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Planche de préparation pour les oraux

L’oral a pour objectif d’évaluer les candidats sur :

• la connaissance et la compréhension des notions mathématiques des programmes de MPSI et MP,

• la capacité technique de calculs,

• la faculté à restituer une réflexion appropriée à une situation donnée, à gérer l’espace de travail (tableau à disposition),
à interagir avec l’examinateur, celui-ci pouvant à tout moment interroger sur une question annexe au problème posé
ou proposer une indication pour aider le candidat.

Exercice 1 (somme et produit de variables aléatoires qui convergent en probabilité). I Centrale 2 [ ]
Soient (Ω,A, P ) un espace probabilisé, X,Y deux variables aléatoires discrètes qu’on suppose L1, et (Xn), (Yn) des suites de
variables aléatoires discrètes. On note (∗) la condition suivante :∀ε > 0, P (|Xn −X| ≥ ε) −→

n→+∞
0

∀ε > 0, P (|Yn − Y | ≥ ε) −→
n→+∞

0

1. (a) Soit (x, y) ∈ R2 et fixons ε > 0. Justifier l’implication : |x+ y| ≥ ε⇒ |x| ≥ ε/2 ou |y| ≥ ε/2.

(b) On suppose la condition (∗) satisfaite. Montrer que :

∀ε > 0, P (|Xn + Yn − (X + Y )| ≥ ε) −→
n→+∞

0

2. Soit (Un) une suite de variables aléatoires indépendantes et de même loi B(p), p ∈ [0, 1]. On pose Vn = Un + Un+1.

(a) Dans le langage Python, construire la fonction bernoulli(p : float) −→ int qui, pour tout p ∈ [0, 1], simule une variable
aléatoire suivant une loi de Bernoulli de paramètre p.
On pose Mn = 1

n

∑n
i=1 Vi. Construire alors la fonction M(n : int, p : float) −→ float qui, pour tout entier n non nul

et pour tout p ∈ [0, 1], renvoie la valeur de Mn. Quelle hypothèse pouvez-vous faire quant à la limite ` de Mn ?

(b) Etablir en toute rigueur que :
∀ε > 0, P (|Mn − `| ≥ ε) −→

n→+∞
0

3. (a) Montrer que P (|X| > M) −→
M→+∞

0.

(b) On suppose la condition (∗) satisfaite. Montrer que :

∀ε > 0, P (|XnYn − (XY )| ≥ ε) −→
n→+∞

0

Exercice 2 (limite d’une fonction). [ ]
Soient f : R −→ R qu’on suppose continue et g définie sur R∗+ par :

g(x) =
1

x

∫ x

0

cos(x− y)f(y) dy

1. Déterminer la limite de g en 0.

2. On suppose que f(x) −→
x→+∞

` ∈ R. Déterminer alors la limite de g en +∞.

Questions du jury

• Rappeler le théorème fondamental de l’analyse, puis expliquer rapidement comment en obtenir une démonstration.

• Justifier que la fonction f : x 7−→ 1
x

∫ x
0

arctan(t)/t dt peut être prolongée en une fonction de classe C∞ au voisinage de 0.

Exercice 3 (base orthogonale des polynômes d’Hermite). [ ]

1. Montrer qu’il existe une unique suite de polynômes (Hn) réels tels que :

∀ (x, t) ∈ R2, exp(tx− t2

2
) =

+∞∑
n=0

tnHn(x) (∗)

Cette suite de polynômes désigne les polynômes d’Hermite.

2. Prouver que pour tout n ∈ N∗ et x ∈ R, |H ′n(x)| ≤ e|x|.
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3. Montrer que la série entière de terme général t 7−→ tnHn(x) a un rayon de convergence infini, et vérifie pour tout n ∈ N∗ :

(n+ 1)Hn+1 = XHn −Hn−1

4. On fixe t ∈] − 1, 1[ et on pose fn(x) = tnHn(x). Prouver que la série de fonctions
∑
fn est dérivable terme à terme sur R

de sorte que pour tout n ∈ N∗, H ′n = Hn−1.

5. Prouver alors que (Hn) désigne une base orthogonale de R[X] muni du produit scalaire :

< P,Q >=

∫
R
P (x)Q(x)e−x

2/2 dx

et préciser la norme euclidienne de Hn pour tout n ∈ N.

Questions du jury

• Rappeler le théorème de dérivation terme à terme pour les séries de fonctions. En notant
∑
fn la série de fonctions associée, justifier

qu’on a alors convergence uniforme sur tout compact [a, b] ⊂ I.

• Les fonctions d’une variable réelle sont-elles toutes développables en série entière ? Pouvez-vous donner des conditions suffisantes pour
qu’une telle fonction soit développable en série entière ?

Exercice 4 (théorème de point fixe pour une application faiblement contractante). X/ENS [ ]
Soit (E, ‖.‖) un espace vectoriel normé et K un compact non vide de E. On note f : K −→ K telle que :

∀(x, y) ∈ K2, x 6= y ⇒ ‖f(x)− f(y)‖ < ‖x− y‖

1. Montrer que f possède un unique point fixe, noté `.

2. Soient x0 ∈ K et (xn) la suite récurrente définie pour tout n ∈ N, par xn+1 = f(xn).
Montrer que xn −→ `.

Exercice 5 (trigonalisation simultanée). X/ENS [ ]

1. (a) Soient A,B deux matrices deMn(C) telles que AB = BA. Montrer que A et B possèdent un vecteur propre commun.

(b) Etablir alors que pour tout (A,B) ∈Mn(C)2 tel que AB = BA, A et B sont cotrigonalisables.

2. Peut-on étendre ce résultat à toute famille finie de matrices de Mn(C) qui commutent deux à deux ?

3. On considère A ∈ GLn(C) et N ∈Mn(C) qu’on suppose nilpotente telle que :

AN = NA

Justifier alors de deux façons que det(A+N) = det(A).

Indications 1.a) Comme les matrices commutent, alors en notant λ ∈ Sp(A), EA(λ) est stable par B et l’endomorphisme associé et induit

sur EA(λ) possède au moins un vecteur propre qui est donc aussi vecteur propre pour A. 1.b) Par récurrence sur la taille des matrices :

pour l’hérédité, on construit une première base de réduction à partir du vecteur propre commun qu’on complète, puis on travaille sur le bloc

sous-jacent. 2. Par itération, on justifie d’abord que pour toute famille finie de matrices qui commutent, il existe toujours au moins un vecteur

propre commun. A p fixé, on procède alors par récurence sur la taille des matrices. 3. Ou bien on cotrigonalise, ou bien on peut forcer la

factorisation par A dans le déterminant et exploiter la multiplicativité du déterminant.

Exercice 6 (suites adjacentes). [ ]
On définit les suites (an) et (bn) par a0, b0 > 0 et pour tout n ∈ N,

an+1 =
an + bn

2
et bn+1 =

2anbn
an + bn

1. Montrer que ces suites sont adjacentes et déterminer leur limite commune `.

2. Justifier que pour tout n ∈ N, an+1 =
1

2
(an +

`2

an
), puis déterminer un équivalent de an − `.

On pourra calculer le rapport (an+1 − `)/(an+1 + `) et obtenir une relation de récurrence.

Indications 1. On montre d’abord que an+1 − bn+1 est de signe constant, puis on justifie que (an) et (bn) sont monotones. Reste à étudier

la limite de la différence : pour cela, on sera obligé d’introduire `1 et `2 les limites respectives et de prouver que `1 = `2, ce qui donnera

an − bn −→ 0. Pour la valeur de leur limite commune, on multiplie les deux lignes afin d’exhiber une suite constante. 2. On a : anbn = `2, et

on retrouve an+1. Reste à calculer le rapport (an+1 − `)/(an+1 + `) pour obtenir une relation qu’on pourra exploiter.
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Exercice 7 (nature d’une série définie par les intégrales de Wallis). [ ]
On définit les intégrales de Wallis pour tout n ∈ N par :

In =

∫ π/2

0

cosn(t) dt

Retrouver un équivalent de In quand n→ +∞, puis en déduire la nature de la série
∑

(In)α en fonction de α ∈ R.

Indications On rappelle la méthode : par intégration par parties, on montre que In =
n− 1

n
In−2. Puis, on établit que la suite (nInIn−1)

est constante égale à π/2. En exploitant la monotonie de In et son signe, on retrouve alors par encadrement un équivalent simple de In. Pour

l’étude de la série, on peut donc se ramener à l’étude d’un terme général d’une série de Riemann dont on connait le comportement asymptotique.

Exercice 8 (une autre preuve du théorème spectral). [ ]
Soit E un espace vectoriel euclidien de dimension n ∈ N∗ et considérons u un endomorphisme symétrique de E. On définit alors
l’application fu : E\{0} −→ R par :

fu(x) =
1

‖x‖22
< x, u(x) >

1. Montrer que fu est bornée sur S(0, 1) et atteint ses bornes.

2. Etablir que fu est composée d’applications différentiables et calculer sa différentielle en tout point.

3. Montrer alors par récurrence sur n ∈ N∗ qu’il existe une base orthonormée constituée de vecteurs propres de u.

Indications 1. S(0, 1) = {x ∈ E, ‖x‖2 = 1} désigne, en dimension finie, une partie compacte. Reste à invoquer le théorème des bornes

atteintes pour les applications à valeurs réelles. 2. On voit fu(x) = g(x).h(x) et on calcule la différentielle de fu par opérations sur les appli-

cations différentiables... 3. On procède par récurence sur n ∈ N∗ : pour n = 1, tout vecteur unitaire convient et pour l’hérédité, on introduit

a ∈ S un point en lequel fu atteint son maximum avec fu(a) = λ. On vérifie qu’il s’agit bien d’un vecteur propre, puis u étant symétrique, on

peut travailler avec l’endomorphisme induit sur a⊥.
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