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Planche de préparation pour les oraux

L’oral a pour objectif d’évaluer les candidats sur :

• la connaissance et la compréhension des notions mathématiques des programmes de MPSI et MP,

• la capacité technique de calculs,

• la faculté à restituer une réflexion appropriée à une situation donnée, à gérer l’espace de travail (tableau à disposition),
à interagir avec l’examinateur, celui-ci pouvant à tout moment interroger sur une question annexe au problème posé
ou proposer une indication pour aider le candidat.

Exercice 1 (approximation de l’unité). [ ]
On considère une approximation de l’unité, c’est à dire une suite (ϕn) d’éléments de C0(R,R+) telle que :

∀n ∈ N,
∫
R
ϕn = 1 et ∀δ > 0,

∫
R\[−δ,δ]

ϕn −→
n→+∞

0

De plus, pour tout f ∈ C0(R,R) et à support compact, on note le produit de convolution :

f ∗ ϕn(x) =

∫
R
f(t)ϕn(x− t) dt =

∫
R
f(x− t)ϕn(t) dt

1. Justifier l’existence des intégrales définissant le produit de convolution sur R, et montrer qu’elles sont effectivement égales.

2. Montrer alors que la suite f ∗ ϕn converge uniformément vers f sur R.

3. Etablir que l’ensemble des fonctions ϕn : x 7−→ ne−n
2x2/2

√
2π

définissent un exemple d’approximation de l’unité.

4. En déduire que l’ensemble C∞(R,R) est dense dans l’ensemble des éléments de C0(R,R) à support compact, au sens de la
norme uniforme.

Questions du jury

• Donner deux autres théorèmes d’approximation uniforme d’une fonction continue sur un segment.

• Rappeler le lemme de Riemann-Lebesgue, puis en utilisant un résultat de densité, prouver ce résultat lorsque la fonction considérée est
supposée seulement continue sur [a, b].

Exercice 2 (exponentielle de matrices réelles diagonalisables). [ ]
Soient A,B deux matrices diagonalisables de Mn(R) et on suppose de plus que exp(A) = exp(B).
Montrer que nécessairement A = B.

Questions du jury

• Rappeler le théorème d’interpolation de Lagrange, et en donner une preuve.

• Montrer que pour tout (A,B) ∈ Mn(K)2 tel que A,B diagonalisables et AB = BA, alors A et B sont codiagonalisables. Peut-on étendre
ce résultat à toute famille finie de matrices diagonalisables qui commutent deux à deux ?

Exercice 3 (déterminant d’une matrice circulante modulo p). X/ENS [ ]
Soit p un nombre premier et considérons (a0, . . . , ap−1) ∈ Zp. Montrer que :∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . ap−1

ap−1 a0 a1 . . . ap−2

ap−2 ap−1 a0 . . . ap−3

...
. . .

...
a1 a2 a3 . . . a0

∣∣∣∣∣∣∣∣∣∣∣
≡ a0 + a1 + . . .+ ap−1 [p]

Exercice 4 (nombre moyen de points fixes d’une permutation). X/ENS [ ]
On considère f un morphisme d’un groupe fini (G, .) dans (O(Rn), ◦), et on définit :

p =
1

card(G)

∑
g∈G

f(g)

1. Etablir que p est un projecteur de Rn tel que Im(p) = ∩g∈GKer(f(g)− id).

2. En déduire le nombre moyen de points fixes de l’ensemble des éléments du groupe symétrique Sn.
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Exercice 5 (un autre preuve de l’inégalité arithmético-géométrique). [ ]
Soit n dans N∗. On note Un l’ouvert (R∗+)n. Son adhérence, notée Un, est (R+)n.
On fixe s > 0 et on définit les fonctions f, gs sur Un en posant, pour tout x = (x1, . . . , xn) ∈ Un,

f(x) =

n∏
k=1

xk et gs(x) =

(
n∑
k=1

xk

)
− s

On note Xs le sous-ensemble de Un constitué des zéros de gs : Xs =
{
x ∈ Un | gs(x) = 0

}
.

1. On admet que f et gs sont de classe C1 sur Un. Donner l’expression de leur gradient en un point x = (x1, . . . , xn) de Un.

2. Démontrer que la restriction de f à Xs admet un maximum sur Xs et que ce maximum est atteint sur Xs ∩ Un.

3. On note a = (a1, . . . , an) un élément de Xs ∩ Un en lequel la restriction de f à Xs atteint son maximum.

(a) Démontrer qu’il existe un réel λ > 0 tel que, pour tout k dans J1, nK, ak = f(a)/λ.

(b) Démontrer alors que, pour tout (x1, . . . , xn) ∈ Un∩Xs,
(∏n

i=1 xi
)1/n

6 1
n

∑n
i=1 xi et en déduire l’inégalité arithmético-

géométrique :

∀ (x1, . . . , xn) ∈ (R+)n ,

(
n∏
i=1

xi

)1/n

6
1

n

n∑
i=1

xi

Indications 1. Les fonctions sont polynomiales, et donc C1 sur Un. 2. On justifie que Xs est compact, puis on utilise le théorème des

bornes atteintes. 3.a) C’est immédiat, cela découle du théorème des extremas liés. 3.b) f est majorée par sa valeur maximale f(a) : il suffit

d’identifier λ pour obtenir une expression simple de f(a) et retrouver l’inégalité sur Xs ∩ Un. Pour finir, on raisonne par disjonction des cas :

si un xi est nul, c’est immédiat. Sinon, on pose s =
∑n

i=1 xi > 0 et on a l’inégalité précédente.

Exercice 6 (calcul de l’intégrale de Dirichlet). [ ]

On note f : x ∈ ]0, π] 7−→ 1

x
− 1

2 sin(x
2
)
.

1. Montrer que f se prolonge en une fonction de classe C1 sur [0, π].

2. Pour tout n ∈ N, on pose In =

∫ π

0

sin(( 2n+1
2

)t)

sin( t
2
)

dt.

(a) Justifier l’existence de In.

(b) Calculer In+1 − In, puis en déduire la valeur de In.

3. Montrer que l’intégrale I =

∫ +∞

0

sin(t)

t
dt est convergente et déduire sa valeur de l’intégrale

∫ π

0

f(t) sin((
2n+ 1

2
)t) dt.

Indications 1. On prolonge en 0 à l’aide des développements limités, et on vérifie que le prolongement est bien C1. 2.a) L’intégrale est

faussement impropre en 0. 2.b) A l’aide des formules trigonométriques, on montre en fait que In est constante. 3. C’est une question classique:

on découpe l’intégrale sur [0, 1] et sur [1,+∞[ : la première intégrale présente encore un faux problème, pour la seconde, on accélère la conver-

gence à l’aide d’une Ipp. Reste à développer la dernière intégrale avant d’invoquer le lemme de Riemann-Lebesgue.

Exercice 7 (méthode de Lagrange et raccordement des solutions). [ ]
On considère l’équation différentielle : (E) xy′′(x) + 2y′(x)− xy(x) = 0.

1. Déterminer une solution f1 non nulle de (E) sur R∗+ et sur R∗−.

2. En posant f2(x) = λ(x)f1(x), déterminer une autre solution de (E) sur R∗+ et sur R∗−, puis donner un système fondamental
de solution de cette équation sur chacun de ces intervalles.

3. Déterminer alors les solutions de (E) sur R.

Indications 1. Par analyse-synthèse, on cherche une solution DSE... et en imposant a0 = 1, on propose une solution non triviale. 2. En

utiliant la méthode de Lagrange, on obtient une nouvelle équation d’ordre 1 en λ′... il suffira de primitiver pour trouver f2, et donner S0 sur

chacun des intervalles. 3. Par analyse-synthèse, on raccorde en 0.

Exercice 8 (équivalent de la somme d’une série entière). [ ]

On note pour tout n ∈ N, an =
∑n
k=0

(−1)k

k + 1
.

1. Préciser le rayon de convergence de la série
∑ an

n!
xn.

2. On pose f(x) =
∑+∞
n=0

an
n!
xn. Donner la limite de e−xf(x) quand x → +∞, puis en déduire un équivalent de f(x) quand

x→ +∞.

Indications 1. On reconnâıt la série harmonique alternée, on en déduit un équivalent de an/n!. 2. Seule la limite est délicate, pour cela

on remplace astucieusement an = (an − ln(2)) + ln(2), et on contrôle la première somme à l’aide du CSSA.
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