
MP - Lycée Chrestien de Troyes
Colle 13

Semaine du lundi 06/01

Planche de préparation pour les écrits

L’examinateur vous proposera un exercice de son choix. Tous sont extraits de sujets de concours : on s’appliquera à
mettre en avant ses idées, les résultats du cours cachés derrière chaque question et à rédiger avec rigueur.

L’interrogation se fera donc en deux temps :

1. Présentation d’un exercice de la planche [30 min]

2. Recherche d’un exercice en temps limité [25 min]
Pour finir, vous résoudrez un exercice proposé (*) par l’examinateur : on s’appliquera à échanger avec lui, à mettre en
avant ses idées, les résultats du cours et à rédiger avec rigueur... attention, votre tableau reflète beaucoup de
choses !

(*) parmi les thèmes abordés depuis le début de l’année.

Exercice 1 (la base des polynômes d’Hermite). extrait du concours CCINP 2016 - MP [ ]
Soit (Hn)n∈N la famille des polynômes définie par H0 = 1 et, pour tout n ∈ N, Hn+1 = XHn −H ′n.

1. Démontrer que, pour tout n ∈ N, Hn est un polynôme unitaire de degré n.

2. Démontrer que, pour tout n ∈ N, H ′n+1 = (n+ 1)Hn.

Pour tous polynôme P et Q à coefficients réels, on pose :

〈P | Q〉 =

∫ +∞

−∞
P (x)Q(x)f(x) dx,

la fonction f étant définie sur R par f(x) =
1√
2π

exp

(
−x

2

2

)
. On rappelle que

∫ +∞

−∞
f(x) dx = 1.

3. Justifier, pour tous polynômes P et Q dans R[X], l’existence de l’intégrale qui définit 〈P | Q〉. En déduire que l’on
définit ainsi un produit scalaire sur R[X].

4. Démontrer que, pour tout P ∈ R[X] et pour tout n ∈ N, 〈P | Hn〉 = 〈P (n) | H0〉.

5. Etablir alors que, pour tout n ∈ N, la famille (H0, H1, . . . , Hn) est une base orthogonale de Rn[X].

6. Étude des racines des polynômes Hn
Soit n ∈ N. On note p le nombre de racines réelles (distinctes) d’ordre impair du polynôme Hn, a1, a2, . . . , ap ses racines
et S le polynôme défini par :

S = 1 si p = 0 et S =

p∏
i=1

(X − ai) sinon.

(a) Démontrer que, si p < n, alors 〈S | Hn〉 = 0.

(b) Démontrer que, pour tout x ∈ R, S(x)Hn(x) ≥ 0.

(c) En déduire que pour tout n ∈ N∗, Hn est nécessairement scindé à racines simples, c’est à dire qu’il a n racines
réelles distinctes.

Exercice 2 (diagonalisation et puissances d’une matrice particulière). extrait du concours CCINP 2023 - PSI [ ]
Soit n ∈ N tel que n ≥ 3. Pour tout (a, b) ∈ C2, on définit la matrice M(a, b) ∈Mn(C) par :

M(a, b) =


b a a . . . a
a b a . . . a
...

. . .
. . .

. . .
...

a . . . a b a
a . . . a a b


et on note Pa,b le polynôme caractéristique de la matrice M(a, b).

On note In la matrice identité de Mn(C) et on remarque que pour tous réels a et b,

M(a, b) = bIn + aM(1, 0).

1. On suppose, dans cette question uniquement, que (a, b) ∈ R2. Montrer que dans ce cas M(a, b) est diagonalisable.

2. Montrer que V =

1
...
1

 ∈Mn,1(C) est un vecteur propre de M(a, b) et déterminer la valeur propre associée à V .

www.cpgemp-troyes.fr 1/4

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Colle 13

Semaine du lundi 06/01

3. Montrer que P1,0(X) = (X − (n− 1))(X + 1)n−1.

4. On suppose que a 6= 0. Montrer que Pa,b(X) = anP1,0

(
X − b
a

)
. En déduire l’ensemble des valeurs propres de M(a, b)

ainsi que leurs multiplicités.

5. On définit le polynôme Qa,b ∈ C[X] par Qa,b(X) = (X − (b− a))(X − (b+ (n− 1)a)).
Montrer que Qa,b est un polynôme annulateur de M(a, b) et en déduire que M(a, b) est diagonalisable (on distinguera
les cas a = 0 et a 6= 0).

6. Soit k ∈ N. On suppose que a 6= 0. Déterminer le reste de la division euclidienne du polynôme Xk par le polynôme
Qa,b et en déduire une expression de M(a, b)k comme combinaison linéaire de M(a, b) et de In.

7. Supposons que |b− a| < 1 et |b+ (n− 1)a| < 1. Déterminer la limite de la suite de matrices
(
M(a, b)k

)
k∈N.

Exercice 3 (matrices semblables). extrait du concours CCINP 2019 - MP [ ]
On s’intéresse dans ce problème, à tracers divers exemples, à quelques méthodes pour prouver que deux matrices sont
semblables.

1. Justifier que deux matrices de Mn(R) qui sont semblables ont la même trace, le même rang, le même déterminant et
le même polynôme caractéristique.

2. On donne deux matrices :

A =

1 1 1
0 2 0
0 0 2

 et B =

1 0 0
0 2 1
0 0 2

 .

Vérifier que ces deux matrices ont la même trace, le même rang, le même déterminant et le même polynôme car-
actéristique.
Ces deux matrices sont-elles semblables ? On pourra vérifier que l’une de ces matrices est diagonalisable et pas l’autre.
Ont-elles le même polynôme minimal ?

3. On donne deux matrices :

A =

0 1 1
1 1 0
2 1 0

 et B =

0 1 0
1 0 1
1 2 0

 .

Établir que ces deux matrices sont semblables par les deux méthodes suivantes :

• première méthode : en utilisant u l’endomorphisme associé à A dans une base (e1, e2, e3) d’un espace vecto-
riel E et en cherchant, sans calculs, une nouvelle base de E.

• deuxième méthode : en prouvant que le polynôme X3 − 3X − 1 admet trois racines réelles distinctes (que l’on ne
cherchera pas à déterminer) notées α, β et γ.

4. Démontrer que toute matrice A ∈Mn(R) de rang 1 est semblable à une matrice:

U =



0 0 . . . 0 a1

... . .
... a2

... . . .
...

... . .
...

...
0 0 . . . 0 an


.

5. Application : soit E un espace vectoriel de dimension n ≥ 2 et u un endomorphisme de E de rang 1 vérifiant u ◦ u 6= 0,
démontrer que u est diagonalisable.

6. Démontrer qu’une matrice symétrique à coefficients complexes n’est pas nécessairement diagonalisable.

7. On donne une matrice : A =


α β α β
β α β α
α β α β
β α β α

 où α, β sont deux nombres complexes non nuls, différents et non opposés.

Déterminer le rang de la matrice A et en déduire que 0 est valeur propre de A.
Justifier que 2(α+ β) et 2(α− β) sont aussi valeurs propres de A.
Préciser une base de vecteurs propres de A. Dans cette question, il est vivement déconseillé de calculer le polynôme
caractéristique de A.
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Exercice 4 (étude de la fonction Trigamma). extrait du concours E3A 2016 - PSI [ ]

Soit x ∈ R. On note, lorsque cela a un sens, H(x) =

∫ 1

0

tx ln(t)

t− 1
dt et on rappelle que tx = ex ln(t).

1. Démontrer que pour s > −1, l’intégrale Js =

∫ 1

0

ts ln(t) dt existe et donner sa valeur.

2. Montrer que l’ensemble de définition de la fonction H est DH =]− 1,+∞[.

3. Montrer que pour tout réel α > 0, la fonction t 7→ tα(ln(t))2

1− t est prolongeable en une fonction bornée sur [0, 1].

4. Etablir que H est de classe C1 sur DH . Retrouver alors la monotonie de H sur DH .

5. Soit (xn) une suite réelle de limite +∞. Déterminer limn→+∞H(xn). En déduire limx→+∞H(x).

6. Démontrer que :

∀x > −1, H(x)−H(x+ 1) =
1

(x+ 1)2

7. Déterminer alors un équivalent simple de H(x) lorsque x tend vers −1 par valeurs supérieures.

Soit x > −1.

8. Justifier la convergence de la série
∑
k≥1

1

(x+ k)2
.

9. Prouver que pour tout n ∈ N∗,

H(x) =

n∑
k=1

1

(x+ k)2
+H(x+ n)

10. En déduire que H(x) =
∑∞
k=1

1

(x+ k)2
, puis calculer H(0) et H(1).

Exercice 5 (une utilisation de la fonction Gamma). extrait du concours E3A 2021 - MP [ ]

Dans tout l’exercice, I est le segment [0, 1] et f la fonction définie sur I par : x 7→
{
x−x si x 6= 0
1 si x = 0

.

On considère la suite de fonctions (fn)n∈N définies sur I par :

∀x ∈ I, f0(x) = 1 et ∀n ∈ N∗, ∀x ∈ I, fn(x) =

{
0 si x = 0
(−1)n

n!
(x ln(x))n sinon

1. Montrer que f et toutes les fonctions fn sont continues sur I.

2. On considère la série de fonctions
∑
n≥0 fn. Démontrer que cette série de fonctions converge simplement sur I vers une

fonction que l’on déterminera.

3. Etudier les variations de la fonction ϕ continue sur I, définie pour tout t ∈]0, 1] par ϕ(t) = t ln(t).

4. Représenter graphiquement la fonction ϕ sur I en précisant les tangentes aux bornes.

5. Démontrer que la série de fonctions
∑
n≥0 fn converge normalement sur I.

6. On pose pour tout réel x et lorsque cela est possible Γ(x) =

∫ +∞

0

tx−1e−tdt.

(a) Déterminer l’ensemble de définition de la fonction Γ.

(b) Soit n ∈ N. Calculer Γ(n+ 1).

7. Soit n ∈ N∗. Calculer l’intégrale Jn =

∫ 1

0

fn(t)dt. On pourra effectuer le changement de variable u = − ln(t).

8. On pose J =

∫ 1

0

f(t)dt. Montrer que l’on a :

J =

+∞∑
n=1

n−n
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Exercice 6 (fonction Gamma et formule des compléments). extrait du concours CCINP 2023 - MP [ ]
Dans tout ce problème, α est un réel de l’intervalle ]0, 1[. On pose :

I(α) =

∫ 1

0

xα−1

1 + x
dx J(α) =

∫ +∞

1

xα−1

1 + x
dx

1. Démontrer que x 7−→ xα−1

1 + x
est intégrable sur ]0, 1] et sur [1,+∞[.

2. Démontrer que J(α) = I(1− α).

3. Pour tout x ∈]0, 1[, on pose Sn(x) =
∑n
k=0(−1)kxk+α−1. A l’aide du théorème de convergence dominée, montrer que :

I(α) = lim
n→+∞

∫ 1

0

Sn(x)dx

En déduire une expression de I(α) sous forme d’une somme de série.

4. Justifier alors que :

I(α) + J(α) =

∫ +∞

0

xα−1

1 + x
dx =

1

α
+ 2α

+∞∑
n=1

(−1)n

α2 − n2

On admet la formule suivante :

∀x ∈ R, cos(αx) =
sin(πα)

π

(
1

α
+

+∞∑
n=1

(−1)n
2α cos(nx)

α2 − n2

)

5. Démontrer que : ∫ +∞

0

xα−1

1 + x
dx =

π

sin(απ)

Dans toute la suite on pose ∀x ∈ [0,+∞[, fα(x) =

∫ +∞

0

tα−1

t+ 1
e−xtdt.

6. Démontrer que fα est bien définie sur [0,+∞[, puis établir qu’elle est de classe C1 sur ]0,+∞[ et exprimer sa dérivée
f ′α(x) sous forme intégrale.

7. Déterminer lim
x→+∞

fα(x).

8. Pour tout x ∈]0,+∞[, démontrer que fα(x)− f ′α(x) = Γ(α)
xα

, puis montrer que :

∀x ∈]0,+∞[, fα(x) = Γ(α)ex
∫ +∞

x

e−t

tα
dt

9. En déduire que :

∫ +∞

0

tα−1

t+ 1
dt = Γ(α)

∫ +∞

0

e−t

tα
dt, puis retrouver l’identité suivante appelée aussi formule des

compléments :

Γ(α)Γ(1− α) =
π

sin(απ)
.
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