MP - Lycée Chrestien de Troyes Questions de cours

Questions de cours aux écrits... a savoir refaire rapidement !

L’objectif de cette planche est de mettre en avant 50 résultats qui peuvent vous étre demandés aux écrits. Il ne s’agit donc
pas d’exercices de recherche, mais de bien de savoir refaire la preuve rapidement.

Chapitre 1

Propriété 1 (de la trace).

—

1. L’application tr : M € M, (K) — tr(M) € K est une forme linéaire sur M, (K).

2. Pour tous A, B € M,(K), on a: ¢tr(AB) = tr(BA).

» [l suffit de revenir aux coefficients diagonau...

{Théoréme 2 (décomposition de Mn(K))]

n(n+1)

t
5 e

Soit n € N*. Alors, Sp(K) et A,(K) sont des sous-espaces vectoriels de M, (K) de dimensions respectives

m tels que :

MH(K) = Sn(K) @ An(K)

» Pour le premier point, on essaie de les écrire sous forme de Vect. Il suffira alors de revenir a la caractérisation des sev
supplémentaires en dimension finie.

{Propriété 3 (endomorphismes qui commutent).

—

Soit E un K-espace vectoriel et considérons f,g € L(F) tels que fog=go f. Alors, on a :

Ker(f) et Im(f) sont stables par g
Ker(g) et Im(g) sont stables par f

» On revient a la définition d’un sous-espace stable.

{Corollaire 4 (cas particulier des projecteurs et des symétries).]

Soit E un K-espace vectoriel de dimension finie et considérons f un projecteur de E et s une symétrie vectorielle de E. Alors,
il existe des bases B et B’ de E dans lesquelles on a :

IT OT n—r [T OT n—r
MatB(f) = (On—r . On!r nir) et MatB/(s) = (On,T . _i7L—7‘)

» On revient aux décompositions sous-jacentes de ’espace E, et on construit une base adaptée a ces décompositions.

Chapitre 2

Théoréme 5 (inégalité de Cauchy-Schwarz).]

Soit (E,+,.) un K-espace vectoriel et notons ¢ un produit scalaire sur E. Alors, pour tout (z,y) € E?,

lo(z,y)| < [lll2-llyll2

» Six est nul, c’est immédiat. Sinon, on distingue les cas réel et complexe. Ainsi, si K =R, on peut introduire la fonction
polynéme P(N\) = || Az + y||3 et invoquer le signe de cette fonction sur R. Si K = C, on peut montrer qu’il existe un unique
couple (A, z) € C x xt tel que y = Az + z, puis on en déduit Iinégalité & I’aide du théoréme de Pythagore.
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Propriété 6 (convergente donc bornée).]

Soit (E, ||.]|) un espace vectoriel normé. Alors, toute suite convergente est bornée.

» On traduit la convergence d’une telle suite pour e = 1 > 0, puis on magore ||un|| = ||un — €+ €|| & partir d’un certain rang.

{Propriété 7 (comparaison des normes usuelles sur I'espace des n-uplets).]

On se place dans EE = K" et on rappelle que les applications suivantes définissent des normes usuelles :

n
iz € B> |oil, |lll2:2€ Er—s
=il

n
D 1zil2, Nllleo : # € E— max |z
i 1<i<n

De plus, on a pour tout z € F,

a5 < |lz|1 £ n||x
{n oo < llzlls < mllafloo < 12l < nlzls

1
—=lzll2
[zlloo < [lzll2 < V/nllloo vn

et ainsi, ces trois normes sont équivalentes.

» Pour les premieres inégalités, il suffit d’encadrer la norme-1 ou 2. La derniére est obtenue par simple transitivité.

Chapitre 3

{Propriété 8 (nature des séries de Riemann de parametre réel).]

1
Soit € R. On appelle série de Riemann toute série de la forme > —etona:
n

1
E — converge & x > 1
nfl)

1
Et dans ce cas, on définit la fonction zeta de Riemann sur |1, +oo[ par ((z) = >/ T

» On raisonne par disjonction des cas en écartant rapidement les cas © < 0 et x = 0 pour lesquels la série diverge
grossierement. Le reste tombe alors par comparaison série-intégrale.

{Théor‘eme 9 (de Césaro).]

Soit (u,) € CY qu’on suppose convergente de limite £. Alors, la moyenne de Césaro associée est convergente de sorte que:

1 n
fE upy — £
nk*l kn—)+oo

» On revient & la définition de la limite et on cherche & contréler la différence |(1/n) Y ) _, ur — £| en séparant la somme
obtenue.
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{Propriété 10 (équivalents du reste partiel ou de la somme partielle associée aux séries de Riemann).}

On consideére la série de Riemann — avec a > 0. Alors, on rappelle que la série converge si et seulement si o > 1.
n

De plus,

1. si @ =1, alors la série diverge et on a : S, ~ In(n).

l—a
2. 81 0 < a < 1, alors la série diverge et on a : S, ~ T .
—a

1

3. si a > 1, alors la série converge et on a : Ry ~ -————.
(= 1)n>—

» Le premier point a déja €té traité : c’est 'exemple de la série harmonique. Pour les deur autres points, on travaille par
comparaison série-intégrale avec f :t — 1/t* strictement décroissante sur ]0,+ool.

{Propriété 11 (critere spécial des séries alternées).}

Soit (un) € RY une série alternée, c’est & dire que pour tout n € N, ununt1 < 0. On suppose de plus que la suite (|u,|) est
décroissante avec |un,| — 0. Alors,

1. la série Y u, est convergente.

2. on peut controler le reste partiel en valeur absolue et ainsi, pour tout n € N,

+oo
Ral =1 > el <l

k=n+1

» Pour le premier point, il suffit de montrer que les suites extraites (San) et (S2nt+1) sont adjacentes, avant d’invoquer le
théoréme de convergence des suites adjacentes. Pour le second point, on distingue alors les casn = 2p et n =2p+1 a partir
de ’encadrement fourni par le théoréme de convergence des suites adjacentes.

Chapitre 4

N

Corollaire 12 (inégalité des accroissements finis pour une fonction de classe Cl).J

Soit f une fonction qu’on suppose de classe C* sur [a,b] & valeurs complexes. On a I'inégalité :

1£(6) = f(@)] < [1flloo]b — al

» C’est immédiat : cela découle du théoréme fondamental de analyse appliqué a la fonction dérivée. En effet,

b b b
\f(b)—f(a)IZI/ J'(t) dt| S/ If'(t)ldtﬁ/ 1£ oo dt = [If'lloo]b — al
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{Théor‘eme 13 (de convergence des sommes de Riemann).}

Soit f une fonction définie sur [a, b] & valeurs dans C et considérons (z;) la subdivision & pas constant (b —a)/n. On appelle
somme de Riemann associée toute somme de la forme :

5ulf) = S (@i = 2)7(0) = 3 (=) 7(0)

ou pour tout i € [0,n — 1], 0; € [xs, Tiy1].
b
1. Si f est de classe C* sur [a, ], alors S, (f) = / () dt.
n— o0 a

2. De la méme fagon, si f est seulement continue sur [a, b], alors on a encore :

su() 2, [ 10 ae

P iy b . N o s . )
» Dans les deuz cas, on étudie la différence |Sn(f) — fa f| et il faudra contréler la différence entre deux images que ce soit
a laide de linégalité des accroissements finis ou en invoquant ['uniforme continuité.

{Propriété 14 (intégrales de Riemann de parametre réel).]

Soit a € R.

+oo
1. L’intégrale / = dt converge si et seulement si a > 1.
1

1
1

2. L’intégrale / — dt converge si et seulement si o < 1.
o t¢

» Dans les deuz cas, on introduit la fonction f :t — 1/t* et on se rameéne a cran fini pour discuter de l’ezistence de la
limite.

Chapitre 5

{Théoréme 15 (formule de Taylor avec reste intégral).}

Soient n € N et f une fonction de classe C™*! sur I & valeurs dans K, a € I. Alors, on a :

Vz eI, f(z) = zn: £® (@ E= A /z (@ ;!t)nf“*”(t) dt

!
= k! a

k
La fonction polynéme T : € — > 7o f (k)(a)% représente le polynéme de Taylor de degré n associé a la fonction
f au point a.

» On procede simplement par récurrence sur n € N dans laquelle on mettra en place une intégration par parties bien choisie.

{Propriété 16 (condition suffisante pour une fonction de classe C*° sur un intervalle réel).]

Soit f une fonction de classe C'*° sur un intervalle I, contenant un voisinage de 0, a valeurs dans K. On suppose de plus
qu’il existe r > 0 et M € Ry tels que :
vneN, Vz €] —rr], |[f™(z)| <M

Alors, f est développable en série entiere sur | — r,r| et :

—+oo

Vo €] —r,rf, f@) = f*(0)

k=0

o
&
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» [l suffit d’appliquer la formule de Taylor avec reste intégral, et on montre que le reste intégral définit une suite de fonctions
qui converge simplement vers 0.

{Théoréme 17 (existence et unicité du polynéme d’interpolation).]

Soit f une fonction définie sur un intervalle I a valeurs dans R, et considérons zg < z1 < ... < =, des points de I. Alors, il
existe un unique polynéme P, € R[X] de degré n tel que :

Vk € [0,n], P(zx) = f(xx)

» On peut proposer 4 fagons de faire... de lisomorphisme a [’analyse-synthése.

Chapitre 6

Théoréme 18 (de décomposition des noyaux) ]

Soient E un K-espace vectoriel et f € L(FE). On considere de plus P, @ € K[X] qu’'on suppose premiers entre eux, alors on a
la décomposition :

Ker(PQ(f)) = Ker(P(f)) ® Ker(Q(f))

» On revient & la caractérisation d’une décomposition en somme directe de deux sous-espaces supplémentaires, mais on
pensera d’abord & invoquer le théoréme de Bézout pour obtenir une relation entre P(f) et Q(f).

{Propriété 19 (valeurs propres et polynémes d’endomorphismes en f)]

Soient E un K-espace vectoriel, f € L(FE) et considérons A € Spk(f),  un vecteur propre associé a la valeur propre A.

1. Pour tout polynéme P € K[X], on a :
P(f)(z) = P(\).x

et ainsi, x représente un vecteur propre de P(f) associé & la valeur propre P()).
2. Si de plus P est un polynéme annulateur de f, alors P(\) = 0, et ainsi, on a toujours :

Spx(f) C Racinesk (P)

» Pour le premier point, on montre par récurrence que pour tout n € N*, f™(x) = A"z, puis on calcule P(f)(z). Le second
point est immédiat puisque x # O, en tant que vecteur propre de f.

{Propriété 20 (liberté des vecteurs propres associés a des valeurs propres distinctes).]

Soient E un K-espace vectoriel, f € L(E) et considérons (A;)i;er une famille de valeurs propres distinctes. Alors,

1. toute famille de vecteurs propres associés & (\;);er est libre.

2. toute somme finie de sous-espaces propres associés est directe.

» Pour le premier point, on montre par récurrence que toute sous-famille finie de n vecteurs propres associés d des valeurs
propres distinctes est libre. Pour le second point, on revient a l'unicité de la décompsoition du Of.

Théoréme 21 (condition nécessaire et suffisante de diagonalisation & I’aide d’un polynéme annulateur).}

Soient E un K-espace vectoriel de dimension finie n > 1 et f € L(E). Alors, f est diagonalisable si et seulement si f annule
un polynéme scindé & racines simples dans K[X].

» On procéde par double implication. Le sens direct est immédial puisque le polynéme minimal convient. Pour le sens
réciproque, on invoque encore le théoréeme des noyaux pour exhiber une décomposition de . en somme directe de sous-espaces
propres.
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Propriété 22 (propriété algébrique pour deux matrices qui commutent).]

Soient A, B € M, (K) telles que AB = BA. Alors, on a :

exp(A + B) = exp(A) exp(B)

» Les séries S A* /K et 3" B*/k! étant absolument convergentes, on peut invoquer le théoréme relatif au produit de Cauchy.

{Propriété 23 (cas particulier d’une matrice diagonalisable).]

Soit A € M, (K) qu’on suppose diagonalisable. Alors, il existe P € GL£,(K) tel que A = PDP™! avec D une matrice
diagonale de coeffients (Xi)ie[1,n]. Alors, on a immédiatement par opérations sur les matrices diagonales :
et (0)
exp(A) = Pexp(D)P~' =P pt
(0) s

Ainsi, exp(A) est aussi diagonalisable et Spx(exp(A)) = {e*, A\i € Spk(A)}, avec le méme ordre de multiplicité pour les
valeurs propres distinctes.

» On se rameéne & cran fini afin d’opérer sur les coefficients et on reconnait la somme partielle d’une série exponentielle.

Chapitre 7

{Théor‘eme 24 (caractérisation de la continuité pour les applications linéaires).]

Soient (E,|.|g) et (F,|.||r) deux K-espaces vectoriels normés, et f € L(E,F). Alors, les assertions suivantes sont
équivalentes:

1. f est lipschitzienne sur E.

2. f est continue sur E.

3. f est continue en Of.

4. f est bornée sur la boule unité fermée : 3k > 0, Vx € By (0g, 1), ||f(z)||Fr < k.

5. il existe k > 0 tel que pour tout x € E, || f(z)||r < k||z| &.

» On procéde la encore par cycle, et on n’hésitera pas a normaliser les vecteurs pour rentrer dans la boule unité.

{Propriété 25 (norme subordonnée d’une application linéaire continue).]

Soient (E, ||.||g) et (F,||.]|r) deux K-espaces vectoriels normés, et f € L(E, F)) qu’on suppose continue sur E. Alors, les réels
M, My et M3 définis par :

f(@)|lr
My = sup(LHEE o200y | by = sup(l7 @Il lale <13, Ms = sup{l /@), lelle =1}
existent et on a M; = My = Ms. Ce réel sera aussi noté ||| f||| et il désigne la norme de f subordonnée aux normes
-z et |I.llx

En particulier, on vérifie que celle-ci est sous-multiplicative : si f € L.(F,F) et g € L(F,G), alors go f € L(FE,G) et
Ilg o £111 < Hlgll-NA-

» L’existence est immédiate a l’aide des axiomes d’existence sur R. Pour les égalités, on travaille simplement par anti-
symétrie. Restera a prouver la sous-multiplicativité.
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Théoréme 26 (cas particulier des applications linéaires en dimension ﬁnie).]

Soient (E,|.||) et (F,||.||r) deux K-espaces vectoriels normés. Si de plus, E est de dimension finie n > 1, alors toute
application lindaire f € L(F, F) est nécessairement continue.

» On revient & la caractérisation pour les applications linéaires, puis on cherche & controler || f(x)||r d laide de la norme
infinie avant de conclure par équivalence des normes en dimension finie.

Théoréme 27 (cas particulier des parties compactes en dimension ﬁnie).]

Soit (F, ||.]]) un K-espace vectoriel normé et considérons K une partie non vide de E. Si de plus, F est de dimenison finie
n > 1, alors les parties compactes sont exactement les parties fermées et bornées.

» Le sens direct a été prouvé plus tét. Pour le sens réciproque, on n’hésitera pas a réinvestir le théoréme de Bolzano-
Weierstrass vu au chapitre 2.

Chapitre 8

{Théoréme 28 (d’intégration de la limite uniforme d’une suite de fonctions définies sur un segment).}

Soit (fn) une suite de fonctions définies sur un segment [a, b] inclus dans R. On suppose de plus que :

e pour tout n € N, f,, est continue sur [a, b],

e (fn) converge uniformément sur [a, b] vers une fonction f.

b b
Alors, / fn(t) dt tend vers / f(t) dt quand n — 400 de sorte que :

lim fn (t) dt = / £t

n——+

» On note I, = f fn(t) dt et on magjore la différence || I, f: f(t) dt|| grace auzx propriétés de l'intégrale.

{Corollaire 29 (dérivation de la limite d’une suite de fonctions définies sur un intervalle).]

Soient I un intervalle de R et (f,,) une suite de fonctions définies sur un intervalle I inclus dans R. On suppose de plus que :

e pour tout n € N, f,, est de classe C* sur I,
e (fn) converge simplement sur I vers une fonction f,

e (f;) converge uniformément sur tout segment [a,b] C I vers une fonction g.

Alors, f est encore de classe C! sur I et on a f' = g.

» Fizons a € 1, alors fn(x) = )+ fx fn(t) dt. On peut alors appliquer le théoréme d’intégration des suites de fonctions
définies sur un segment.

Remarque Avec ces hypotheéses, on montre qu’on récupeére méme la convergence uniforme sur tout segment [a, b] de la suite
(fn) vers f. En effet, on a pour tout x € [a,b] C I :

fo(@) = f(z) = — fla)+ / o) = f (@) dt = 0< [ fu = flloo < llfnla) = fl@)l + (b= a)llfr = f'llc —> 0
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{Théoréme 30 (de continuité des intégrales a paramétre).]

Soient I un intervalle de R, X une partie de E et f : X x I — K telle que f(z,.) soit continue par morceaux sur I pour
tout x € X. On suppose de plus que :

e la fonction f(.,t) : x — f(z,t) est continue sur X pour tout t € I,
e il existe une fonction ¢ : I — R4 continue par morceaux et intégrable sur I telle que :

V(z,t) € X X I, |f(z,t)] < ¢(t) (indépendante de x)

Alors, la fonction F' : x — /f(x, t) dt est continue sur X.
I

> Fizons a € X et (x,) € X" telle que £, — a. On se raméne d& la caractérisation séquentielle de la limite en montrant que
F(xzn) — F(a) a laide du théoréme de convergence dominée.

Chapitre 9

Théoréme 31 (lemme d’Abel).]

Soit > anz™ une série entiere d’une variable complexe, avec (an) € CY. On suppose de plus qu’il existe zo € C* tel que
(anzd) est bornée. Alors, pour tout z € C tel que |z| < |zo]|, la série > anz" converge absolument.

» On se raméne & une comparaison avec le terme général d’une série géométrique convergente.

{Propriété 32 (autres interprétations du rayon de convergence).]

Soit Y an,z" une série entiére d’une variable complexe et notons R son rayon de convergence. Alors,

1. R désigne aussi la borne supérieure dans R de {r € R4, anr™ — 0}.
2. R désigne aussi la borne supérieure dans R de {r € Ry, > a,r" converge}.
3. R désigne aussi la borne supérieure dans R de {r € Ry, 3" |a,r"| converge}.

et finalement, on pourra retenir que dans le plan complexe :

» Tous ces ensembles contenant au moins 0, on peut noter Ro, Ri, Ra les bornes supérieures de ces ensembles dans R et
montrer que R > Ro > R1 > Ra puis que R = Ra, et ainsi on aura bien les égalités attendues.
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{Théor‘eme 33 (de convergence normale d’une série enti‘ere).]

Soit Y an,z" une série entiere d’une variable complexe et de rayon de convergence R > 0. Alors,

1. pour tout r < R, la série entiere > a,z" converge normalement, et donc uniformément sur la boule fermée B¢ (0, ).

2. plus généralement, elle converge normalement, et donc uniformément sur tout compact K C B(0, R).

» Pour le premier point, c’est immédiat car il suffit de magjorer le terme général |anz"|. Pour le second point, on pourra
appliquer le théoréme des bornes atteintes a la fonction z — |z|, avant de magorer le terme général.

{Corollaire 34 (unicité des coefficients du développement en série entiére).}

Soit Y anz™ une série entiere d’une variable réelle et de rayon de convergence R > 0 et on note f la somme de cette série
entiere. On a pour tout n € N,
_ ()

n!

Qn

Et ainsi, les coefficients du développement en série entiere sont uniques.

» On utilise la formule de dérivation sur B(0, R) et on évalue en z = 0.

Chapitre 10

{Propriété 35 (indépendance et événements contraires).]

Soit (£2,.A, P) un espace probabilisé. Si de plus A et B sont indépendants, alors :

A et B sont indépendants
A et B sont indépendants
A et B sont indépendants

Plus généralement, si (A;);cr désigne une famille d’événements mutuellement indépendants, alors en notant B; = A; ou E,
les éveénements (B;);er sont encore mutuellement indépendants.

» Pour le premier point, il suffit de revenir a la définition a l’aide du produit des probabilités.

{Théor‘eme 36 (caractérisation d’une loi géométrique).}

Soit (2,.4, P) un espace probabilisé.

1. On considére X une variable aléatoire discrete sur  telle que X ~ G(p),p €]0, 1].
Alors, pour tout k € N, P(X > k) = ¢" et ainsi,

V (k,0) € N?, Pixsiy(X >k+0) =P(X >0 (¥
On dit que X est une loi sans mémoire.

2. Réciproquement, considérons Y telle que Y (2) = N*. Si de plus Y vérifie la condition (%), alors Y suit une loi
géométrique de parametre p = P(Y = 1).

» Pour le premier point, il suffit de décrire I’événement (X > k) comme réunion d’événements élémentaires, la formule
déécoule alors de la définition de la probabilité conditionnelle. Pour le second point, on cherche d’abord a obtenir une relation
de récurrence qui nous permettra d’obtenir P(Y = k).
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{Théor‘eme 37 (approximation d’une loi de Poisson par une loi binomiale).]

Soit (£2, .4, P) un espace probabilisé, et considérons (X,,) une suite de variables aléatoires telles que X, suit une loi binomiale
de parametres n, p,, vérifiant :
npn, ~ A>0

n——+oo

k

Alors, pour tout k € N, limp 400 P(Xn = k) = e 4l

PR et ainsi la suite (X,) converge en loi vers une loi de Poisson.

» On revient a la loi binomiale et on travaille sur le coefficient binomial afin de déterminer la limite a l’aide des fonctions
usuelles.

Exemple 1 On considére une variable aléatoire discrete X a valeurs dans N. Montrer que :

X admet une espérance finie < Z P(X > n) converge
n>0

et que dans ce cas, E(X) =Y P(X >n) =31 P(X >n).

{Propriété 38 (fonction génératrice de la somme de variables mutuellement indépendantes).]

Soient (£2,.4, P) un espace probabilisé, X1,..., X, des variables aléatoires discrétes & valeurs dans N, et notons Gx, leur
fonction génératrice. On suppose de plus que ces variables aléatoires sont mutuellement indépendantes et ainsi,

Vie[-1,1], Gxitopx,(t) = [ Gx, (t)
k=1

» On revient simplement a la définition de la fonction génératrice et on rappellera les propriétés de l’espérance.

—{Propriété 39 (inégalité de Markov). |

Soient (€2, A, P) un espace probabilisé et X une variable aléatoire discrete telle que X € L'. Alors, on a :

ve>0, P(x| > o < ZXD

» On note J ={i € I, |z;| > €} et il suffit alors de minorer Uespérance de |X|.

{Propriété 40 (inégalité de Bienaymé—Tchebychev).]

Soient (€2, A, P) un espace probabilisé et X une variable aléatoire discrete telle que X € L? converge. Alors, on a :

V(X)

Ve>0, PIX —E(X)|>¢) < 2

» On applique Uinégalité de Markov ¢ la variable (X — E(X))? avec €.

Chapitre 11

{Propriété 41 (expression du projeté orthogonal sur un sous-espace vectoriel de dimension ﬁnie).]

Soit E un espace préhilbertien réel et considérons F' un sous-espace vectoriel de . On suppose de plus que F' est de dimension
finie p > 1. Alors, en notant B = (e, ..., e,) une base orthonormée de F, on a pour tout = € FE,

P
pr(z) = z <e,Tr>.e
i=1

» On applique la caractérisation précédente de sorte que x —y € F+ < Vi € [1,p], <z —y,e; >=0.
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{Théoréme 42 (de minimisation).]

Soit E un espace préhilbertien réel et considérons F' un sous-espace vectoriel de E de dimension finie p > 1. Alors, la distance
de x a F est atteinte en un unique point de F' et on a :

d(z, F) = ||z — pr(z)ll2 = V|zll2* — [lpr()]]2

» Dans un premier temps, on vérifie que ||z — pr(z)||2 est bien ce minimum, puis partant de x = pr(z) + x — pr(z), on
applique le théoréme de Pythagore pour justifier la valeur obtenue.

{Théor‘eme 43 (de représentation de Riesz).]

Soit E un espace euclidien, et considérons ¢ une forme linéaire sur E. Alors, il existe un unique vecteur a € E tel que :
Ve € E, ¢(x) =< z,a >

En particulier, 'application f : a —< ., a > désigne un isomorphisme de E sur E*, et ainsi toute forme linaire peut étre vu
comme un produit scalaire relatif & un unique vecteur associé.

» On introduit une base orthonormée de E et on procéde par analyse-syntheése.

Propriété 44 (noyau et image de l’adjoint).]

Soit E un espace euclidien et considérons u € L£(F). Alors, on a :

Ker(u®) = Im(u)* et Im(u*) = Ker(u)*

» Pour la premiére €galité, on peut raisonner par équivalence. Pour la seconde, on pourra proposer une inclusion et revenir
a ’égalité des dimensions.

{Propriété 45 (éléments propres d’un endomorphisme symétrique).]

Soit E un espace euclidien et considérons u € S(E). Alors,

1. le spectre de u est réel et ainsi, Sp(u) C R.
2. u posséde au moins une valeur propre réelle et ainsi, 1 < Card(Sp(u)) < n.

3. en notant Ey,(A1),..., Ew(\p) les sous-espaces propres associés & des valeurs propres distinctes de u, alors ils sont deux
a deux orthognaux, et ils sont donc toujours en somme directe.

» Pour le premier point, on se plonge dans M, (C) et on pourra travailler sur légalité Matp(u)X = \;X aprés avoir fizé
une base orthonormée de F. Le second point est immédiat et pour le dernier, on reviendra simplement a la définition de
l’orthogonalité.

{Propriété 46 (caractérisation des matrices symétriques positives et définies positives).}

Soit A € Sn(R). Alors, on a les caractérisations suivantes :
1. A€ SH(R) &V e Sp(A), A>0
2. A€ ST (R) &V Ae Sp(A4), A>0

» A chaque fois, on raisonne par double implication : le sens direct est immédiat, car il suffit de présenter un vecteur propre
associé. Pour le sens réciproque, on pourra évidemment invoquer le théoréme spectral.
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{Corollaire 47 (caractérisation d’un automorphisme orthogonal par conservation de la norme et du produit scalaire).ji

Soit E un espace euclidien et considérons u € L(E). Alors, les assertions suivantes sont équivalentes :
1. u est un automorphisme orthogonal.
2. pour tout z € E, ||u(z)||2 = ||z||2 et ainsi, u conserve la norme.

3. pour tout (z,y) € E?, < u(z),u(y) >=< z,y > et ainsi, u conserve le produit scalaire.

On dit aussi que u est une isométrie vectorielle.

» On procéde par cycle et on n’hésitera pas a exploiter le résultat précédent pour prouwver la derniére implication.

Chapitre 12

{Propriété 48 (structure des solutions).]

Soit I un intervalle de R. On considére le systeme différentiel linéaire :
X'(t) + A®)X (t) = B(t)

avec A: I — My (K) et B: I — My1(K) qu’on suppose continues sur I. On note S ’ensemble des solutions du systéme
différentiel et Sp ’ensemble des solutions du systeme homogene associé. Alors,

1. So est un K-espace vectoriel de dimension finie n, et ainsi il existe des solutions du systéme homogene Xi,..., X,
linéairement indépendantes telles que : So = Vect(X1,..., Xn).

2. Si de plus Y, désigne une solution particuliere du systeme différentiel linéaire, alors :
S={Y,+ X1+ ...+ MXn, (A1,...,\n) K"}

On peut alors écire S =Y, + So et on dit que S est un espace affine de direction Sp.

» Pour le premier point, on revient & la caractérisation des sev puis on construit un isomorphisme de So sur Mpn1(K). Pour
le second point, on peut travailler par équivalence & partir de X € CM(I, My (K)).

{Propriété 49 (caractérisation d’un systéme fondamental de solutions & 1’aide du Wronskien).]

Soit I un intervalle de R. On considere le systeme différentiel linéaire X' (t) + A(¢) X (t) = B(t), avec A : [ — M, (K) et
B : I — M,1(K) qu’on suppose continues sur I, et on note X1, ..., X, des solutions du systéme homogeéne associé.
Alors, les assertions suivantes sont équivalentes :

1. (Xi,...,X,) est une base de Sy
2.Vtel, W(t)#0

3. EItOGI, W(to)?fo

» On procéde simplement par cycle et on pourra pour la premiére implication raisonner par ’absurde.

{Propriété 50 (expression de Sp a 'aide de 'exponentielle dans le cas ot A est constante).}

Soit I un intervalle de R. On considere le systéme différentiel linéaire X'(t) = AX(t) + B(t), avec A € M,(K) et B: I —
M1 (K) qu’on suppose continue sur I. Alors, les solutions du systéme homogéne sont données par :

X (t) = exp(tA)Xo avec Xo € Mn1(K)

» On utilise la facteur intégrant et on pourra rappeler t — exp(tA) est dérivable. Attention, il ne faudra pas oublier de
Justifier que exp(tA) est inversible avant d’exprimer X (t).
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