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Planche de préparation pour les oraux

L’oral a pour objectif d’évaluer les candidats sur :

• la connaissance et la compréhension des notions mathématiques des programmes de MPSI et MP,

• la capacité technique de calculs,

• la faculté à restituer une réflexion appropriée à une situation donnée, à gérer l’espace de travail (tableau à disposition),
à interagir avec l’examinateur, celui-ci pouvant à tout moment interroger sur une question annexe au problème posé
ou proposer une indication pour aider le candidat.

Exercice 1 (convergence en probabilité). [ ]
Une action vaut initialement 1 EUR. A chaque instant n ≥ 1, sa valeur est multipliée par une quantité aléatoire Zn. On suppose
que les variables aléatoires Zn sont indépendantes et de même loi telles que :

P (Zn = 1 + a) = P (Zn = 1− a) = 1/2, avec a ∈]0, 1[

On note Xn la valeur de l’action à l’instant n. On pose Yk = ln(Zk) et on définit pour tout n ∈ N∗,

Ŷn =
1

n
(Y1 + . . .+ Yn)

1. Montrer que pour tout n ∈ N, E(Xn) = 1.

2. Calculer la limite de V(Xn) quand n→ +∞.

3. Etablir qu’il existe δ > 0 tel que limn→+∞ P (Ŷn > −δ) = 0. En déduire que pour tout ε > 0, limn→+∞ P (Xn > ε) = 0.

Questions du jury

• Rappeler l’expression générale de V(X1 + . . .+Xn), où Xi désigne des variables aléatoires discrètes.

• Enoncer le théorème de Bienaymé-Tchebychev. En déduire une démonstration de la loi faible des grands nombres.

Exercice 2 (convergence d’une suite). [ ]
Montrer que la suite (un) définie pour tout n ∈ N par un = n sin(2πn!e) est convergente et préciser sa limite.

Questions du jury

• Rappeler le DSE de la fonction exp, puis expliquer comment on peut l’obtenir.

• Définir une norme d’algèbre sur Mn(K), puis montrer que pour tout A ∈ Mn(K), la série
∑
Ak/k! est convergente.

Exercice 3 (décomposition de Fitting). X/ENS [ ]
Soient E un K-espace vectoriel de dimension finie n ≥ 1 et u ∈ L(E).

1. (a) Montrer que les suites (Im(uk)) et (Ker(uk)) sont strictement monotones pour l’inclusion et constantes à partir d’un
même rang p ≤ n.

(b) Etablir que la suite (Ker(uk)) ”s’essoufle”, c’est à dire que la suite des différences (dim(Ker(uk+1))− dim(Ker(uk)))
est dércoissante.

2. Montrer qu’on a E = Ker(up)⊕ Im(up).

3. En déduire que toute matrice de Mn(K) est semblable à une matrice de la forme :

(
N O
O C

)
, où N est une matrice carrée

nilpotente, C une matrice inversible.

Exercice 4 (intégrale de Fresnel). X/ENS [ ]
On pose pour tout t ∈ R+,

F (t) =

∫ +∞

0

e−(x2+i)t2

x2 + i
dx

1. Montrer que

∫
R

x2

x4 + 1
dx =

∫
R

1

x4 + 1
dx et calculer la valeur commune.

2. Montrer que la fonction F est continue et étudier la limite de F en +∞.

3. Etablir que F est de classe C1 sur R∗+, et déterminer F ′(t) pour tout t > 0.

4. Justifier alors que

∫ +∞

0

eit
2

dt converge et retrouver sa valeur.
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Exercice 5 (norme d’un endomorphisme symétrique). [ ]
Soit E un espace préhilbertien réel muni d’un produit scalaire et on considère f un endomorphisme continu de E qu’on suppose
autoadjoint, c’est à dire tel que :

∀ (x, y) ∈ E2, < f(x), y >=< x, f(y) >

On note encore |||f ||| la norme triple de f subordonnée à la norme euclidienne.

1. Montrer que |||f ||| = sup‖x‖2=1 | < f(x), x > |.

2. On suppose maintenant que E est de dimension finie. Justifier que :

|||f ||| = ρ(f)

Indications 1. On revient à la définition de la norme triple : en notant K = sup‖x‖2=1 | < f(x), x > |, on obtient une première inégalité par

Cauchy-Schwarz. De plus, avec ‖x‖2 = ‖y‖2 = 1, on peut calculer < f(x+y), x+y > − < f(x−y), x−y >, on en déduit que < f(x), y >≤ K...

il suffira de choisir y convenablement pour obtenir la seconde inégalité. 2. De la même façon, si λ ∈ Sp(f), on a immédiatement |λ| ≤ K. Dans

l’autre sens, pour ‖x‖2 = 1, il suffit de décomposer | < f(x), x > | dans une base orthonormée de vecteurs propres, et ceci avant de majorer par

ρ(f).

Exercice 6 (convergence uniforme sur tout compact). [ ]
Soit z ∈ C, on veut montrer que :

(1 +
z

n
)n −→

n→+∞
ez

1. Soient a, b ∈ C et on pose m = max{|a|, |b|}. Montrer que pour tout n ∈ N∗, |an − bn| ≤ |a− b|.nmn−1.

2. En déduire que pour tout u ∈ C, |enu − (1 + u)n| ≤ |u|2.nen|u|, puis établir la convergence simple demandée.

3. On note fn : z 7−→ (1 +
z

n
)n. Montrer que (fn) converge uniformément vers la fonction exponentielle sur tout compact K.

Indications 1. C’est immédiat par la formule de factorisation. 2. On exploite l’inégalité précédente, et on affine la majoration obtenue,

à l’aide notamment du DSE de l’exponentielle. On pourra alors prendre u = z/n pour justifier la convergence simple. 3. On travaille sur tout

compact K inclus dans C, donc borné.

Exercice 7 (diagonalisabilité d’une matrice par blocs). [ ]
Soit A ∈Mn(C) et on définit la matrice B par blocs :

B =

(
On A
A On

)

1. Montrer que la matrice P =

(
In In
In −In

)
est inversible. En déduire que B est semblable à la matrice B′ =

(
A 0n

0n −A

)
.

2. Etablir alors que A est diagonalisable si et seulement si B est diagonalisable.

Indications 1. On calcule P 2, et il est alors facile de donner P−1. On vérifie ensuite que PBP−1 = B′. 2. D’après 1, on préfère tra-

vailler entre A et B′. Par double implication : pour le sens direct, si A est diagonalisable, on transforme les blocs dans B′ avant de faire

apparâıtre un produit de matrices par blocs de la forme QDQ−1. Pour le sens réciproque, si B′ est diagonalisable, on invoque l’existence d’un

polynôme P scindé à racines simples tel que P (B′) = 0, et donc P (A) = 0.

Exercice 8 (étude qualitative de solutions). [ ]
Soit f : R+ −→ R une fonction qu’on suppose continue et intégrable sur R+. On considère l’équation différentielle :

(E) y′′(x) + f(x)y(x) = 0

1. Notons y une solution bornée de (E). Montrer que nécessairement y′(x) −→
x→+∞

0.

2. Montrer alors que tout système fondamental de solutions de S0 contient au moins une solution non bornée sur R+.

Indications 1. On intègre l’égalité sur [0, X] pour obtenir y′(X), puis on justifie que la limite est finie en +∞. En notant ` cette limite,

on raisonne par l’absurde : par exemple, si ` > 0, il existe A ≥ 0 tel que y′(x) ≥ `/2 sur [A,+∞[... ce qui nous permet après intégration de

contredire le fait que y soit bornée ! 2. Par l’absurde, on suppose que y1 et y2 sont deux solutions indépendantes bornées et on montre que le

wronskien est constant... et égal à 0 grâce à la question précédente. C’est impossible car elles sont indépendantes.
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