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Planche de préparation pour les oraux

L’oral a pour objectif d’évaluer les candidats sur :

• la connaissance et la compréhension des notions mathématiques des programmes de MPSI et MP,

• la capacité technique de calculs,

• la faculté à restituer une réflexion appropriée à une situation donnée, à gérer l’espace de travail (tableau à disposition),
à interagir avec l’examinateur, celui-ci pouvant à tout moment interroger sur une question annexe au problème posé
ou proposer une indication pour aider le candidat.

Exercice 1 (irrationalité de l’exponentielle d’un rationnel). I Centrale 2 [ ]

Soient a, b ∈ Z, non nuls. On pose Pn =
Xn(a− bX)n

n!
.

1. Montrer que pour tout k ∈ N, P
(k)
n (0) et P

(k)
n (a/b) sont des entiers relatifs.

2. On note alors pour tout n ∈ N∗ : In =

∫ a/b

0

exPn(x) dx.

(a) Dans le langage Python, construire le programme I(n : int, a : int, b : int) −→ float qui, pour tout entier n donné et
pour tout couple (a, b) ∈ Z2, renvoie une valeur approchée de In.

(b) Quelle hypothèse pouvez-vous faire quant à son comportement asymptotique quand n → +∞ ? Démontrer cette
hypothèse.

3. On suppose que ea/b est un rationnel de dénominateur d. Montrer que la suite (dIn) est stationnaire.

4. Quels sont alors les nombres r ∈ Q tels que er ∈ Q ?

Exercice 2 (étude des transformées d’une série à termes strictement positifs). [ ]
On considère

∑
un une série à termes strictement positifs. Pour tout n ∈ N, on note encore Sn =

∑n
k=0 uk et fixons α ∈ R∗+.

1. On suppose que la série
∑
un converge. Que peut-on dire de la nature de la série

∑ un
Sαn

?

2. On suppose que la série
∑
un diverge. Etablir alors que :∑ un

Sαn
converge⇔ α > 1

Questions du jury

• A l’aide de cet exercice, retrouver la nature des séries de Riemann.

• Rappeler le théorème de sommation des équivalents. En utilisant ce résultat, retrouver le théorème de convergence des sommes de Césaro.

Exercice 3 (intégrale à paramètre et somme d’une série de fonctions). [ ]

Sous réserve d’existence, on pose f(x) =

∫ +∞

0

sin(xt)

et − 1
dt.

1. Montrer que f est bien définie sur R et qu’elle est continue sur R.

2. Etablir que f est même de classe C1 sur R.

3. Montrer finalement que pour tout x ∈ R,

∫ +∞

0

sin(xt)

et − 1
dt =

+∞∑
n=1

x

n2 + x2
.

Questions du jury

• Etablir que
∫+∞
0

sin(t)
t dt est semi-convergente.

• Rappeler le théorème de convergence des séries de Riemann : en donner une preuve rapide, puis retrouver un équivalent simple du reste
partiel d’une telle série convergente.

Exercice 4 (deux théorèmes taubériens). X/ENS [ ]
Soit f(x) =

∑+∞
n=0 anx

n la somme d’une série entière de rayon de convergence 1.

1. On suppose que

{
f(x) tend vers une limte finie ` quand x→ 1

∀n ∈ N, an ≥ 0
. Montrer que la série

∑
an converge de limite `.

2. On suppose que

{
f(x) tend vers une limte finie ` quand x→ 1

an = o(1/n)
. Montrer que la série

∑
an converge de limite `.
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Exercice 5 (dual de Mn(K) et formes linéaires centrales). X/ENS [ ]

1. Si A ∈Mn(K), on note fA la forme linéaire définie sur Mn(K) par :

fA : X 7−→ tr(AX)

Montrer que l’application φ : A 7−→ fA établit un isomorphisme de Mn(K) sur son dual.

2. Soit f : Mn(K) −→ K une forme linéaire vérifiant pour tout (X,Y ) ∈ Mn(K)2, f(XY ) = f(Y X). Montrer qu’il existe
λ ∈ K tel que f = λ.tr.

Indications 1. On vérifie d’abord que fA ∈ L(Mn(K),K), puis on revient à la caractérisation des isomorphismes en dimnesion finie. 2.

On peut procéder de plusieurs façons. Par exemple, on peut retrouver Ker(tr), puis montrer qu’il peut être vu de la façon suivante :

Ker(tr) = V ect((AB − BA), A,B ∈ Mn(K)), ainsi on pourra avoir Ker(tr) = Ker(f) ⇒ f = λ.tr. Plus cohérent, on exploite l’isomorphisme

obtenu à la question 1 de sorte que f = fA. Comme fA(XY ) = fA(Y X), alors pour tout X, on a AX = XA et ainsi, A = λ.In ⇒ f = λ.tr.

Exercice 6 (majoration à l’aide de la fonction génératrice). [ ]
Soit X une variable aléatoire d’un espace probabilisé (Ω,A, P ) telle que X(Ω) = N, et on note GX sa fonction génératrice. Montrer
que pour tout r ∈ ]0, 1[,

P (X ≥ n) ≤ 1−GX(r)

1− rn

et étudier le cas d’égalité.

Indications On a 1 − GX(r) = GX(1) − GX(r) et on minore cela par le reste partiel d’une série convergente. Comme pour tout k ≥ n,

rk ≤ rn, on peut affiner la minoration et reconnâıtre P (X ≥ n).

Exercice 7 (exponentielle du produit vectoriel). [ ]
Soit a ∈ R3 non nul, et on considère l’application :

f : x ∈ R3 7−→ a ∧ x

1. Montrer qu’il existe une base ortonormée directe B′ dans laquelle la matrice de f s’écrit :

MatB′(f) =

0 0 0
0 0 −‖a‖
0 ‖a‖ 0


2. En déduire la nature de exp(f).

Indications 1. Si a = 0, alors f est nul et c’est immédiat. Sinon, on pose e1 = a/‖a‖ et on introduit e2, e3 ∈ e⊥1 de sorte que (e1, e2, e3)

soit une base orthonormée directe de R3. On vérifie alors que la matrice a la forme souhaitée. 2. On pose N =

(
0 −‖a‖
‖a‖ 0

)
et on calcule

par blocs l’exponentielle de la matrice précédente en soignant le calcul de exp(N) : on pourra observer que N2 = −‖a‖2.I2 et établir ainsi que

exp(M) ∈ SO3(R). C’est donc une rotation dont on précisera l’angle et l’axe de rotation.

Exercice 8 (différentiabilité du déterminant). [ ]
On se place dans Mp(R) muni de sa base canonique et on considère l’application det :Mp(R) −→ R défini par :

det : M 7−→ det(M)

1. Soit j ∈ J1, pK. Justifier que pour tout M ∈Mp(R), det(M) =
∑p
k=1(−1)k+j∆kjmkj , où ∆kj est le mineur associé.

2. Déterminer Di,jdet(M) la dérivée partielle d’indice (i, j) du déterminant au point M , c’est à dire la dérivée en M suivant
la matrice élémentaire Eij .

3. Montrer alors que l’application det est différentiable sur Mp(R) et que pour tout H ∈Mp(R),

d detM (H) =

p∑
i=1

p∑
j=1

Hij(−1)i+j∆ij = tr(C(M)TH)

Indications 1. On reconnâıt ici la formule de développement du déterminant suivant Cj . 2. On dérive l’expression précédente en suivant

la direction Eij . 3. On peut justifier la différentiabilité car le déterminant est polynomial en les coefficients de M , puis on revient à l’expression

de la différentielle à l’aide des dérivées partielles.
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