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MP - Lycée Chrestien de Troyes Semaine du lundi 24/02

Planche de préparation pour les écrits

L’examinateur vous proposera un exercice de son choix. Tous sont extraits de sujets de concours : on s’appliquera a
mettre en avant ses idées, les résultats du cours cachés derriere chaque question et a rédiger avec rigueur.

L’interrogation se fera donc en deux temps :

1. Présentation d’un exercice de la planche [45 min]

2. Recherche d’un exercice en temps limité [10 min]
Pour finir, vous résoudrez un exercice proposé (*) par 'examinateur : on s’appliquera a échanger avec lui, & mettre en
avant ses idées, les résultats du cours et a rédiger avec rigueur... attention, votre tableau reflete beaucoup de
choses !

(*) parmi les thémes abordés depuis le début de 1'année.

Exercice 1 (modélisation d’'un jeu de société). extrait du concours CCINP 2023 - PC [ ]
On considére deux entiers M € N\{0,1} et A € N*. On dispose d’un plateau de jeu infini sur lequel se trouve un parcours
composé de cases numérotées par les entiers naturels. Un pion se trouve initialement sur la case numérotée 0 et il doit
atteindre ou dépasser la case numérotée A pour terminer le jeu. A chaque tour de jeu, le joueur utilise un ordinateur qui
génere aléatoirement et uniformément un élément de ensemble [0, M — 1] : le pion est avancé d’autant de cases que le
nombre généré.

Dans la suite, on s’intéresse tout particulierement au nombre de tours de jeu nécessaire pour que le pion atteigne ou dépasse
la case numérotée A.

Pour modéliser cette situation, on se place sur un espace probabilisé (€2, A, P) et on considere une suite (Xx), - de variables
aléatoires réelles indépendantes de loi uniforme sur [0, M — 1]. On consideére également la suite de variables aléatoires réelles
(S")nEN définie par So =0 et :

VneN, S,=> X
k=1

On considere la variable aléatoire T' définie de la fagon suivante :
e si pour tout n € N*, on a S,, < A, alors on pose T = 0;
e sinon, on pose T'=min{n € N* | §,, > A}.

Partie I - Préliminaires

1.1 - Modélisation

Dans cette sous-partie, on effectue le lien entre la situation présentée dans I'introduction et le modele considéré ci-dessus.
1. Soit n € N*. Que représentent les variables aléatoires X,, et S,, dans le contexte de la situation présentée?

2. Que représente la variable aléatoire T' 7

1.2 - Calcul de la somme d’une série entiére

On consideére la fonction f :] — 1,1[— R définie par :
Ve e — 1,1, f(z) = —
’ ’ - 1 —z
3. Montrer que la fonction f est de classe C*° sur | — 1, 1] et que :
|
WpeN, Veel-1,1, fP@)= 2

4. Soit p € N. Montrer que le rayon de convergence de la série entiere > ( Z ) x" est égal a 1 .
nzp

5. Soit p € N. En développant la fonction f en série entiere, déduire des questions précédentes 1’égalité suivante :

Vo €] - 1,1], f(;)x”—(lf;pﬂ

n=

=

Partie II - Etude d’un premier cas

Dans cette partie uniquement, on suppose que M = 2.
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II.1 - Loi des variables aléatoires S,, et T'

3. Soit n € N*. Démontrer que S, suit une loi binomiale de parametres n et 1/2.
4. Quelles sont les valeurs prises par la variable aléatoire T' 7

5. Soit k € N avec k > A. Exprimer ’événement (T = k) en fonction des événements (Sx—1 = A —1) et (X =1). En
déduire que:

6. Calculer P(T = 0).

I1.2 - Espérance de la variable aléatoire T

On déduit des résultats précédents que la fonction génératrice G de la variable aléatoire T est égale a la somme de la série
entiere 3 P(T = k)z" sur son intervalle de convergence.
k>A

7. Déterminer la rayon de convergence Rr de la série entiere S P(T = k)z* et montrer que:
k>A

Vz €] — Rr,Re[, Gr(z) = (2 z x>A.

8. En déduire le nombre moyen de tours de jeu pour terminer notre partie.

Exercice 2 (matrices stochastiques). extrait du concours CCINP 2017 - MP | |

Partie I - Un exemple de chaine de Markov

Une particule possede deux états possibles numérotés 1 et 2 et peut passer de son état a I’état 1 ou 2 de fagon aléatoire. On
considére un espace probabilisé (€2, A, P) sur lequel on définit pour tout n € N la variable aléatoire X,, égale a 1’état de la
particule au temps n + 1 qui dépend uniquement de son état au temps n selon les regles suivantes :

1
e si au temps n la particule est dans 1’état 1, au temps n + 1 elle passe a I’état 2 avec une probabilité 5

1
e si au temps n la particule est dans I’état 2, au temps n + 1 elle passe a 1’état 1 avec une probabilité 1

1
On suppose que P(Xo=1) = P(Xo =2) = 5

1. Déterminer en justifiant la loi de X;.

2. On pose p, = (P(X, = 1), P(X,, = 2)) le vecteur ligne de R? caractérisant la loi de X,,. Justifier la relation matricielle
suivante :

Vn €N, pnt1 = pnA avec A =

NG ST
Blw Nl

La suite des variables aléatoires (X, )nen est un cas particulier de variables aléatoires dont I’état & I'instant n + 1 ne dépend
que de son état a 'instant n et pas des précédents. On dit alors que (Xn)nen est une chaine de Markov. Plus généralement
si (Xn)nen est une chaine de Markov prenant ses valeurs dans [1, p], la loi des variables X,, est entiérement déterminée par
la donnée de la loi X et d’une matrice stochastique A de Mp(R).

Si on pose maintenant pu, = (P(X, = 1), P(X, =2),...,P(X, =p)), 'étude du comportement de la loi de X,, lorsque n
est grand, se ramene alors & I’étude de la convergence de la suite (un)nen vérifiant la relation de récurrence pint1 = punA.
Cela conduit a ’étude de la suite de matrices (A™)nen en commengant par étudier le spectre de A. C’est 'objet des parties
suivantes.

Partie IT - Spectre d’une matrice stochastique

Soit A une matrice stochastique de M, (R).

3. Justifier que 1 est valeur propre de A (on pourra considérer le vecteur colonne de R? dont toutes les coordonnées valent

1).
4. Soit z un vecteur colonne de CP. Démontrer que ||Az|oo < ||2Z]co-

5. En déduire que si A € C est une valeur propre de A, on a |A| < 1.
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Localisation des valeurs propres
Soit A une valeur propre de A.

6. Justifier Pexistence d’un vecteur colonne z = (x1,...,zp) de C? tel que ||z]loc =1 et Az = Ax.
7. Soit ¢ € [1,p] tel que |z;| = 1. Démontrer que :
IA—aii| <1 —a;;.
Etude d’un exemple

8. Dans cette question uniquement, on prend :

11
2 1 1
A= |t 14
6 6 6
11
3 3 3

Déduire de la question précédente que les valeurs propres de A sont contenues dans la réunion de trois disques, que
I'on représentera en précisant leurs centres et leurs rayons.

On constate en particulier que 1 est la seule valeur propre de A de module 1. On admettra, dans la suite du probleme, que
cette propriété reste vraie pour toute matrice stochastique strictement positive.

Cas des matrices stochastiques strictement positives

9. On suppose en plus pour cette question et la question suivante que la matrice A est strictement positive. On pose
B = A—1, et on note B’ la matrice de M,,_1(R) obtenue en supprimant la derni¢re colonne et la derniere ligne de B.

Soit A € C une valeur propre de B’.
On admet qu’il existe un entier de i € [1,p — 1] tel que :

A= (aii — 1) <1 —=aii — aip.
La démonstration (non demandée) de cette inégalité est similaire & celle de la question 7.

Déduire de cette inégalité que B’ est inversible.

10. En déduire que dim Ker(A — I,) = 1.

Exercice 3 (marche aléatoire). extrait du concours CCINP 2020 - PC | |
Dans cet exercice, nous allons étudier le déplacement aléatoire d’un pion se déplagant dans ’ensemble des entiers relatifs.
A T’étape n = 0, on suppose que le pion se trouve en 0. Ensuite, si le pion se trouve & l’étape n sur U'entier x € Z, alors
a I’étape n + 1, le pion a une chance sur 2 de se trouver en x 4+ 1 et une chance sur deux de se trouver en = — 1, ceci
indépendamment des mouvements précédents.

Pour modéliser cette situation, on se place dans un espace probabilisé (€2, .4, P) et on considére une suite (Xi)ren+ de
variables aléatoires réelles mutuellement indépendantes dont la loi est donnée par :

VkEN*, P(Xk:1):P(Xk:—1):

On consideére également la suite de variables aléatoires réelles (S )nen définie par So = 0 et :
n
VneN', S,=> X
k=1

L’objectif de cet exercice est de déterminer la loi de la variable aléatoire T définie de la fagon suivante :
e si pour tout n € N*, on a S,, # 0, on pose T' = +o0;
e sinon, on pose T'=min{n € N* | S,, = 0}.

L’événement (T' = +00) se réalise donc si et seulement si ’ensemble {n € N* | S, = 0} est vide.
Finalement, on définit les suites (pn)nen €t (gn)nen par :

0 sin =0,

VR €N, pn=P(Sh=0)etq, =
" b ( Jota {P(T:n) sin > 0.
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Partie I - Calcul de p,

On fixe un entier n € N.
1. Que représente la variable aléatoire S,, 7
2. Calculer po, p1 et p2.

3. Justifier que, si n est impair, alors on a p, = 0.

X +1
2

On considere pour tout k& € N* la variable aléatoire Y; définie par Y = . On admet que (Yi)ren+ est une suite de

variables aléatoires mutuellement indépendantes.
4. Soit k € N*. Montrer que Y% suit une loi de Bernoulli de parametre %
5. Pour n > 0, donner la loi de Z, = Y1 + .-+ Y, et exprimer S,, en fonction de Z,.

6. On suppose que n = 2m avec m € N. Déduire de la question précédente que :
(2 L
Pam =y | gm

On note R, le rayon de convergence de la série entiére Y . pnz” et f la somme de cette série entiere sur son intervalle de
convergence. On note également R, le rayon de convergence de la série entiere D nso@nx™ et g la somme de cette série entiere
sur son intervalle de convergence. Pour tout n € N, on considere également la fonction g, : R — R définie par g,(z) = g,x"
pour tout z € R.

Partie III - Loi de la variable aléatoire T

7. Montrer que la série > ., gn converge normalement sur [—1,1]. En déduire que R, > 1.

Dans la suite, on admet la relation :

VYn e N, p,= Zkanfk-
k=0

8. En utilisant un produit de Cauchy et la relation admise ci-dessus, montrer que :
Ve el - L1, f(z)g(x) = f(x) — 1.

9. En déduire que g(z) =1 —+/1 — 22 pour tout & €] — 1, 1], puis calculer le développement en série entiére de la fonction
z +— 1 —+/1 — 2 en précisant son rayon de convergence.

10. En déduire une expression de g, pour tout n € N*.
11. En utilisant les questions précédentes, déterminer la valeur de P(T = +o00). Interpréter le résultat.

12. La variable aléatoire 1" admet-elle une espérance ?

Exercice 4 (un calcul de zeta(2)). extrait du concours CCINP 2024 - MP | |
“+oo
Il existe de nombreuses méthodes pour déterminer la valeur de E —. Ce probleme propose deux méthodes différentes de
n
n=1

recherche de la valeur de cette somme.

+oo 2 I
1 i
1. Question préliminaire Si on admet que E —— = —, que t la s e E —7
Q P i on admet qu 2 @n 1) g+ que vau omm 2 2

™

B
2. On note, pour tout entier naturel n, W, = / (sin(z))" da.
0

"+l puis déterminer une relation entre W, 12 et W,,.

2211 (n|)2
2n+ 1)1

Calculer la dérivée de la fonction z — (sin(z))

En déduire, pour tout entier naturel n, que Way,411 =

1
3. Déterminer sur l'intervalle | — 1, 1] le développement en série entiere des fonctions x +— N et x — arcsin(x).
-z

+oo |
4. En déduire que pour tout = € [0, 5[, z = Z %(Sm(m))%ﬂ.
n(n!)?(2n

n=0
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. % = 2n)! . 2n+1 = % 2n)! . 2n+1
5. Justifier que/o ;)Wn'(y(;n_m(sm(x)) + dm:nZ:O/O W(sm(m)) 1 de.

+001

6. En déduire la valeur de Z 3
n=1

Exercice 5 (séries entiéres). extrait du concours CCINP 2019 - PC | |
On considere I'équation différentielle suivante :

221 —a)y” —2z(1 +x)y +y = 22" (E)

Partie I - Solution particuliere de I’équation homogeéne

Dans cette premiere partie, on souhaite déterminer les solutions développables en série entiere de 1’équation différentielle
homogene associée a (E) :
2 (1—a)y" —z(l+2)y +y=0.  (H)

On fixe une suite de nombres réels (a,)nen telle que la série entiére Y a,z™ ait un rayon de convergence r > 0. On définit
la fonction f:] —r,7[— R par :

+oo
Vo €]l —rr], f(z)= Z anx”.
n=0

1. Justifier que la fonction f est de classe C? et que les fonctions f’ et f” sont développables en série entiere. Exprimer
avec la suite (an)nen les développements en série entiere respectifs des fonctions f’ et f” en précisant leur rayon de
convergence.

2. Montrer qu’il existe une suite (bn)n>2 de nombres réels non nuls telle que pour tout « €] —r,r[, on a :
+oo
21— 2)f" (@) = 21+ 2)f (@) + f() = a0+ D balan — an-1)a"
n=2

3. Montrer que f est solution de (H) sur l'intervalle | — r, r[ si et seulement si ag = 0 et an4+1 = a,, pour tout n € N*.

4. En déduire que si f est solution de (H) sur | — r,7[, alors r > 1 et il existe A € R tel que :

Az
V. -1,1 = .
rel- 11, f@)= 2o
5. Réciproquement, montrer que si A € R, alors la fonction
Az
]-1,1[— R —
g:-1L1=R, = -2

est une solution de (H) sur | — 1, 1] développable en série entiére.

Partie II - Solutions de (F) sur ]0,1[ ou |1, +o0|

On désigne par I I'un des intervalles ]0,1[ ou ]1,+oo[. Soit  : I — R une fonction de classe C?. On définit la fonction
z : I — R par la relation :

Veel, z(z)= (% — 1> y(z).
6. Justifier que z est de classe C? sur l'intervalle I, puis exprimer 2’ et z”’ avec y, 3’ et 3.
7. Montrer que y est solution de (E) sur I si et seulement si z est solution sur I de I'équation différentielle :
2 + 2 =2z, (E1)
8. Montrer que si z est solution de (E1) sur I, alors il existe A € R tel que :

Vo €1, z'(m):%er,

9. En déduire l'ensemble des solutions de ’équation différentielle (E) sur I.
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Exercice 6 (matrices par blocs). extrait du concours CCINP 2019 - PSI | |
On consideére A, B,C, D des matrices de M, (C) telles que C et D commutent.

A B D 0,
1. Calculer (C’ D) (—C ]n).

L’objectif des trois prochaines questions est de démontrer la relation :

det ((é g)) — det(AD — BC) (1)

2. Montrer 'égalité (1) dans le cas ol D est inversible.
. . o » 1 . .
3. On ne suppose plus D inversible. Montrer qu’il existe po € N* tel que pour tout p > po, D + —I,, est inversible.
p

4. En déduire que I'égalité (1) est également vraie dans le cas olt D n’est pas inversible.

Considérons une matrice M € M, (C) et formons la matrice :

5. Montrer que Sp(N) = {u € C; u? € Sp(M)}.

T1
6. Soient p € Sp(N) et x = | 1 | € My,1(C) un vecteur propre de M associé & la valeur propre u’.

Tn
Montrer que le vecteur </fx) € M2,,1(C) est vecteur propre de N associé a la valeur propre p.

7. Montrer que si M est diagonalisable et inversible, alors IV est également diagonalisable et inversible.

Exercice 7 (projecteurs spectraux). extrait du concours CCINP 2023 - MP | |

1. Un exemple
Vérifier que la matrice A = ( g ) est diagonalisable.

1 —1
<71 1 )etHz—

2. On rappelle le lemme de décomposition des noyaux :
si P1, Ps, ..., P, sont des éléments de C[X] deux & deux premiers entre eux de produit égal & T, si u est un endomor-
phisme de E, alors :

Démontrer que les matrices I1; =

H1 —|— 51_[27 Hl + H2 et H1H2.

NI o po

< 1 1 ) sont des matrices de projecteurs puis calculer

N =

Ker[T'(u)] = Ker(P1(u)) ® Ker(P2(u)) @ ... ® Ker(Pr(u)).

L’objet de cette question est de démontrer le cas particulier r = 2.

Soit v un endomorphisme de E et soient P et ) deux polynémes premiers entre eux.
Justifier que Ker(P(u)) C Ker[(PQ)(u)] (de méme, on a : Ker(Q(u)) C Ker[(PQ)(u))]).

Démontrer que : Ker[(PQ)(u)] = Ker(P(u)) ® Ker(Q(u)).

Dans la suite du probleme, on pourra utiliser librement le lemme de décomposition des noyaux.

3. Soit v un endomorphisme de E et soit 7, son polynéme minimal.
On suppose que m, = Plk1 szz ot les polynémes P; et P, sont premiers entre eux. On pose, pour tout entier ¢ € {1, 2},
T(-U.
Q=i
3 P’Lkl
Justifier qu’il existe deux polynémes R; et Rz de C[X] tels que R1Q1 + R2Q2 = 1.

Pour la suite de cette partie, on notera m, = PlklPQk2 ... PEm 1a décomposition en facteurs premiers du polynome
minimal et on admettra que, si pour tout entier ¢ € {1,2,...,m}, Q; = %, il existe des polynomes de C[X] tels que

RiQ1+ RaQ2+ ...+ RnQm = 1.

7
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4. On pose alors, pour tout entier ¢ € {1,2,...,m}, p; = Ri(u) o Q;(u).
Démontrer que, pour tout couple (i, j) d’entiers distincts de {1,2,...,m}, on a les trois résultats suivants :

piop; =0,

m
S = ide,
i=1

et chaque p; est un projecteur de F.
Les p; seront appelés projecteurs associés a u.

5. Soit u un endomorphisme de E et soit x. son polynéme caractéristique :

m

Xu = H(X - )‘i)ai

i=1

(avec les A; deux & deux distincts et les «; des entiers naturels non nuls) et, pour tout entier i € {1,2,...,m},
N; = Ker(u — \jidg ) le sous-espace propre caractéristique associé a A;.
Justifier que E = N1 ® Na P ... DB Ny,

6. Démontrer que £ =Im p1 ®Im p2 @ ... B Im pm,.

7. Démontrer que, pour tout entier i € {1,2,...,m}, N; = Im p;,.
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