
MP - Lycée Chrestien de Troyes Exercices préliminaires

Exercices préliminaires extraits du concours X/ENS

Exercice 1 (sous-groupes finis de GLn(Z)). extrait du concours X/ENS 2021 - MP [ ]
Pour n ∈ N∗,Mn(Z) désigne l’ensemble des matrices carrées de taille n à coefficients dans Z, et GLn(Z) désigne le sous-groupe
de GLn(C) constitué des matrices A ∈ Mn(Z) inversibles dont l’inverse est dans Mn(Z) (on ne demande pas de démontrer que
cet ensemble est bien un sous-groupe de GLn(C)). Si G est un groupe d’élément neutre e, on rappelle qu’un élément g de G est
dit d’ordre fini s’il existe un entier d > 0 tel que gd = e. Dans ce cas, l’ordre de g est le plus petit entier d > 0 tel que gd = e Si
z ∈ C et d ∈ N∗, on dit que z est une racine d-ième de l’unité si zd = 1. S’il existe d ∈ N∗ tel que z ∈ C soit une racine d -ième de
l’unité, on dira simplement que z est une racine de l’unité.

1 Préliminaires

1. Soit z ∈ C une racine de l’unité. Justifier que |z| = 1.

2. Soit g ∈ GLn(C), et soit d ∈ N∗. On suppose que g est d’ordre d. Démontrer que g est diagonalisable, et que toutes ses
valeurs propres sont ses racines d-ième de l’unité.

3. Soit m ∈ N, et soit q ∈ N∗.

(a) Démontrer que card({1 ≤ k ≤ m tels que q|k} = bm
q
c.

(b) En déduire que si q est premier,

νq(m!) =

+∞∑
i=1

bm
qi
c

2 Éléments d’ordre fini de GLn(Z)

Le but de cette partie est de démontrer que l’ensemble des ordres possibles pour les éléments d’ordre fini de GLn(Z) est fini.

On commence par détailler le cas n = 2. Soit g ∈ GL2(Z). On suppose que g est d’ordre fini d ∈ N∗.

4. Démontrer que |Tr(g)| ≤ 2.

5. On suppose que les valeurs propres de g sont réelles, déterminer les valeurs possibles pour d.

6. On suppose maintenant que g n’a pas de valeurs propres réelles. Démontrer que le polynôme caractéristique de g est l’un
des polynômes suivants :

X2 + 1, X2 +X + 1, X2 −X + 1

7. En déduire que d ∈ {1, 2, 3, 4, 6}.

On traite maintenant le cas de GLn(Z) où n ≥ 1 est un entier quelconque.

8. Soit P = Xn +
∑n−1
i=0 aiX

i ∈ C[X] unitaire de degré n. On note z1, . . . , zn les racines de P (comptées avec multiplicité) et
α = max1≤i≤n |zi|.
Démontrer que pour tout 0 ≤ i ≤ n− 1, |ai| ≤

(
n
i

)
αn−i

9. Montrer que {χg tels que g ∈ GLn(Z) est d’ordre fini} est fini.

10. En déduire que {d ∈ N | ∃g ∈ GLn(Z) d’ordre d} est fini.

3 Sous-groupes finis de GLn(Z)

Soit n ∈ N∗. Le but de cette partie est de majorer le cardinal des sous-groupes finis de GLn(Z) par une quantité ne dépendant
que de n.

11. Soit m ≥ 3 un entier. Soit g ∈ GLn(Z). On suppose que g est d’ordre fini et que g− In a tous ses coefficients divisibles par
m. Soit A = (g − In) /m.

(a) Montrer que A est diagonalisable sur C, et que pour toute valeur propre λ de A, on a |λ| < 1.

(b) En déduire qu’il existe k ∈ N tel que Ak = 0.

(c) Conclure que g = In

12. Soit G est un sous-groupe fini de GLn(Z), et soit m ≥ 3 un entier.

(a) Démontrer que l’application Mn(Z) −→ Mn(Z/mZ) de réduction modulo m des coefficients induit une application
injective G −→Mn(Z/mZ).

(b) En déduire que card (G) ≤ 3n
2

.
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Exercice 2 (autour du théorème d’Abel). extrait du concours X/ENS 2024 - MP [ ]
Le but de cette partie est de démontrer le théorème d’Abel, voir question 1, d’en proposer des applications et d’établir certains
variantes puis des réciproques partielles.

1. Soit
∑
n>0

anz
n une série entière de rayon de convergence R > 1 et de somme f . On note :

∆θ0 =
{
z ∈ C ; |z| < 1 et ∃ρ > 0, ∃θ ∈ [−θ0, θ0], z = 1− ρeiθ

}
pour θ0 ∈ [0, π/2[.

Le but de cette question est de démontrer que :(∑
n>0

an converge

)
=⇒

 lim
z→1
z∈∆θ0

f(z) =

+∞∑
n=0

an

 . (Théorème d’Abel)

(a) Démontrer le résultat précédent pour R > 1.

À partir de maintenant, on suppose que R = 1 et que
∑
n>0

an converge, et on se donne un θ0 ∈ [0, π/2[.

(b) Démontrer que pour tous N ∈ N∗ et z ∈ C, |z| < 1, on a :

N∑
n=0

anz
n − SN = (z − 1)

N−1∑
n=0

Rnz
n −RN

(
zN − 1

)
.

(c) En déduire que pour tout z ∈ C, |z| < 1, on a :

f(z)− S = (z − 1)

+∞∑
n=0

Rnz
n.

(d) Soit ε > 0. Démontrer qu’il existe N0 ∈ N tel que pour tout z ∈ C, |z| < 1,

|f(z)− S| 6 |z − 1|
N0∑
n=0

|Rn|+ ε
|z − 1|
1− |z| .

(e) Démontrer qu’il existe ρ(θ0) > 0 tel que pour tout z ∈ ∆θ0 de la forme z = 1− ρeiθ avec 0 < ρ 6 ρ(θ0), on a :

|z − 1|
1− |z| 6

2

cos(θ0)
.

En déduire le théorème d’Abel.

2. Démontrer que :
+∞∑
n=0

(−1)n

2n+ 1
=
π

4
.

3. Exhiber une série entière
∑
n>0

anz
n de rayon de convergence 1 et de somme f , telle que f(z) converge quand z → 1, |z| < 1

et telle que la série
∑
n>0

an ne converge pas.

4. Soit
∑
n>0

anz
n une série entière de rayon de convergence 1 et de somme f . Soit S ∈ C. Le but de cette question est de

démontrer que : lim
x→1−
x∈R

f(x) = S et an = o

(
1

n

) =⇒

(∑
n>0

an converge et

+∞∑
n=0

an = S

)
. (Taubérien faible)

Dans la suite de cette question on suppose que lim
x→1−
x∈R

f(x) = S et que an = o

(
1

n

)
.

(a) Démontrer que pour tous n ∈ N∗ et x ∈]0, 1[ on a :

|Sn − f(x)| 6 (1− x)

n∑
k=1

k|ak|+
sup
k>n

(k|ak|)

n(1− x)
.

(b) En déduire le théorème Taubérien faible en spécifiant x = xn = 1− 1/n pour n ∈ N∗.
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Exercice 3 (exponentielle de matrices et crochet de Lie). extrait du concours X/ENS 2014 - MP [ ]
Soit d un entier strictement positif. On note Md(R) l’espace vectoriel des matrices carrées réelles de taille d et Id désigne la
matrice identité. Le produit de deux matrices A et B deMd(R) est noté A×B ou simplement AB. On appelle commutateur de
A et B la matrice

[A,B] = AB −BA

On rappelle que l’exponentielle d’une matrice carrée A ∈Md(R) est définie par

exp(A) = Id +

∞∑
n=1

An

n!

On munit Md(R) d’une norme d’algèbre ‖ · ‖, c’est-à-dire que pour toutes matrices A,B de Md(R),

‖AB‖ ≤ ‖A‖‖B‖

On note GLd(R) le groupe linéaire des matrices de Md(R) qui sont inversibles, et SLd(R) le sous-groupe de GLd(R) formé des
matrices de déterminant 1 .
La première et la troisième parties sont consacrées à l’étude de matrices carrées de taille d = 3. La deuxième partie est largement
indépendante des autres parties.

Première partie

On considère l’ensemble des matrices carrées de taille 3 triangulaires supérieures strictes :

L =
{
Mp,q,r | (p, q, r) ∈ R3} où Mp,q,r =

 0 p r
0 0 q
0 0 0

 .

On définit H = {I3 +M |M ∈ L}.

1. Calculer l’exponentielle de la matrice Mp,q,r.

2. (a) Montrer que l’on définit une loi de groupe ∗ sur L en posant pour M,N ∈ L :

M ∗N = M +N +
1

2
[M,N ]

On explicitera l’inverse de Mp,q,r.

(b) Déterminer les matrices Mp,q,r ∈ L qui commutent avec tous les éléments de L pour la loi ∗. (L, ∗) est-il commutatif ?

3. Montrer que pour toutes matrices M,N ∈ L, on a :

(expM)× (expN) = exp(M ∗N)

4. Soient M et N deux éléments de L. Montrer que :

exp([M,N ]) = exp(M) exp(N) exp(−M) exp(−N)

5. Montrer que H muni du produit usuel des matrices est un sous-groupe de SL3(R) et que :

exp : (L, ∗)→ (H,×)

est un isomorphisme de groupes.

Deuxième partie

On considère dans cette partie deux matrices A et B de Md(R).
Dans les questions 6 et 7, on suppose de plus que A et B commutent avec [A,B].

6. (a) Montrer que [A, exp(B)] = exp(B)[A,B].

(b) Déterminer une équation différentielle vérifiée par t 7→ exp(tA) exp(tB).

(c) En déduire la formule :

exp(A) exp(B) = exp

(
A+B +

1

2
[A,B]

)
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7. On note L = Vect(A,B, [A,B]).

(a) Si M,N ∈ L, montrer que [M,N ] commute avec M et N .

(b) Soit G = {exp(M) |M ∈ L}. Montrer que (G,×) est un groupe et que l’application

Φ : H→ G, exp (Mp,q,r) 7→ exp(pA+ qB + r[A,B])

est un morphisme de groupes.

Dans toute la suite de cette partie, A et B sont à nouveau deux matrices quelconques de Md(R).

8. Soit (Dn)n∈N une suite deMd(R) qui converge vers D ∈Md(R). Elle est donc bornée : soit λ > 0 tel que pour tout entier
n ∈ N, ‖Dn‖ ≤ λ.

(a) Soit k ∈ N. Justifier que n!
(n−k)!nk

→ 1 quand n→ +∞ et que si n ≥ k (et n ≥ 1 ),

0 ≤ 1− n!

(n− k)!nk
≤ 1

En déduire que : (
Id +

Dn
n

)n
−

n∑
k=0

1

k!
(Dn)k → 0 quand n→ +∞

(b) Montrer que pour tous entiers k ≥ 1 et n ≥ 0,∥∥∥(Dn)k −Dk
∥∥∥ ≤ kλk−1 ‖Dn −D‖ .

(c) Conclure que
(
Id + Dn

n

)n → exp(D) quand n→ +∞.

9. (a) Soit D ∈Md(R) telle que ‖D‖ ≤ 1. Montrer qu’il existe une constante µ > 0 indépendante de D telle que

‖exp(D)− Id −D‖ ≤ µ‖D‖2

(b) Montrer qu’il existe une constante ν > 0, et pour tout n ≥ 1 une matrice Cn ∈Md(R), tels que :

exp

(
A

n

)
exp

(
B

n

)
= Id +

A

n
+
B

n
+ Cn et ‖Cn‖ ≤

ν

n2

10. Déduire de ce qui précède que :

exp(A+B) = lim
n→+∞

(
exp

(
A

n

)
exp

(
B

n

))n

www.cpgemp-troyes.fr 4/9

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes Exercices préliminaires

Exercice 4 (déviation d’une somme de variables aléatoires discrètes). extrait du concours X/ENS 2020 - MP [ ]
Dans tout le sujet, (Ω,A,P) désigne un espace probabilisé sur lequel seront définies les différentes variables aléatoires. On notera
P[A] la probabilité d’un événement A ⊂ Ω et E[X] l’espérance d’une variable aléatoire X sur (Ω,A,P) à valeurs réelles.

On pourra utiliser sans démonstration le résultat suivant : si Y1, . . . , Yn sont des variables aléatoires réelles discrètes mutuellement
indépendantes et intégrables, alors

E[Y1 · · ·Yn] = E[Y1] · · ·E[Yn]

On note log la fonction logarithme népérien. Par convention, on pose log(0) = −∞.

Première partie

Soit n ≥ 1 un entier naturel et soient X1, . . . , Xn des variables aléatoires réelles discrètes mutuellement indépendantes telles que,
pour tout k ∈ [[1, n]],

P[Xk = 1] = P[Xk = −1] =
1

2

On définit

Sn =
1

n

n∑
k=1

Xk

ainsi que, pour tout λ ∈ R,

ψ(λ) = log

(
1

2
eλ +

1

2
e−λ

)
1. Soit Z une variable aléatoire réelle discrète telle que exp(λZ) est d’épérance finie pour tout λ > 0. Montrer que pour tout
λ > 0 et t ∈ R,

P[Z ≥ t] ≤ exp(−λt)E[exp(λZ)]

2. Montrer que P[Sn ≥ 0] ≥ 1
2
.

3. Montrer que pour tout t ∈ R, on a :
1

n
log(P[Sn ≥ t]) ≤ inf

λ≥0
(ψ(λ)− λt)

Pour chaque λ ≥ 0, on pose :

m(λ) =
E[X1 exp(λX1)]

E[exp(λX1)]

ainsi que :
Dn(λ) = exp(λnSn − nψ(λ))

4. Montrer que la fonction m est strictement croissante sur R+ et que pour tout t ∈ [0, 1[, il existe un unique λ ≥ 0 tel que
m(λ) = t.

5. (a) Pour n ≥ 2 et λ ≥ 0, montrer que :
E[(X1 −m(λ))(X2 −m(λ))Dn(λ)] = 0

(b) En déduire que, pour n ≥ 1 et λ ≥ 0,

E[(Sn −m(λ))2Dn(λ)] ≤ 4

n

Pour tous n ≥ 1, λ ≥ 0 et ε > 0, on note In(λ, ε) la variable aléatoire définie par

In(λ, ε) =

{
1 si |Sn −m(λ)| ≤ ε
0 sinon

6. Montrer que :
P[|Sn −m(λ)| ≤ ε] ≥ E[In(λ, ε) exp(λn(Sn −m(λ)− ε))]

7. Montrer que :

E[In(λ, ε)Dn(λ)] ≥ 1− 4

nε2

8. (a) En déduire, pour chaque λ ≥ 0 et ε > 0, l’existence d’une suite (un(ε))n≥1 qui tend vers 0 quand n tend vers +∞ et
telle que

1

n
log(P[Sn ≥ m(λ)− ε]) ≥ ψ(λ)− λm(λ)− λε+ un(ε)

(b) Conclure que pour tout t ∈ [0, 1[,

lim
n→+∞

1

n
log(P[Sn ≥ t]) = inf

λ≥0
(ψ(λ)− λt)
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Exercice 5 (la loi zêta). extrait du concours X/ENS 2021 - MP [ ]
Dans tout le sujet, (Ω,A, P ) désigne un espace probabilisé sur lequel seront définies les différentes variables aléatoires. On admet
que toutes les variables aléatoires introduites peuvent bien être construites sur cet espace. On note P (A) la probabilité d’un
événement A ⊂ Ω et E(X) l’espérance d’une variable aléatoire X sur (Ω,A, P ) a valeurs réelles.
On rappelle que si s ∈ ]1,+∞[, la série

∑
n≥1

n−s converge et on note ζ(s) sa somme.

On dit qu’une variable aléatoire X a valeurs dans N∗ suit la loi zeta de paramètre s > 1 si. pour tout n ∈ N∗,

P (X = n) = ζ(s)−1 1

ns

Si n ∈ N∗ et p est un nombre premier, on note νp(n) la valuation de n en p. On note également (pk)k>1 la suite croissante des
nombres premiers.
Si n ∈ N∗, on pose, χ4(2n) = 0 et χ4(2n − 1) = (−1)n−1. On pourra utiliser sans justification que, pour m et n dans N∗, on a
χ4(mn) = χ4(m)χ4(n).

Soit s > 1 un nombre réel et soit X une variable aléatoire à valeurs dans N∗ suivant la loi zeta de paramètre s.
Si n ∈ N∗, on note {n | X} l’évènement ”n divise X” et {n - X} l’évènement complémentaire.

1. (a) Calculer P (n | X) pour n ∈ N∗.
(b) Soit (αi)i∈N∗ une suite d’entiers naturels. Montrer que les évènements

{pα1
1 | X} , {p

α2
2 | X} , . . . , {p

αk
k | X} , . . .

sont mutuellement indépendants.

2. (a) Soit r > 1 un entier. Montrer que :

P

(
r⋂
i=1

{pi - X}

)
=

r∏
i=1

(
1− p−si

)
.

(b) En déduire que :

ζ(s)−1 = lim
n→+∞

n∏
k=1

(
1− p−sk

)
.

3. (a) Montrer que pour tout k ∈ N∗, la variable aléatoire νpk (X) + 1 suit la loi géométrique de paramètre
(
1− p−sk

)
(b) Montrer que, pour r ∈ N∗, k1 < · · · < kr dans N∗ et (n1, . . . , nr) ∈ Nr, on a

P
(
νpk1 (X) = n1, . . . , νpkr (X) = nr

)
=

r∑̀
=0

(−1)`
∑

(ε1,...,εr)∈{0,1}r
ε1+...+εr=`

P
(
νpk1 (X) > n1 + ε1, νpk2 (X) > n2 + ε2, . . . , νpkr (X) > nr + εr

)
.

(c) En déduire que les variables aléatoires vp1(X), . . . , νpk (X), . . . sont mutuellement indépendantes .

Si n ∈ N∗, on note, pour i ∈ {0, 1, 2, 3}

ri(n) = Card {d ∈ N : d ≡ i [4] et d | n}

On pose g(n) = r1(n)− r3(n).

4. (a) Montrer que si m et n sont deux entiers naturels non nuls et premiers entre eux, on a g(mn) = g(m)g(n).

(b) Montrer que, pour tout n ∈ N, et tout nombre premier p on a :

g (pn) =


1 si p = 2,
n+ 1 si p ≡ 1[4],
1
2

(1 + (−1)n) si p ≡ 3[4].

5. Soit (fn)n≥1 une suite de fonctions de N∗ dans R telle que, pour tout x ∈ N∗, la suite (fn(x))n≥1 converge vers un réel f(x)
quand n tend vers +∞. On suppose qu’il existe une fonction h : N∗ → [0,+∞[ telle que h(X) est d’espérance finie et telle
que |fn(m)| 6 h(m) pour tous m et n dans N∗. Justifier que E(f(X)) est d’espérance finie et montrer que

lim
n→+∞

E (fn(X)) = E(f(X))

6. (a) On note r(n) le nombre de diviseurs d > 1 de n. Montrer que la serie
∑
n≥1

r(n)n−s converge et que sa somme vaut

ζ(s)2.

(b) En déduire que la série
∑
n≥1

g(n)n−s converge.
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7. (a) Montrer que la suite de fonctions

(
x 7→

n∏
k=1

p
νpk (X)

k

)
n≥1

de N∗ dans N∗ converge simplement vers la fonction identité.

(b) Montrer que E(g(X)) = lim
n→+∞

n∏
k=1

E
(
g
(
p
νpk (X)

k

))
.

8. (a) Montrer que si p est un nombre premier tel que p ≡ 1 [4], on a :

E
(
g
(
pνp(X)

))
=

1

1− p−s

(b) Calculer E
(
g
(
pνp(X)

))
si p est un nombre premier vérifiant p ≡ 3 [4].

(c) En déduire :

E(g(X)) = lim
n→+∞

n∏
k=1

1

1− χ4 (pk) p−sk

9. (a) Montrer que, si p est un nombre premier,

E
(
χ4

(
pνp(X)

))
=

1− p−s

1− χ4(p)p−s

(b) Montrer que :

E (χ4(X)) =
1

ζ(s)
lim

n→+∞

n∏
k=1

1

1− χ4 (pk) p−sk

(c) En déduire que la série : ∑
n≥0

(−1)n

(2n+ 1)s

est convergente et que sa somme vaut E(g(X)).
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Exercice 6 (autour des sommes de Césaro). extrait du concours X/ENS 2024 - MP [ ]
Soit E une partie de C. À toute suite (un)n∈N à valeurs dans E, ce que l’on note (un)n∈N ∈ EN, on associe la suite (σn)n∈N des
sommes partielles de Cesàro définie par :

∀n > 0, σn =
1

n+ 1

n∑
k=0

uk,

et la suite (en)n∈N des écarts définie par :
∀n > 0, en = un+1 − un.

Le but de cette partie est de démontrer le lemme de Cesàro, voir question 1., d’en proposer des applications et d’établir certains
variantes puis des réciproques partielles.

1. Soient (un)n∈N ∈ CN et ` ∈ C. Démontrer que :(
lim

n→+∞
un = `

)
=⇒

(
lim

n→+∞
σn = `

)
. (Cesàro)

Si (un)n∈N est à valeurs réelles, démontrer que le résultat subsiste si ` = +∞ ou ` = −∞.

Applications.

2. En utilisant le lemme de Césaro, calculer la limite de la suite (vn)n>1 définie par vn =

n∑
k=1

1

kn
. Puis, à l’aide d’une

comparaison série-intégrale, donner un équivalent de (vn)n>1.

3. Soient (un)n∈N ∈ RN et α ∈ R∗. On suppose que lim
n→+∞

en = α. En utilisant le lemme de Césaro, donner un équivalent de

(un)n∈N. Retrouver ce résultat par un théorème de comparaison de séries à termes positifs.

4. Soient (un)n∈N ∈]0,+∞[N et ` ∈]0,+∞[. On suppose que lim
n→+∞

un+1

un
= `. Démontrer que lim

n→+∞
n
√
un = `. Démontrer que

le résultat subsiste si ` = 0 ou ` = +∞. En déduire lim
n→+∞

n
√
n! et lim

n→+∞
n

√
nn

n!
.

5. Soient (an)n∈N ∈ CN, (bn)n∈N ∈ CN, a ∈ C et b ∈ C. On suppose que lim
n→+∞

an = a et lim
n→+∞

bn = b. Démontrer que :

lim
n→+∞

(
1

n

n∑
k=0

akbn−k

)
= ab.

6. Soient
∑
n>0

an et
∑
n>0

bn deux séries de nombres complexes, convergentes de sommes respectives A et B. On note (cn)n∈N

la suite de terme général cn =

n∑
k=0

akbn−k et (Cn)n∈N la suite des sommes partielles associées définie par Cn =

n∑
k=0

ck.

Démontrer que :

lim
n→+∞

(
1

n

n∑
k=0

Ck

)
= AB. (Cauchy)

Réciproques partielles.

7. Vérifier que la réciproque de Césaro n’est pas toujours vraie en exhibant une suite (un)n∈N ∈ RN qui ne converge pas et telle
que (σn)n∈N converge dans R.

8. Soit (un)n∈N ∈ RN et ` ∈ R. Démontrer que :(
lim

n→+∞
σn = ` et (un)n∈N monotone

)
=⇒

(
lim

n→+∞
un = `

)
.

Démontrer que le résultat subsiste pour ` = +∞ ou ` = −∞.

9. Soient (un)n∈N ∈ CN et ` ∈ C. Démontrer que :(
lim

n→+∞
σn = ` et en = o

(
1

n

))
=⇒

(
lim

n→+∞
un = `

)
. (Hardy faible)

Indication: on pourra démontrer que pour tout n > 1,
∑n
k=0 kek = nun+1 −

∑n
k=1 uk.

10. Soient (un)n∈N ∈ CN et ` ∈ C. Le but de cette question est de démontrer que :(
lim

n→+∞
σn = ` et en = O

(
1

n

))
=⇒

(
lim

n→+∞
un = `

)
. (Hardy fort)

On suppose que lim
n→+∞

σn = ` et en = O

(
1

n

)
.
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11. Soit 0 6 n < m. Démontrer que :
∑m
k=n+1 uk − (m− n)un =

∑m−1
j=n (m− j)ej .

12. En déduire qu’il existe une constante C > 0 telle que pour tous 2 6 n < m on a :∣∣∣∣ (m+ 1)σm − (n+ 1)σn
m− n − un

∣∣∣∣ 6 C ln

(
m− 1

n− 1

)
et

|un − `| 6 C ln

(
m− 1

n− 1

)
+
m+ 1

m− n (|σm − `|+ |σn − `|) .

13. En déduire la version forte du théorème de Hardy. Indication: on pourra prendre m = 1 + bαnc avec un paramètre α > 1 à
choisir, où bxc désigne la partie entière de x ∈ R.
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