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Planche de préparation pour les écrits FFF

L’objectif de cette planche est de mettre en avant quelques résultats du cours et de les mettre en oeuvre. Il ne s’agit donc
pas d’exercices de recherche et pour lesquels il faut proposer des pistes intelligentes...
Pas du tout, ici je vous demande simplement de faire tourner les théorèmes du cours et de soigner la rédaction : cela vous
distinguera des autres candidats !

Exercice 1 (inégalité arithmético-géométrique et inégalité de Carleman). extrait du concours Centrale 2024 - MP [ ]
La sous-partie II.A établit l’inégalité arithmético-géométrique avec des méthodes de calcul différentiel qui permettent de se
familiariser avec celles qui seront utilisées dans la sous-partie II.B pour démontrer l’inégalité de Carleman.

Soit n dans N∗. On note Un l’ouvert (R∗+)n. Son adhérence, notée Un, est (R+)n.

II.A - Inégalité arithmético-géométrique

Soit s > 0. On définit les fonctions f et gs sur Un en posant, pour tout x = (x1, . . . , xn) ∈ Un,

f(x) =

n∏
k=1

xk et gs(x) =

(
n∑

k=1

xk

)
− s

On note Xs le sous-ensemble de Un constitué des zéros de gs : Xs =
{
x ∈ Un | gs(x) = 0

}
.

1. On admet que f et gs sont de classe C1 sur Un. Donner l’expression de leur gradient en un point x = (x1, . . . , xn) de Un.

2. Démontrer que la restriction de f à Xs admet un maximum sur Xs et que ce maximum est en fait atteint sur Xs ∩ Un.
On pourra vérifier que f est strictement positive en certains points de Xs ∩ Un.

On note a = (a1, . . . , an) un élément de Xs ∩ Un en lequel la restriction de f à Xs atteint son maximum.

3. Démontrer qu’il existe un réel λ > 0 tel que, pour tout k dans J1, nK, ak =
f(a)

λ
.

4. Démontrer alors que, pour tout (x1, . . . , xn) ∈ Un ∩ Xs,
(∏n

i=1 xi
)1/n

6
1

n

∑n
i=1 xi et en déduire l’inégalité arithmético-

géométrique :

∀ (x1, . . . , xn) ∈ (R+)n ,

(
n∏

i=1

xi

)1/n

6
1

n

n∑
i=1

xi

II.B - Démonstration de l’inégalité de Carleman

On considère l’application Fn de Un dans R, définie par :

∀ (x1, . . . , xn) ∈ Un, Fn (x1, . . . , xn) = x1 + (x1x2)1/2 + (x1x2x3)1/3 + · · ·+ (x1 · · ·xn)1/n

On note hn l’application de Un dans R, définie par :

∀ (x1, . . . , xn) ∈ Un, hn (x1, . . . , xn) = x1 + · · ·+ xn − 1

On admet que Fn et hn sont toutes deux de classe C1 sur Un.
On note Hn l’ensemble Hn = {(x1, . . . , xn) ∈ Rn | x1 + · · ·+ xn = 1}.

5. Déterminer le gradient de Fn et le gradient de hn en tout point de Un.

6. Démontrer que la restriction de Fn à Un ∩Hn admet un maximum.

On admet que le maximum de Fn est en fait atteint sur Un ∩ Hn. On note Mn le maximum de Fn sur Un ∩ Hn et on note
(a1, . . . , an) un point de Un ∩Hn en lequel il est atteint.

Pour k entre 1 et n, on note γk = (a1a2 · · · ak)1/k.

7. Démontrer qu’il existe un réel λ > 0 tel que : 

γ1 +
γ2
2

+ · · ·+ γn
n

= λa1

γ2
2

+ · · ·+ γn
n

= λa2

...
γn
n

= λan

a1 + a2 + · · ·+ an = 1
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8. En déduire que :

(a) λ = γ1 + γ2 + · · ·+ γn = Mn ;

(b) pour tout k dans J1, nK, γk = λωkak, où : ωk = k

(
1− ak+1

ak

)
si k ∈ J1, n− 1K

ωn = n

L’objectif des trois questions suivantes est de démontrer que λ 6 e. On suppose par l’absurde que λ > e.

9. Vérifier que, pour tout k dans N,
1

e
6

(
k + 1

k + 2

)k+1

.

10. Démontrer que ω1 6
1

e
et que, pour tout k dans J1, nK, ωk 6

k

k + 1
. On pourra démontrer que pour tout k ∈ J1, n− 1K,

ωk+1
k+1 =

1

λ
ωk
k

(
1− ωk

k

)−k

.

11. Aboutir à une contradiction sur ωn. En déduire que, pour tout n dans N∗, pour tout (x1, . . . , xn) ∈ (R∗+)n tels que
x1 + · · ·+ xn = 1,

n∑
k=1

(x1x2 · · ·xk)1/k 6 e

12. En déduire l’inégalité de Carleman : si (ak)k∈N∗ est une suite de réels strictement positifs telle que
∑
an converge, alors la

série de terme général

(
n∏

k=1

ak

)1/n

converge et on a :

+∞∑
n=1

(
n∏

k=1

ak

)1/n

6 e

+∞∑
n=1

an

Indications Q3 Il suffit de vérifier les hypothèses du théorème des extremas liés. Q4 On discute les cas : s’il existe xi = 0 ou
sinon, dans le cas où on est dans Un, on pose s = x1 + . . . + xn pour se ramener au cas précédent. Q9 On invoque simplement
la concavité de x 7−→ ln(1 + x). Q10 Par récurrence... Q12 On pose encore s = x1 + . . .+ xn > 0 et yi = xi/s avant d’utiliser la
majoration précédente.

Distinguez-vous ! Le calcul différentiel est souvent mal mené... on essaiera donc de soigner le vocabulaire (applications partielles,
dérivées partielles, applications différentielles en a...), d’ailleurs dans l’utilisation du théorème des extremas liés, on veillera à bien
vérifier les hypothèses : existence d’un extrema en un point a ∈ X et les équations qui régissent X fournissent des différentielles
indépendantes (ici, dga 6= 0).

Exercice 2 (décomposition d’une matrice dans Mn(R)). extrait du concours Centrale 2017 - MP [ ]
La transposée d’une matrice A de Mn,p(R) est notée AT . Le sous-espace vectoriel de Mn(R) constitué des matrices symétriques
est noté Sn(R). Le sous-espace vectoriel de Mn(R) constitué des matrices antisymétriques est noté An(R).
Pour toute matrice carrée A ∈Mn(R), on note :

As =
1

2

(
A+AT

)
et Aa =

1

2

(
A−AT

)
Ainsi, As est une matrice symétrique, Aa est une matrice antisymétrique et A = As +Aa. On dit que As est la partie symétrique
de A et que Aa est sa partie antisymétrique.

Une matrice symétrique réelle est dite positive si ses valeurs propres sont positives et elle est dite définie positive si ses
valeurs propres sont strictement positives, et on note S+

n (R) l’ensemble des matrices symétriques positives de Mn(R) et S++
n (R)

l’ensemble des matrices symétriques définies positives de Mn(R).

On munit Mn(R) du produit scalaire canonique donné par :

(M,N) 7→ tr(MTN)

On note ‖ · ‖2 la norme euclidienne associée.

1. Montrer que Sn(R) et An(R) sont deux sous-espaces vectoriels supplémentaires orthogonaux dans Mn(R) et préciser leurs
dimensions.

2. Soit A ∈ Mn(R). Montrer que pour toute matrice S ∈ Sn(R), ‖A − As‖2 ≤ ‖A − S‖2. Préciser à quelle condition sur
S ∈ Sn(R), cette inégalité est une égalité.
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On considère A ∈Mn(R).

3. Si M ∈Mn(R) et X,Y ∈Mn,1(R), la matrice XTMY appartient à M1(R) et on convient de l’identifier au nombre réel égal
à son unique coefficient. Avec cette convention, montrer que As ∈ S+

n (R) si et seulement si ∀X ∈Mn,1(R), XTAsX ≥ 0 et
que As ∈ S++

n (R) si et seulement si ∀X ∈Mn,1(R) \ {0}, XTAsX > 0.

4. (a) Pour toute valeur propre réelle λ de A, montrer que min spR(As) ≤ λ ≤ max spR(As).

(b) En déduire que si As ∈ S++
n (R), alors A est inversible.

5. On suppose que As ∈ S++
n (R).

(a) Montrer qu’il existe une unique matrice B de S++
n (R) telle que B2 = As .

(b) Montrer qu’il existe une matrice Q de An(R) telle que det(A) = det(As)det(In +Q).

(c) En déduire que det(A) ≥ det(As).

Indications Q1 On pourra exhiber une base de chacun des sous-espaces constituée de matrices élémentaires. Q4a On montre
d’abord que XTAaX = 0 et XTAsX =

∑n
i=1 λix

2
i où λi sont les valeurs propres de As, puis on travaille avec un vecteur propre

pour A afin de relier les spectres de A et As. Q5c On commence par rappeler : Q ∈ An(R)⇒ ses valeurs propres sont de la forme
iµ, µ ∈ R.

Distinguez-vous ! L’existence de la racine carrée d’une matrice symétrique positive est un grand classique : on ne trâınera pas
en proposant le bon candidat. Par contre, on peut (rarement) vous demander l’unicité de celle-ci : essayez donc d’etre élégant
sur cette question, en revenant aux endomorphismes, ou bien via la co-orthodiagonalisation en considérant une autre matrice
satisfaisant l’égalité R2 = S.
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