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Planche de préparation pour les écrits

L’objectif de cette planche est de mettre en avant quelques résultats du cours et de les mettre en oeuvre. Il ne s’agit donc
pas d’exercices de recherche et pour lesquels il faut proposer des pistes intelligentes...
Pas du tout, ici je vous demande simplement de faire tourner les théorèmes du cours et de soigner la rédaction : cela vous
distinguera des autres candidats !

Exercice 1 (autour de la fonction Γ). extrait du concours CCINP 2016 - MP [ ]

1. (a) Soit x ∈]0,+∞[ ; démontrer que la fonction t 7−→ tx−1e−t est intégrable sur ]0,+∞[.

(b) On note alors, pour tout x ∈]0,+∞[, Γ(x) =

∫ +∞

0

tx−1e−tdt (fonction Gamma d’Euler).

Démontrer que : ∀x ∈]0,+∞[,Γ(x) > 0.

(c) Démontrer que Γ est dérivable sur ]0,+∞[ puis exprimer Γ′(x) sous forme d’intégrale.

2. Pour tout entier n > 2, on pose un =

∫ n

n−1

1

t
dt− 1

n
.

(a) Utiliser un théorème du cours pour justifier simplement que la série
∑
n>2

un converge.

(b) Pour tout entier n > 1, on pose Hn =

n∑
k=1

1

k
− ln(n).

Démontrer que la suite (Hn)n>1 converge.

La limite de la suite (Hn)n>1 sera notée γ dans tout le sujet (γ est appelée constante d’Euler). Dans la suite de ce

problème, on définit, pour tout x ∈]0,+∞[, ψ(x) =
Γ′(x)

Γ(x)
appelée fonction Digamma.

3. Pour x ∈]0,+∞[ et pour tout entier n > 1, on définit la fonction fn sur ]0,+∞[ telle que :

pour tout t ∈]0, n], fn(t) =

(
1− t

n

)n
tx−1 et pour tout t ∈]n,+∞[, fn(t) = 0.

(a) Démontrer que, pour tout x < 1, ln(1− x) 6 −x.
En déduire que, pour tout entier n > 1, pour tout x ∈]0,+∞[ et tout t ∈]0,+∞[,

0 6 fn(t) 6 e−ttx−1.

(b) En utilisant le théorème de convergence dominée, démontrer que, pour tout x ∈]0,+∞[ :

Γ(x) = lim
n→+∞

∫ n

0

(
1− t

n

)n
tx−1

dt.

4. On pose, pour n entier naturel et pour x ∈]0,+∞[, In(x) =

∫ 1

0

(1− u)nux−1
du.

(a) Après avoir justifié l’existence de l’intégrale In(x), déterminer, pour x > 0 et pour n > 1, une relation entre In(x) et
In−1(x+ 1).

(b) En déduire, pour n entier naturel et pour x ∈]0,+∞[ une expression de In(x).

(c) Démontrer que, pour tout x ∈]0,+∞[,

Γ(x) = lim
n→+∞

n! nx

n∏
k=0

(x+ k)

(formule de Gauss).

5. Pour tout entier n > 1, on note toujours Hn =

n∑
k=1

1

k
− ln(n).

En remarquant que, pour n > 1 et x ∈]0,+∞[,
1

nx

n∏
k=1

(
1 +

x

k

)
= exHn

n∏
k=1

[(
1 +

x

k

)
e

−x
k

]
, démontrer que, pour tout

x ∈]0,+∞[ :

1

Γ(x)
= xeγx lim

n→+∞

n∏
k=1

[(
1 +

x

k

)
e

−x
k

]
(formule de Weierstrass).
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6. (a) En déduire que la série
∑
k>1

[
ln
(

1 +
x

k

)
− x

k

]
converge simplement sur ]0,+∞[.

(b) On pose, pour tout x ∈]0,+∞[ : g(x) =

+∞∑
k=1

[
ln
(

1 +
x

k

)
− x

k

]
. Démontrer que g est de classe C1 sur ]0,+∞[ et

exprimer g′(x) comme somme d’une série de fonctions.

(c) On rappelle que, pour tout x ∈]0,+∞[, ψ(x) =
Γ′(x)

Γ(x)
. En déduire que, pour tout x ∈]0,+∞[,

ψ(x) =
−1

x
− γ +

+∞∑
k=1

(
1

k
− 1

k + x

)

7. (a) Que vaut ψ(1) ? En déduire la valeur de l’intégrale

∫ +∞

0

e−t ln(t)dt.

(b) Calculer, pour tout x ∈]0,+∞[, ψ(x+ 1)− ψ(x), puis démontrer que, pour tout entier n > 2, ψ(n) = −γ +

n−1∑
k=1

1

k
.

Indications Q1b) On justifie d’abord que Γ(x) ≥ 0, et par l’absurde on montre que Γ(x) 6= 0. Q1c) On s’applique car c’est une
questin difficile... on soignera notamment les hypothèses de domination locale ! Q2a) On étudie le terme général et on utilise
les DL usuels en 0... Q4c) A partir de la formule obtenue en 3b), et on procède par Ipp successives. Q6b) C’est un critère C1

sur les séries de fonctions. Q6c) On compose par le logarithme la formule de Weierstrass, et on dérive pour trouver l’expression
attendue.

Distinguez-vous ! Dans ce sujet, il y a vraiment des question classiques mais aussi technique : domination locale et par morceaux
pour la régularité de la fonction Γ, convergence normale sur [a, b] donc uniforme pour la régularité des séries de fonctions... faites
donc en sorte que les théorèmes soient bien cités et que leur rédaction soit structurée sur votre copie ! Cela valorisera vraiment
votre travail.

Exercice 2 (étude d’une forme quadratique sur la boule unité fermée). extrait du concours CCINP 2020 - PC [ ]
On se donne un entier n ≥ 2. On rappelle que la norme euclidienne usuelle ‖ · ‖ sur Rn est définie par :

∀x ∈ Rn, x = (x1, . . . , xn), ‖x‖ =

√√√√ n∑
k=1

x2k.

On note Bn = {x ∈ Rn ‖x‖ ≤ 1} la boule unité fermée de Rn.
On fixe des réels ai,j pour 1 ≤ i ≤ j ≤ n et on considère l’application f : Bn → R définie par :

∀(x1, . . . , xn) ∈ Rn, f(x1, . . . , xn) =

n∑
i=1

(
n∑
j=i

ai,jxixj

)
=

∑
1≤i≤j≤n

ai,jxixj .

L’objectif de cet exercice est d’étudier les extremums de la fonction f sur la partie Bn. On définit la matrice Mf ∈Mn(R) comme
la matrice symétrique dont les coefficients (mi,j) vérifient :

∀(i, j) ∈ [[1, n]]2, mi,j =

{
ai,j si i = j

ai,j/2 si i < j.

Si M est une matrice à coefficients réels, on note MT sa matrice transposée.

Partie I - Etude d’un exemple

Dans cette partie, on suppose que n = 2 et que l’application f : B2 → R est définie par :

∀(x1, x2) ∈ B2, f(x1, x2) = x21 + x22 + 4x1x2.

1. Justifier que l’application f admet un maximum et un minimum sur B2.

2. On pose φ : t 7→ f(cos(t), sin(t)).
Etablir que φ(t) = 1 + 2 sin(2t), puis en étudiant la fonction φ, déterminer les extremas de l’application f sur la frontière
S2 = {(x1, x2) ∈ R2, x21 + x22 = 1} de B2.

3. Justifier que f est de classe C1, puis déterminer les points critiques de l’application f dans la boule unité ouverte B′2 =
{(x1, x2) ∈ R2, x21 + x22 < 1} de R2.

4. En déduire que le maximum de f sur B2 est 3 et que le minimum de f sur B2 est −1.

5. Vérifier que la plus grande valeur propre de Mf est égale au maximum de f sur B2 et que la plus petite valeur propre de
Mf est égale au minimum de f sur B2.
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Partie II - Le cas général

On ne suppose plus dans cette partie que n = 2.
On considère un vecteur x = (x1, . . . , xn) ∈ Bn et on note X = (x1, . . . , xn)T ∈Mn,1(R).

6. Montrer que f(x) = XTMfX.

7. Justifier que la matrice Mf est diagonalisable dans Mn(R).

Dans la suite, on note λ1, . . . , λn ∈ R les valeurs propres de Mf comptées avec leur multiplicité et on suppose : λ1 ≤ . . . ≤ λn.
On fixe une matrice orthogonale P ∈ GLn(R) telle que Mf = PDP−1 où :

D =

λ1 (0)

. . .

(0) λn

 ∈Mn(R).

On note Y = P−1X ∈Mn,1(R).

8. Montrer les égalités Y TY = XTX = ‖x‖2.

9. On suppose que λ1 < 0 < λn. Montrer que λ1 ≤ Y TDY ≤ λn et en déduire que λ1 ≤ f(x) ≤ λn.

10. En déduire que si λ1 < 0 < λn, alors maxBn(f) = λn et minBn(f) = λ1.

11. Dans le cas où λ1 ≥ 0, déterminer le maximum et le minimum de f sur Bn.

Partie III - Application des résultats

Dans cette partie, on suppose que n ≥ 3 et que l’application f : Bn → R est définie par :

∀(x1, . . . , xn) ∈ Bn, f(x1, . . . , xn) =

n∑
k=1

x2k −
∑

1≤i<j≤n

2xixj .

12. Déterminer le maximum et le minimum de l’application f sur Bn (on pourra commencer par déterminer le rang de la matrice
Mf − 2In où In désigne la matrice identité de Mn(R)).

Indications Q1 On invoque le théorème des bornes atteintes. Q4 L’existence des extremas a déjà été donnée, il suffit de calculer
l’image des points critiques... Q5 On lit bien la définition de Mf pour construire la matrice dans le cas n = 2, puis on détermine
ses valeurs propres. Q6 C’est pénible... mais on revient au produit matriciel pour retrouver l’expression de f . Q8 P est une
matrice orthogonale, elle représente donc une isométrie et conserve la norme. Q9 On calcule d’abord Y TDY , puis on essaie
d’encadrer la somme avec λ1 ≤ λi ≤ λn. Q10 L’encadrement a été donné, il suffit de justifier que ces valeurs sont bien atteintes...
en des vecteurs propres bien choisis.

Distinguez-vous ! Ici les matrices étudiées sont symétriques réelles, on citera évidemment le théorème spectral et on s’appliquera
dans sa conclusion : diagonalisable en base orthonormée... ortho-diagonalisable... ∃P ∈ On(R) tel que M = PDPT avec
D = diag(λi), λi réel. C’est un gros théorème en spé et on s’est battu pour l’obtenir : soyez donc généreux et montrer que vous
maitrisez l’ensemble du résultat obtenu.
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