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Planche de préparation pour les oraux

L’oral a pour objectif d’évaluer les candidats sur :

• la connaissance et la compréhension des notions mathématiques des programmes de MPSI et MP,

• la capacité technique de calculs,

• la faculté à restituer une réflexion appropriée à une situation donnée, à gérer l’espace de travail (tableau à disposition),
à interagir avec l’examinateur, celui-ci pouvant à tout moment interroger sur une question annexe au problème posé
ou proposer une indication pour aider le candidat.

Exercice 1 (nombre de dérangements). [ ]
On note pour tout (n, k) ∈ N2 tel que k ≤ n, Fn,k le nombre de permutations de J1, nK ayant exactement k points fixes et on
définit le nombre de dérangements pour tout n ∈ N∗ par αn = Fn,0.
Et on convient que α0 = 1.

1. Montrer que pour tout (n, k) ∈ N2 tel que k ≤ n, Fn,k =
(
n
k

)
αn−k. En déduire que pour tout n ∈ N, n! =

∑n
k=0

(
n
k

)
αk.

2. On considère la série entière
∑ αn

n!
zn et on note R son rayon de convergence, S sa somme.

(a) Etablir que R ≥ 1 et que pour tout z ∈ C, |z| < 1, S(z) =
e−z

1− z .

(b) En déduire que pour tout n ∈ N, αn = n!
∑n

k=0

(−1)k

k!
.

(c) Justifier alors que pour tout n ≥ 2, αn = E(
n!

e
+

1

2
). On pourra calculer |αn − n!/e|.

Questions du jury

• Rappeler le théorème relatif au produit de Cauchy de seux séries numériques. Que peut-on alors dire du produit de deux séries entières ?

• On choisit une permutation de n entiers au hasard, et on note An = ”la permutation ne possède pas de points fixes”. Calculer la limite
de P (An) quand n→ +∞.

Exercice 2 (déterminant de Vandermonde). [ ]

L’objet de cet exercice est de démontrer par récurrence que l’on a : V (x1, x2, . . . , xn) =
∏

1≤i<j≤n

(xj − xi).

1. Calculer V (x1, x2). Expliquer pourquoi il suffit de faire la démonstration pour n nombres complexes x1, x2 . . . , xn deux à
deux distincts.

Dans la suite, x1, x2 . . . , xn sont n nombres complexes deux à deux distincts.

2. On considère la fonction t 7→ P (t) = V (x1, x2, . . . , xn−1, t).
Démontrer que P est une fonction polynomiale de degré au plus n −1 et justifier que le coefficient de tn−1 est un déterminant

de Vandermonde. Démontrer alors par récurrence que V (x1, x2 . . . , xn) =
∏

1≤i<j≤n

(xj − xi).

3. Considérons f : I −→ R et x0, . . . , xn des réels distincts appartenant à l’intervalle I. Etablir qu’il existe un unique polynôme
P ∈ Rn[X] tel que pour tout i ∈ J0, nK, P (xi) = f(xi).

Questions du jury

• Donner une autre preuve de l’existence et l’unicité de ce polynôme d’interpolation.

• Soit A ∈ S+
n (R). Montrer qu’il existe une unique matrice symétrique positive B tel que B2 = A, et justifier que B est un polynôme en A.

Exercice 3 (résolution d’une équation différentielle linéaire). [ ]
On considère l’équation différentielle linéaire suivante sur ]− 1, 1[ :

(1− x2)y′′ − 2xy′ + 2y = 0 (E)

1. Déterminer les solutions de (E) développables en série entière.

2. Préciser leur rayon de convergence, et exprimer ces solutions à l’aide des fonctions usuelles. En déduire l’ensemble des
solutions de (E).

Questions du jury

• Enoncer le théorème de Cauchy-Lipschitz linéaire. Que peut-on en déduire sur la structure de S0 ?

• Rappeler la règle de D’Alembert, puis en proposer la preuve. La réciproque est-elle vraie ?
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Exercice 4 (théorème des extremas liés). CCINP 41 [ ]
Soit f : R2 −→ R définie par f(x, y) = 4x2 + 12xy − y2. On pose C = {(x, y) ∈ R2, x2 + y2 = 13}.

1. Justifier que f atteint un maximum et un minimum sur C.

2. Soit (u, v) ∈ C un point en lequel f atteint un de ses extremums.

(a) Justifier qu’il existe λ ∈ R tel que :

{
4u+ 6v = λu

6u− v = λv
.

(b) Expliquer qu’on a alors (λ− 4)(λ+ 1)− 36 = 0.

3. Déterminer les valeurs possibles de (u, v), puis donner les valeurs maximale et minimale prises par f sur C.

Exercice 5 (une première approche de la convergence uniforme). CCINP 14 [ ]

1. Soit (fn) une suite de fonctions continues sur [a, b] à valeurs réelles. On suppose de plus que (fn) converge uniformément
vers f sur [a, b], c’est à dire :

‖fn − f‖∞ −→
n→+∞

0

Montrer que nécessairement

∫ b

a

fn(t) dt −→
∫ b

a

f(t) dt.

2. Justifier comment ce résultat peut être utilisé dans le cas des séries de fonctions.

3. Démontrer que :

∫ 1/2

0

(

+∞∑
n=0

xn) dx =

+∞∑
n=1

1

n2n
.

Exercice 6 (autour de la loi de Poisson). CCINP 103 [ ]
Soit (Ω,A, P ) un espace probabilisé.

1. On considère deux variables aléatoires X1 et X2 qu’on suppose indépendantes et suivant des lois de Poisson de paramètres
λ1 > 0 et λ2 > 0. Déterminer la loi de X1 +X2, puis en déduire l’espérance et la variance de X1 +X2.

2. Soient p ∈]0, 1[ et λ > 0. On note Y une variable aléatoire suivant une loi de Poisson de paramètre λ. On suppose de plus
que X désigne une variable aléatoire à valeurs dans N et que pour tout m ∈ N, la loi conditionnelle de X sachant (Y = m)
est une loi binomiale de paramètre (m, p). Déterminer la loi de X.

Exercice 7 (espace `2). CCINP 39 [ ]
On note `2 l’ensemble des suites (xn) de nombres réels tels que la série

∑
x2n converge.

1. (a) Démontrer que, pour (xn), (yn) ∈ `2, la série
∑
xnyn converge et on note (x|y) =

∑+∞
n=0 xnyn.

(b) Justifier que `2 désigne un sev de RN.

2. On admet que (.|.) définit un produit scalaire sur `2, et on considère φ : (xn) ∈ `2 7−→ xp pour p fixé dans N. Démontrer
que φ est une application linéaire continue de `2 dans R.

3. Soit F l’ensemble des suites presque nulles. Déterminer F⊥. Comparer alors F et (F⊥)⊥.

Exercice 8 (spectre d’une matrice donnée). [ ]
Soient n ≥ 3 et A la matrice de Mn(R) telle que :

A =



1 1 . . . . . . 1
1 1 0 . . . 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
1 0 . . . 0 1


1. Montrer que 1 est valeur propre et préciser E1 le sous-espace propre associé.

2. Notons alors λ et µ les autres valeurs propres.

(a) Calculer tr(A) et det(A).

(b) En déduire que A est diagonalisable.

Indications 1. On montre que E1 n’est pas réduit au vecteur nul, et on peut même déterminer une famille de vecteurs propres associés.

2.a) La trace est immédiate. On calcule le déterminant en développant suivant la dernière ligne : on obtient une relation de récurrence linéaire

d’ordre 2. 2.b) La trace et le déterminant étant des invariants de similitude, on obtient la somme et le produit de λ et µ... ces valeurs propres

sont donc racines de X2 − SX + P = 0, et une fois identifiées, on pourra en déduire que A est diagonalisable.

www.cpgemp-troyes.fr 2/2

http://www.cpgemp-troyes.fr/

