,A, P ) un espace probabilisé, X1, . . . , Xn des variables aléatoires discrètes à valeurs dans N, et notons GXk leur
fonction génératrice. On suppose de plus que ces variables aléatoires sont mutuellement indépendantes et ainsi,

∀ t ∈ [−1, 1], GX1+...+Xn(t) =

n∏
k=1

GXk (t)

Propriété 38 (fonction génératrice de la somme de variables mutuellement indépendantes).

I On revient simplement à la définition de la fonction génératrice et on rappellera les propriétés de l’espérance.

Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète telle que X ∈ L1. Alors, on a :

∀ ε > 0, P (|X| ≥ ε) ≤ E(|X|)
ε

Propriété 39 (inégalité de Markov).

I On note J = {i ∈ I, |xi| ≥ ε} et il suffit alors de minorer l’espérance de |X|.

Soient (Ω,A, P ) un espace probabilisé et X une variable aléatoire discrète telle que X ∈ L2 converge. Alors, on a :

∀ ε > 0, P (|X − E(X)| ≥ ε) ≤ V (X)

ε2

Propriété 40 (inégalité de Bienaymé-Tchebychev).

I On applique l’inégalité de Markov à la variable (X − E(X))2 avec ε2.

Chapitre 11

Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E. On suppose de plus que F est de dimension
finie p ≥ 1. Alors, en notant B = (e1, . . . , ep) une base orthonormée de F , on a pour tout x ∈ E,

pF (x) =

p∑
i=1

< ei, x > .ei

Propriété 41 (expression du projeté orthogonal sur un sous-espace vectoriel de dimension finie).

I On applique la caractérisation précédente de sorte que x− y ∈ F⊥ ⇔ ∀i ∈ J1, pK, < x− y, ei >= 0.
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Soit E un espace préhilbertien réel et considérons F un sous-espace vectoriel de E de dimension finie p ≥ 1. Alors, la distance
de x à F est atteinte en un unique point de F et on a :

d(x, F ) = ‖x− pF (x)‖2 =
√
‖x‖2 2 − ‖pF (x)‖2 2

Théorème 42 (de minimisation).

I Dans un premier temps, on vérifie que ‖x − pF (x)‖2 est bien ce minimum, puis partant de x = pF (x) + x − pF (x), on
applique le théorème de Pythagore pour justifier la valeur obtenue.

Soit E un espace euclidien, et considèrons φ une forme linéaire sur E. Alors, il existe un unique vecteur a ∈ E tel que :

∀x ∈ E, φ(x) = < x, a >

En particulier, l’application f : a 7−→< ., a > désigne un isomorphisme de E sur E∗, et ainsi toute forme linaire peut être vu
comme un produit scalaire relatif à un unique vecteur associé.

Théorème 43 (de représentation de Riesz).

I On introduit une base orthonormée de E et on procède par analyse-synthèse.

Soit E un espace euclidien et considérons u ∈ L(E). Alors, on a :

Ker(u∗) = Im(u)⊥ et Im(u∗) = Ker(u)⊥

Propriété 44 (noyau et image de l’adjoint).

I Pour la première égalité, on peut raisonner par équivalence. Pour la seconde, on pourra proposer une inclusion et revenir
à l’égalité des dimensions.

Soit E un espace euclidien et considérons u ∈ S(E). Alors,

1. le spectre de u est réel et ainsi, Sp(u) ⊂ R.

2. u possède au moins une valeur propre réelle et ainsi, 1 ≤ Card(Sp(u)) ≤ n.

3. en notant Eu(λ1), . . . , Eu(λp) les sous-espaces propres associés à des valeurs propres distinctes de u, alors ils sont deux
à deux orthognaux, et ils sont donc toujours en somme directe.

Propriété 45 (éléments propres d’un endomorphisme symétrique).

I Pour le premier point, on se plonge dans Mn(C) et on pourra travailler sur l’égalité MatB(u)X = λiX après avoir fixé
une base orthonormée de E. Le second point est immédiat et pour le dernier, on reviendra simplement à la définition de
l’orthogonalité.

Soit A ∈ Sn(R). Alors, on a les caractérisations suivantes :

1. A ∈ S+
n (R)⇔ ∀ λ ∈ Sp(A), λ ≥ 0

2. A ∈ S++
n (R)⇔ ∀ λ ∈ Sp(A), λ > 0

Propriété 46 (caractérisation des matrices symétriques positives et définies positives).

I A chaque fois, on raisonne par double implication : le sens direct est immédiat, car il suffit de présenter un vecteur propre
associé. Pour le sens réciproque, on pourra évidemment invoquer le théorème spectral.
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Soit E un espace euclidien et considérons u ∈ L(E). Alors, les assertions suivantes sont équivalentes :

1. u est un automorphisme orthogonal.

2. pour tout x ∈ E, ‖u(x)‖2 = ‖x‖2 et ainsi, u conserve la norme.

3. pour tout (x, y) ∈ E2, < u(x), u(y) >=< x, y > et ainsi, u conserve le produit scalaire.

On dit aussi que u est une isométrie vectorielle.

Corollaire 47 (caractérisation d’un automorphisme orthogonal par conservation de la norme et du produit scalaire).

I On procède par cycle et on n’hésitera pas à exploiter le résultat précédent pour prouver la dernière implication.

Chapitre 12

Soit I un intervalle de R. On considère le système différentiel linéaire :

X ′(t) +A(t)X(t) = B(t)

avec A : I −→Mn(K) et B : I −→Mn1(K) qu’on suppose continues sur I. On note S l’ensemble des solutions du système
différentiel et S0 l’ensemble des solutions du système homogène associé. Alors,

1. S0 est un K-espace vectoriel de dimension finie n, et ainsi il existe des solutions du système homogène X1, . . . , Xn
linéairement indépendantes telles que : S0 = V ect(X1, . . . , Xn).

2. Si de plus Yp désigne une solution particulière du système différentiel linéaire, alors :

S = {Yp + λ1X1 + . . .+ λnXn, (λ1, . . . , λn) ∈ Kn}

On peut alors écire S = Yp + S0 et on dit que S est un espace affine de direction S0.

Propriété 48 (structure des solutions).

I Pour le premier point, on revient à la caractérisation des sev puis on construit un isomorphisme de S0 sur Mn1(K). Pour
le second point, on peut travailler par équivalence à partir de X ∈ C1(I,Mn1(K)).

Soit I un intervalle de R. On considère le système différentiel linéaire X ′(t) + A(t)X(t) = B(t), avec A : I −→ Mn(K) et
B : I −→Mn1(K) qu’on suppose continues sur I, et on note X1, . . . , Xn des solutions du système homogène associé.
Alors, les assertions suivantes sont équivalentes :

1. (X1, . . . , Xn) est une base de S0

2. ∀ t ∈ I, W (t) 6= 0

3. ∃ t0 ∈ I, W (t0) 6= 0

Propriété 49 (caractérisation d’un système fondamental de solutions à l’aide du wronskien).

I On procède simplement par cycle et on pourra pour la première implication raisonner par l’absurde.

Soit I un intervalle de R. On considère le système différentiel linéaire X ′(t) = AX(t) +B(t), avec A ∈ Mn(K) et B : I −→
Mn1(K) qu’on suppose continue sur I. Alors, les solutions du système homogène sont données par :

X(t) = exp(tA)X0 avec X0 ∈Mn1(K)

Propriété 50 (expression de S0 à l’aide de l’exponentielle dans le cas où A est constante).

I On utilise la facteur intégrant et on pourra rappeler t 7−→ exp(tA) est dérivable. Attention, il ne faudra pas oublier de
justifier que exp(tA) est inversible avant d’exprimer X(t).
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