
MP - Lycée Chrestien de Troyes
Colle 18

Semaine du lundi 24/02

Planche de préparation pour les écrits

L’examinateur vous proposera un exercice de son choix. Tous sont extraits de sujets de concours : on s’appliquera à
mettre en avant ses idées, les résultats du cours cachés derrière chaque question et à rédiger avec rigueur.

L’interrogation se fera donc en deux temps :

1. Présentation d’un exercice de la planche [45 min]

2. Recherche d’un exercice en temps limité [10 min]
Pour finir, vous résoudrez un exercice proposé (*) par l’examinateur : on s’appliquera à échanger avec lui, à mettre en
avant ses idées, les résultats du cours et à rédiger avec rigueur... attention, votre tableau reflète beaucoup de
choses !

(*) parmi les thèmes abordés depuis le début de l’année.

Exercice 1 (modélisation d’un jeu de société). extrait du concours CCINP 2023 - PC [ ]
On considère deux entiers M ∈ N\{0, 1} et A ∈ N∗. On dispose d’un plateau de jeu infini sur lequel se trouve un parcours
composé de cases numérotées par les entiers naturels. Un pion se trouve initialement sur la case numérotée 0 et il doit
atteindre ou dépasser la case numérotée A pour terminer le jeu. À chaque tour de jeu, le joueur utilise un ordinateur qui
génère aléatoirement et uniformément un élément de l’ensemble J0,M − 1K : le pion est avancé d’autant de cases que le
nombre généré.
Dans la suite, on s’intéresse tout particulièrement au nombre de tours de jeu nécessaire pour que le pion atteigne ou dépasse
la case numérotée A.
Pour modéliser cette situation, on se place sur un espace probabilisé (Ω,A, P ) et on considère une suite (Xk)k∈N∗ de variables
aléatoires réelles indépendantes de loi uniforme sur J0,M − 1K. On considère également la suite de variables aléatoires réelles
(Sn)n∈N définie par S0 = 0 et :

∀n ∈ N∗, Sn =

n∑
k=1

Xk

On considère la variable aléatoire T définie de la façon suivante :

• si pour tout n ∈ N∗, on a Sn < A, alors on pose T = 0;

• sinon, on pose T = min {n ∈ N∗ | Sn > A}.

Partie I - Préliminaires

I.1 - Modélisation

Dans cette sous-partie, on effectue le lien entre la situation présentée dans l’introduction et le modèle considéré ci-dessus.

1. Soit n ∈ N∗. Que représentent les variables aléatoires Xn et Sn dans le contexte de la situation présentée?

2. Que représente la variable aléatoire T ?

I.2 - Calcul de la somme d’une série entière

On considère la fonction f :]− 1, 1[→ R définie par :

∀x ∈]− 1, 1[, f(x) =
1

1− x
3. Montrer que la fonction f est de classe C∞ sur ]− 1, 1[ et que :

∀p ∈ N, ∀x ∈]− 1, 1[, f (p)(x) =
p!

(1− x)p+1
.

4. Soit p ∈ N. Montrer que le rayon de convergence de la série entière
∑
n>p

(
n
p

)
xn est égal à 1 .

5. Soit p ∈ N. En développant la fonction f en série entière, déduire des questions précédentes l’égalité suivante :

∀x ∈]− 1, 1[,

+∞∑
n=p

(
n
p

)
xn =

xp

(1− x)p+1

Partie II - Étude d’un premier cas

Dans cette partie uniquement, on suppose que M = 2.
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II.1 - Loi des variables aléatoires Sn et T

3. Soit n ∈ N∗. Démontrer que Sn suit une loi binomiale de paramètres n et 1/2.

4. Quelles sont les valeurs prises par la variable aléatoire T ?

5. Soit k ∈ N avec k > A. Exprimer l’évènement (T = k) en fonction des évènements (Sk−1 = A− 1) et (Xk = 1). En
déduire que:

P (T = k) =

(
k − 1
A− 1

)
1

2k

6. Calculer P (T = 0).

Il.2 - Espérance de la variable aléatoire T

On déduit des résultats précédents que la fonction génératrice GT de la variable aléatoire T est égale à la somme de la série
entière

∑
k>A

P (T = k)xk sur son intervalle de convergence.

7. Déterminer la rayon de convergence RT de la série entière
∑
k>A

P (T = k)xk et montrer que:

∀x ∈]−RT , RT [, GT (x) =

(
x

2− x

)A
.

8. En déduire le nombre moyen de tours de jeu pour terminer notre partie.

Exercice 2 (matrices stochastiques). extrait du concours CCINP 2017 - MP [ ]

Partie I - Un exemple de châıne de Markov

Une particule possède deux états possibles numérotés 1 et 2 et peut passer de son état à l’état 1 ou 2 de façon aléatoire. On
considère un espace probabilisé (Ω,A, P ) sur lequel on définit pour tout n ∈ N la variable aléatoire Xn égale à l’état de la
particule au temps n+ 1 qui dépend uniquement de son état au temps n selon les règles suivantes :

• si au temps n la particule est dans l’état 1, au temps n+ 1 elle passe à l’état 2 avec une probabilité
1

2
.

• si au temps n la particule est dans l’état 2, au temps n+ 1 elle passe à l’état 1 avec une probabilité
1

4
.

On suppose que P (X0 = 1) = P (X0 = 2) =
1

2
.

1. Déterminer en justifiant la loi de X1.

2. On pose µn = (P (Xn = 1), P (Xn = 2)) le vecteur ligne de R2 caractérisant la loi de Xn. Justifier la relation matricielle
suivante :

∀n ∈ N, µn+1 = µnA avec A =


1

2

1

2

1

4

3

4


La suite des variables aléatoires (Xn)n∈N est un cas particulier de variables aléatoires dont l’état à l’instant n+ 1 ne dépend
que de son état à l’instant n et pas des précédents. On dit alors que (Xn)n∈N est une châıne de Markov. Plus généralement
si (Xn)n∈N est une châıne de Markov prenant ses valeurs dans J1, pK, la loi des variables Xn est entièrement déterminée par
la donnée de la loi X0 et d’une matrice stochastique A de Mp(R).
Si on pose maintenant µn = (P (Xn = 1), P (Xn = 2), . . . , P (Xn = p)), l’étude du comportement de la loi de Xn lorsque n
est grand, se ramène alors à l’étude de la convergence de la suite (µn)n∈N vérifiant la relation de récurrence µn+1 = µnA.
Cela conduit à l’étude de la suite de matrices (An)n∈N en commençant par étudier le spectre de A. C’est l’objet des parties
suivantes.

Partie II - Spectre d’une matrice stochastique

Soit A une matrice stochastique de Mp(R).

3. Justifier que 1 est valeur propre de A (on pourra considérer le vecteur colonne de Rp dont toutes les coordonnées valent
1).

4. Soit x un vecteur colonne de Cp. Démontrer que ‖Ax‖∞ ≤ ‖x‖∞.

5. En déduire que si λ ∈ C est une valeur propre de A, on a |λ| ≤ 1.
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Localisation des valeurs propres
Soit λ une valeur propre de A.

6. Justifier l’existence d’un vecteur colonne x = (x1, . . . , xp) de Cp tel que ‖x‖∞ = 1 et Ax = λx.

7. Soit i ∈ J1, pK tel que |xi| = 1. Démontrer que :

|λ− ai,i| ≤ 1− ai,i.

Étude d’un exemple

8. Dans cette question uniquement, on prend :

A =



1

2

1

4

1

4

1

6

1

6

4

6

1

3

1

3

1

3


.

Déduire de la question précédente que les valeurs propres de A sont contenues dans la réunion de trois disques, que
l’on représentera en précisant leurs centres et leurs rayons.

On constate en particulier que 1 est la seule valeur propre de A de module 1. On admettra, dans la suite du problème, que
cette propriété reste vraie pour toute matrice stochastique strictement positive.

Cas des matrices stochastiques strictement positives

9. On suppose en plus pour cette question et la question suivante que la matrice A est strictement positive. On pose
B = A− Ip et on note B′ la matrice deMp−1(R) obtenue en supprimant la dernière colonne et la dernière ligne de B.

Soit λ ∈ C une valeur propre de B′.

On admet qu’il existe un entier de i ∈ J1, p− 1K tel que :

|λ− (ai,i − 1)| ≤ 1− ai,i − ai,p.

La démonstration (non demandée) de cette inégalité est similaire à celle de la question 7.

Déduire de cette inégalité que B′ est inversible.

10. En déduire que dimKer(A− Ip) = 1.

Exercice 3 (marche aléatoire). extrait du concours CCINP 2020 - PC [ ]
Dans cet exercice, nous allons étudier le déplacement aléatoire d’un pion se déplaçant dans l’ensemble des entiers relatifs.
A l’étape n = 0, on suppose que le pion se trouve en 0. Ensuite, si le pion se trouve à l’étape n sur l’entier x ∈ Z, alors
à l’étape n + 1, le pion a une chance sur 2 de se trouver en x + 1 et une chance sur deux de se trouver en x − 1, ceci
indépendamment des mouvements précédents.

Pour modéliser cette situation, on se place dans un espace probabilisé (Ω,A, P ) et on considère une suite (Xk)k∈N∗ de
variables aléatoires réelles mutuellement indépendantes dont la loi est donnée par :

∀k ∈ N∗, P (Xk = 1) = P (Xk = −1) =
1

2
.

On considère également la suite de variables aléatoires réelles (Sn)n∈N définie par S0 = 0 et :

∀n ∈ N∗, Sn =

n∑
k=1

Xk.

L’objectif de cet exercice est de déterminer la loi de la variable aléatoire T définie de la façon suivante :

• si pour tout n ∈ N∗, on a Sn 6= 0, on pose T = +∞;

• sinon, on pose T = min{n ∈ N∗ | Sn = 0}.

L’événement (T = +∞) se réalise donc si et seulement si l’ensemble {n ∈ N∗ | Sn = 0} est vide.
Finalement, on définit les suites (pn)n∈N et (qn)n∈N par :

∀n ∈ N, pn = P (Sn = 0) et qn =

{
0 si n = 0,

P (T = n) si n > 0.
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Partie I - Calcul de pn

On fixe un entier n ∈ N.

1. Que représente la variable aléatoire Sn ?

2. Calculer p0, p1 et p2.

3. Justifier que, si n est impair, alors on a pn = 0.

On considère pour tout k ∈ N∗ la variable aléatoire Yk définie par Yk =
Xk + 1

2
. On admet que (Yk)k∈N∗ est une suite de

variables aléatoires mutuellement indépendantes.

4. Soit k ∈ N∗. Montrer que Yk suit une loi de Bernoulli de paramètre 1
2
.

5. Pour n > 0, donner la loi de Zn = Y1 + · · ·+ Yn et exprimer Sn en fonction de Zn.

6. On suppose que n = 2m avec m ∈ N. Déduire de la question précédente que :

p2m =

(
2m

m

)
1

4m
.

Partie III - Loi de la variable aléatoire T

On note Rp le rayon de convergence de la série entière
∑
n≥0 pnx

n et f la somme de cette série entière sur son intervalle de
convergence. On note également Rq le rayon de convergence de la série entière

∑
n≥0 qnx

n et g la somme de cette série entière
sur son intervalle de convergence. Pour tout n ∈ N, on considère également la fonction gn : R→ R définie par gn(x) = qnx

n

pour tout x ∈ R.

7. Montrer que la série
∑
n≥0 gn converge normalement sur [−1, 1]. En déduire que Rq ≥ 1.

Dans la suite, on admet la relation :

∀n ∈ N∗, pn =

n∑
k=0

pkqn−k.

8. En utilisant un produit de Cauchy et la relation admise ci-dessus, montrer que :

∀x ∈]− 1, 1[, f(x)g(x) = f(x)− 1.

9. En déduire que g(x) = 1−
√

1− x2 pour tout x ∈]− 1, 1[, puis calculer le développement en série entière de la fonction
x 7→ 1−

√
1− x2 en précisant son rayon de convergence.

10. En déduire une expression de qn pour tout n ∈ N∗.

11. En utilisant les questions précédentes, déterminer la valeur de P (T = +∞). Interpréter le résultat.

12. La variable aléatoire T admet-elle une espérance ?

Exercice 4 (un calcul de zeta(2)). extrait du concours CCINP 2024 - MP [ ]

Il existe de nombreuses méthodes pour déterminer la valeur de

+∞∑
n=1

1

n2
. Ce problème propose deux méthodes différentes de

recherche de la valeur de cette somme.

1. Question préliminaire Si on admet que

+∞∑
n=0

1

(2n+ 1)2
=
π2

8
, que vaut la somme

+∞∑
n=1

1

n2
?

2. On note, pour tout entier naturel n, Wn =

∫ π
2

0

(sin(x))n dx.

Calculer la dérivée de la fonction x 7→ (sin(x))n+1, puis déterminer une relation entre Wn+2 et Wn.

En déduire, pour tout entier naturel n, que W2n+1 =
22n(n!)2

(2n+ 1)!
.

3. Déterminer sur l’intervalle ]− 1, 1[ le développement en série entière des fonctions x 7→ 1√
1− x2

et x 7→ arcsin(x).

4. En déduire que pour tout x ∈
[
0, π

2

[
, x =

+∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
(sin(x))2n+1.
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5. Justifier que

∫ π
2

0

+∞∑
n=0

(2n)!

22n(n!)2(2n+ 1)
(sin(x))2n+1 dx =

+∞∑
n=0

∫ π
2

0

(2n)!

22n(n!)2(2n+ 1)
(sin(x))2n+1 dx.

6. En déduire la valeur de

+∞∑
n=1

1

n2
.

Exercice 5 (séries entières). extrait du concours CCINP 2019 - PC [ ]
On considère l’équation différentielle suivante :

x2(1− x)y′′ − x(1 + x)y′ + y = 2x3. (E)

Partie I - Solution particulière de l’équation homogène

Dans cette première partie, on souhaite déterminer les solutions développables en série entière de l’équation différentielle
homogène associée à (E) :

x2(1− x)y′′ − x(1 + x)y′ + y = 0. (H)

On fixe une suite de nombres réels (an)n∈N telle que la série entière
∑
anx

n ait un rayon de convergence r > 0. On définit
la fonction f :]− r, r[→ R par :

∀x ∈]− r, r[, f(x) =

+∞∑
n=0

anx
n.

1. Justifier que la fonction f est de classe C2 et que les fonctions f ′ et f ′′ sont développables en série entière. Exprimer
avec la suite (an)n∈N les développements en série entière respectifs des fonctions f ′ et f ′′ en précisant leur rayon de
convergence.

2. Montrer qu’il existe une suite (bn)n≥2 de nombres réels non nuls telle que pour tout x ∈]− r, r[, on a :

x2(1− x)f ′′(x)− x(1 + x)f ′(x) + f(x) = a0 +

+∞∑
n=2

bn(an − an−1)xn.

3. Montrer que f est solution de (H) sur l’intervalle ]− r, r[ si et seulement si a0 = 0 et an+1 = an pour tout n ∈ N∗.

4. En déduire que si f est solution de (H) sur ]− r, r[, alors r ≥ 1 et il existe λ ∈ R tel que :

∀x ∈]− 1, 1[, f(x) =
λx

1− x .

5. Réciproquement, montrer que si λ ∈ R, alors la fonction

g :]− 1, 1[→ R, x 7→ λx

(1− x)

est une solution de (H) sur ]− 1, 1[ développable en série entière.

Partie II - Solutions de (E) sur ]0, 1[ ou ]1,+∞[

On désigne par I l’un des intervalles ]0, 1[ ou ]1,+∞[. Soit y : I → R une fonction de classe C2. On définit la fonction
z : I → R par la relation :

∀x ∈ I, z(x) =

(
1

x
− 1

)
y(x).

6. Justifier que z est de classe C2 sur l’intervalle I, puis exprimer z′ et z′′ avec y, y′ et y′′.

7. Montrer que y est solution de (E) sur I si et seulement si z est solution sur I de l’équation différentielle :

xz′′ + z′ = 2x. (E1)

8. Montrer que si z est solution de (E1) sur I, alors il existe λ ∈ R tel que :

∀x ∈ I, z′(x) =
λ

x
+ x.

9. En déduire l’ensemble des solutions de l’équation différentielle (E) sur I.
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Exercice 6 (matrices par blocs). extrait du concours CCINP 2019 - PSI [ ]
On considère A,B,C,D des matrices de Mn(C) telles que C et D commutent.

1. Calculer

(
A B
C D

)(
D 0n
−C In

)
.

L’objectif des trois prochaines questions est de démontrer la relation :

det

((
A B
C D

))
= det(AD −BC) (1)

2. Montrer l’égalité (1) dans le cas où D est inversible.

3. On ne suppose plus D inversible. Montrer qu’il existe p0 ∈ N∗ tel que pour tout p ≥ p0, D +
1

p
In est inversible.

4. En déduire que l’égalité (1) est également vraie dans le cas où D n’est pas inversible.

Considérons une matrice M ∈Mn(C) et formons la matrice :

N =

(
0n In
M 0n

)
.

5. Montrer que Sp(N) = {µ ∈ C;µ2 ∈ Sp(M)}.

6. Soient µ ∈ Sp(N) et x =

x1...
xn

 ∈Mn,1(C) un vecteur propre de M associé à la valeur propre µ2.

Montrer que le vecteur

(
x
µx

)
∈M2n,1(C) est vecteur propre de N associé à la valeur propre µ.

7. Montrer que si M est diagonalisable et inversible, alors N est également diagonalisable et inversible.

Exercice 7 (projecteurs spectraux). extrait du concours CCINP 2023 - MP [ ]

1. Un exemple

Vérifier que la matrice A =

(
3 2
2 3

)
est diagonalisable.

Démontrer que les matrices Π1 =
1

2

(
1 −1
−1 1

)
et Π2 =

1

2

(
1 1
1 1

)
sont des matrices de projecteurs puis calculer

Π1 + 5Π2, Π1 + Π2 et Π1Π2.

2. On rappelle le lemme de décomposition des noyaux :
si P1, P2, . . . , Pr sont des éléments de C[X] deux à deux premiers entre eux de produit égal à T , si u est un endomor-
phisme de E, alors :

Ker[T (u)] = Ker(P1(u))⊕Ker(P2(u))⊕ . . .⊕Ker(Pr(u)).

L’objet de cette question est de démontrer le cas particulier r = 2.

Soit u un endomorphisme de E et soient P et Q deux polynômes premiers entre eux.
Justifier que Ker(P (u)) ⊂ Ker[(PQ)(u)] (de même, on a : Ker(Q(u)) ⊂ Ker[(PQ)(u)]).

Démontrer que : Ker[(PQ)(u)] = Ker(P (u))⊕Ker(Q(u)).

Dans la suite du problème, on pourra utiliser librement le lemme de décomposition des noyaux.

3. Soit u un endomorphisme de E et soit πu son polynôme minimal.
On suppose que πu = P k11 P k22 où les polynômes P1 et P2 sont premiers entre eux. On pose, pour tout entier i ∈ {1, 2},
Qi =

πu

P kii
.

Justifier qu’il existe deux polynômes R1 et R2 de C[X] tels que R1Q1 +R2Q2 = 1.

Pour la suite de cette partie, on notera πu = P k11 P k22 . . . P kmm la décomposition en facteurs premiers du polynôme

minimal et on admettra que, si pour tout entier i ∈ {1, 2, . . . ,m}, Qi =
πu

P kii
, il existe des polynômes de C[X] tels que

R1Q1 +R2Q2 + . . .+RmQm = 1.
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4. On pose alors, pour tout entier i ∈ {1, 2, . . . ,m}, pi = Ri(u) ◦Qi(u).
Démontrer que, pour tout couple (i, j) d’entiers distincts de {1, 2, . . . ,m}, on a les trois résultats suivants :

pi ◦ pj = 0,

m∑
i=1

pi = idE ,

et chaque pi est un projecteur de E.
Les pi seront appelés projecteurs associés à u.

5. Soit u un endomorphisme de E et soit χu son polynôme caractéristique :

χu =

m∏
i=1

(X − λi)αi

(avec les λi deux à deux distincts et les αi des entiers naturels non nuls) et, pour tout entier i ∈ {1, 2, . . . ,m},
Ni = Ker(u− λiidE)αi le sous-espace propre caractéristique associé à λi.
Justifier que E = N1 ⊕N2 ⊕ . . .⊕Nm.

6. Démontrer que E = Im p1 ⊕ Im p2 ⊕ . . .⊕ Im pm.

7. Démontrer que, pour tout entier i ∈ {1, 2, . . . ,m}, Ni = Im pi.

www.cpgemp-troyes.fr 7/7

http://www.cpgemp-troyes.fr/

