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Planche de préparation pour les oraux

L’oral a pour objectif d’évaluer les candidats sur :

e la connaissance et la compréhension des notions mathématiques des programmes de MPSI et MP,
e la capacité technique de calculs,

e la faculté a restituer une réflexion appropriée a une situation donnée, & gérer I’espace de travail (tableau & disposition),
a interagir avec I’examinateur, celui-ci pouvant a tout moment interroger sur une question annexe au probléme posé
ou proposer une indication pour aider le candidat.

est d’ordre fini 8’1l existe o € N* tel que :
M* =1,

1. Soit M une matrice carrée d’ordre n qu’on suppose & coefficients entiers. Montrer que M € GL,,(Z) < det(M) = £1.

une matrice aléatoire de GL,, (R).

n’est pas d’ordre fini sur I'intervalle de travail.

3. Montrer que si M est d’ordre fini, alors M est nécessairement diagonalisable.

N

5. L’ensemble GL,,(Z) est-il un groupe multiplicatif ?

Exercice 1 (ordre d’une matrice inversible). » Centrale 2
On note GL£,(Z) ’ensemble des matrices inversibles et pour lesquelles M et M~ sont & coefficients dans Z. On rappelle que M

2. (a) Dans le langage Python, construire un programme matalea(n : int) — array qui, pour tout entier n non nul, renvoie

(b) Construire la fonction ordre(M : array, N : int) — int qui, pour toute matrice M et tout entier N non nul, teste si
la matrice M est d’ordre fini a € [1, N], puis renvoie son ordre éventuel. Le programme renverra 0 par défaut si elle

. Dans GL5(Z), on considere M telle que det(M) = —1. Justifier alors que M est d’ordre fini si et seulement si M? = I.

[]

Exercice 2 (transformée de Fourier de la loi normale).
Soit f une fonction de classe C' sur R telle que ¢t — tf(t) et f’ sont intégrables sur R.
une limite nulle quand x — 4oo0.

2. On appelle alors transformée de Fourier de f l'intégrale définie pour tout € R par :
Fi(x) = / e f(t) dt
R
(a) Vérifier que cette intégrale est bien convergente.
(b) Montrer que Fy est de classe C' sur R et donner I'expression de sa dérivée sous forme intégrale.

3. On considere la fonction g : t — e t*/2 ot on rappelle que /g(t) dt = V2.
R

Justifier que g satisfait les hypotheses précédentes et montrer que pour tout x € R, Fy(x) = v/ ome= /2,

1. Justifier que f est intégrable sur R. A I'aide du théoréme fondamental de 1’analyse, établir que f(x) posséde nécessairement

[]

Questions du jury
e Rappeler la structure des solutions d’une équation différentielle linéaire et préciser dim(Sop).

e Montrer que : [, |f| converge = [, f converge. La réciproque est-elle vraie ?

Exercice 3 (diagonalisabilité équivalente de A et A? pour une matrice inversible).
Soit A € GL,(C). Montrer que A est diagonalisable si et seulement si A% est diagonalisable.

Questions du jury
e Montrer que A est diagonalisable si et seulement si A annule un polyndéme scindé & racines simples.

e Rappeler le théoréme de décomposition de Dunford. Comment peut-on alors utiliser ce résultat pour démontrer I’équivalence précédente?

Exercice 4 (adjoint d’'un endomorphisme). X/ENS

[]

On se place dans M, (R) muni du produit scalaire canonique < A, B >= tr(ATB), et on définit pour toute matrice A fixée,

Papplication fa sur M, (R) par fa(X)=AX — XA.
1. Déterminer 'adjoint f3 de fa.

2. Montrer que A est nilpotente si et seulement si A € Im(fa).

3. Montrer que A est nilpotente si et seulement si A est semblable & 2A.
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Exercice 5 (calcul de ((2)). X/ENS [ ]
Soit n € N*.

1. Démontrer qu’il existe un unique polynéme P, € R[X] tel que :

™ 2 sin((2n + 1)z)
Vzel0o,-[, P, t = —
€] 2[ n(cotan” (z)) sin®"*!(z)

2. Déterminer les racines de P,,, ainsi que leur somme.

3. (a) Montrer que pour tout z € ]0, 5[, cotan®(z) < 25 < 1+ cotan®(z).

(b) En déduire la valeur de ¢(2) = 3279 !

k=173"

Indications 1. On procede par existence-unicité. L’unicité est classique et partant de deux polyndémes, on justifie P, — Qn = Og[x]. Pour
I’existence, on s’inspire des polynémes de Tchebychev et on revient d’abord & un polynéme trignométrique en écrivant sin((2n + 1)z) =
Im((e*)2™*1). 2. On cherche des racines sous la forme z = sin((2n 4 1)z) et on identifiera autant de racines que son degré. Pour la somme,
il faudra exploiter les relations coefficients-racines et extraire le coefficient au degré n — 1. 3.a) On a : sin(z) < = < tan(z) sur ]0, Z[, on en
déduit alors 'inégalité. 3.b) On utilise ’encadrement précédent qu’on spécifie en les racines de P, ... avant de passer & la limite.

Exercice 6 (convergence des sommes de Riemann et généralisation). [ ]
Soient a,b deux réels tels que a < b. On note f une fonction définie sur [a, b] & valeurs dans R et considérons (x;) la subdivision
a pas constant (b — a)/n. On appelle somme de Riemann associée toute somme de la forme :

5u(5) = Y lwss 209 = S (") 100

ot pour tout ¢ € [0,n — 1], 0; € [xs, Tit1].

1. (a) On suppose que f est de classe C* sur [a,b], montrer que S,(f) — fab f(t) dt.

n——+oo

(b) Déterminer alors la limite de (v, ) définie par v, =

(T b+ )™,

2. On suppose désormais que f n’est définie que sur ]a, b] et qu’elle est monotone, continue et intégrable sur |a, b].

(a) Montrer qu’on a encore :

n—+oo

@iﬂam@) — /bf(t) dt
k=1 a

!
(b) En déduire quand n — +o0o la limite de (i)l/".
nTL

Indications 1.a) On contréle la différence |S,(f) — j: f(t) dt| : pour cela, on utilise les subdivisions afin de regrouper les éléments sous
une méme intégrale, puis on invoque I’inégalité des accroissements finis. 1.b) On justifie rapidement que v,, > 0 et on étudie u,, = In(v,) : on se
rameéne alors au cas particulier des sommes de Riemann de la forme » ', 1/n.f(k/n) avec f bien choisie. 2.a) La fonction étant monotone, on
peut la supposer croissante et travailler par comparaison série-intégrale. Attention, on veillera & encadrer d’abord le teme général (b;a) f(zk)
avant de sommer les inégalités pour k allant de 1 & n — 1... 2.b) En passant au logarithme, on fait apparaitre une somme de Riemann généralisée
sur |0, 1].

Exercice 7 (fonction génératrice d’une variable aléatoire). [ ]
Soit X une variable aléatoire & valeurs dans N et on note gx sa fonction génératrice définie sur | — Rx, Rx[ (Rx > 0).

1. On pose Y = aX + b avec (a,b) € N* x N. Montrer que gy est définie sur | — Ry, Ry[ avec Ry = Rﬁ(/a er Ry = +oo si
Rx = +o00. Exprimer alors gy en fonction de gx.

2. Justifier que gx est définie en 1 et —1.

3. Etablir que :
P(X pair) = (9x (1) + gx(—1))/2
P(X impair) = (gx (1) — gx(—1))/2

4. On suppose que X ~ P(A) et X’ ~ B(n,p). Rappeler leur fonction génératrice, puis calculer les probabilités précédentes.

Indications 1. Y () est encore & valeurs dans N, puis gy (t) = E(ty). En factorisant par tb, on peut établir que Ri(/a désigne un point
de rupture. Reste a exprimer gy. 2. C’est immédiat : on majore le terme général en module. 3. Partant du membre de droite, il suffit de

travailler par linéarité sur les sommes convergentes. 4. On revient au calcul des fonctions génératrices et on invoque la question précédente.
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Exercice 8 (moyenne des itérés d’un endomorphisme). [ ]
Soient K un compact convexe non vide d’un espace vectoriel normé (E, ||.||), et f € L(E) qu’'on suppose continu sur E tel que

f(K) C K. On fixe x € K et on pose pour tout n € N*,

En utilisant la suite (u,), montrer que f posseéde au moins un point fixe dans K.

Indications K étant stable, u, peut étre vu comme une combinaison convexe d’éléments de K. On calcule alors la différence f(upn) — un

et on montre que ||f(un) — un| — 0. Mais (u,) étant dans K", on peut alors extraire une sous-suite convergente pour obtenir un point fixe

de f par unicité de la limite.
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