
MP - Lycée Chrestien de Troyes Planche 5 - Mines-Ponts/Centrale

Planche de préparation pour les oraux

L’oral a pour objectif d’évaluer les candidats sur :

• la connaissance et la compréhension des notions mathématiques des programmes de MPSI et MP,

• la capacité technique de calculs,

• la faculté à restituer une réflexion appropriée à une situation donnée, à gérer l’espace de travail (tableau à disposition),
à interagir avec l’examinateur, celui-ci pouvant à tout moment interroger sur une question annexe au problème posé
ou proposer une indication pour aider le candidat.

Exercice 1 (approximation d’un vecteur propre). I Centrale 2 [ ]
On note A la matrcie définie par :

A =

 2 −1 0
−1 2 −1
0 −1 2


1. Vérifier rapidement que A ∈ S++

n (R) et donner les sous-espaces propres associés.

2. On note ‖.‖ la norme euclidienne sur M31(R) et on pose X = (1, 1, 1)T .
Ecrire une foction Python permettant d’illustrer le comportement asymptotique de la suite (Yk)k∈N définie par :

Yk =
AkX

‖AkX‖

3. Plus généralement, on considère S ∈ Sn(R).

(a) Justifier que S ∈ S++
n (R) si et seulement si Sp(S) ⊂ R∗+.

(b) Montrer alors que pour toute matrice S ∈ S++
n (R) et pour tout X ∈Mn1(R) non nul, la suite (Yk =

SkX

‖SkX‖ ) converge

vers un vecteur propre de S.

Exercice 2 (calcul explicite des intégrales de Wallis). [ ]
Pour tout x ∈ R, on note :

J(x) =

∫ π/2

0

cos(x sin(t)) dt

1. Montrer que J est solution de : (E) xy′′ + y′ + xy = 0.

2. Déterminer les solutions développables en série entière de (E).

3. Etablir que J est développable en série entière, puis préciser son développement.

4. En comparant les résultats obtenus, donner l’expression des intégrales de Wallis :

∀ n ∈ N, W2n =

∫ π/2

0

sin2n(t) dt

Questions du jury

• Citer le critère C1 pour les intégrales à paramètre, puis proposer une démonstration de ce résultat.

• Retrouver un équivalent de Wn quand n→ +∞.

Exercice 3 (convergence en probabilité). [ ]
Soient n, a deux entiers naturels non nuls. On dispose de n urnes et de N = na boules. Ces boules sont alors réparties de façon
indépendante et équiprobable entre les urnes.

On nomme Yn la variable aléatoire donnant le nombre d’urnes vides et Sn =
Yn
n

.

1. Enoncer et démontrer l’inégalité de Bienaymé-Tchebychev.

2. Calculer E(Sn) et V(Sn), puis préciser leur limite.

3. Montrer alors que pour tout ε > 0, limn→+∞ P (|Sn − e−a| ≥ ε) = 0.

Questions du jury

• On note X,Y deux variables aléatoires discrètes indépendantes. Etablir que E(XY ) = E(X)E(Y ). La réciproque est-elle vraie ?

• On considère X une variable aléatoire à valeurs dans N qu’on suppose d’espérance finie. Montrer que E(X) =
∑+∞
n=0 P (X > n).
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Exercice 4 (recherche d’un équivalent). X/ENS [ ]
On pose pour tout n ∈ N :

un =

∫ 1/2

0

sin2(πnx)

tan(πx)
dx

Déterminer un équivalent de un quand n→ +∞, puis étudier la série
∑ uαn

nβ
pour (α, β) ∈ R2.

Exercice 5 (théorème de Dunford). X/ENS [ ]
Soit E un C-espace vectoriel de dimension n ≥ 1 et considérons u un endomorphisme de E. Montrer l’existence d’un unique
couple (d, n) ∈ L(E)2 tel que : 

u = d+ n

dn = nd

d est diagonalisable et n est nilpotent

Indications On procède par existence et unicité. Pour l’existence, comme χu est scindé sur C, on peut exhiber la décomposition spectrale

de E. On définit alors d et n sur chacun des sous-espaces caractéristiques par dEi = λi.idEi et nEi = uEi − λi.idEi avant de vérifier qu’ils

conviennent. Pour l’unicité, notons (d′, n′) un autre couple satisfaisant les conditions de Dunford tel que u = d + n = d′ + n′. En particulier,

d′ et u commutent : ainsi, sur chaque Ei, les endomorphismes d′Ei
et dEi = λi.idEi commutent, donc d′ et d sont codiagonalisables et d − d′

diagonalisable. De même, n′ et u commutent : ainsi, sur chaque Ei, les endomorphismes n′Ei
et nEi commutent. On en déduit que d−d′ = n′−n

est à la fois diagonalisable et nilpotent, d’où d− d′ = n′ − n = 0.

Exercice 6 (sous-groupes finis de GLn(C) et groupe spécial linéaire). [ ]
On se place dans GLn(C) et on note :

SLn(C) = {M ∈ GLn(C), det(M) = 1}

1. Montrer que SLn(C) est un sous-groupe de (GLn(C),×).

2. (a) On note H un sous-groupe fini de (C∗,×). Justifier rapidement qu’il existe p ∈ N∗ tel que H = Up =< ei2π/p >.

(b) Soit G un sous-groupe de GLn(C) qu’on suppose fini et tel que :

G ∩ SLn(C) = {In}

Montrer que G est cyclique.

Indications 1. On revient à la caractérisation des sous-groupes de (GLn(C),×) et on fera intervenir la multiplicativité du déterminant.

2.a) On invoque le petit thérème de Lagrange de sorte que H ⊂ Up, et on conclut à l’aide des cardinaux. 2.b) Soit M ∈ G, on a donc

det(M) = 1 ⇒ M = In. En fait, le déterminant définit naturellement un morphisme de G sur C∗ et ainsi, la condition précédente nous livre

Ker(det) = {In}. On en déduit que det : G −→ C∗ est injective et on a même det : G −→ det(G) bijective de sorte que G est isomorphe à

det(G). Par isomorphisme, l’image de G est un sous-groupe fini de C∗, c’est à dire det(G) =< ei2π/p > cyclique. Par conséquent, G image

réciproque d’un tel groupe est aussi cyclique.

Exercice 7 (décomposition des polynômes réels positifs). [ ]
Soit P ∈ R[X]. Montrer alors que :

P est de signe constant positif ⇔ ∃ (U, V ) ∈ R[X]2, P = U2 + V 2

Indications On procède par double implication. Le sens réciproque est immédiat. Pour le sens direct, si P est constant c’est immédiat,

sinon deg(P ) ≥ 1 et on peut factoriser P dans R[X] de sorte que P (X) = an
∏r
i=1(X − λi)αi .

∏s
j=1(X − µj)βj (X − µj)βj . Comme P est

positif, en étudiant localement le signe du produit, on peut justifier que pour toute racine réelle, αi est nécessairement pair. On a alors pour un

polynôme C à préciser... P = C.C = (A+ iB)(A− iB) = A2 + B2 avec (A,B) ∈ R[X]2.

Exercice 8 (intégrabilité d’une somme). [ ]
Montrer la convergence de l’intégrale : ∫ +∞

0

+∞∑
n=1

ln(1 + xn+ n2)

1 + n2ex
dx

Indications Dans un premier temps, on justifie que la série est convergente pour x fixé dans R+, puis en notant S sa somme, on montre

qu’elle est continue sur R+ à l’aide des théorèmes sur les séries de fonctions. Reste alors à justifier l’intégrabilité : pour cela, on peut invoquer

le théorème d’intégration terme à terme... car il s’agit bien d’un résultat qui nous livre l’intégrabilité de S sur R+.
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