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Planche de préparation pour les oraux

L’oral a pour objectif d’évaluer les candidats sur :

• la connaissance et la compréhension des notions mathématiques des programmes de MPSI et MP,

• la capacité technique de calculs,

• la faculté à restituer une réflexion appropriée à une situation donnée, à gérer l’espace de travail (tableau à disposition),
à interagir avec l’examinateur, celui-ci pouvant à tout moment interroger sur une question annexe au problème posé
ou proposer une indication pour aider le candidat.

Exercice 1 (loi de Bernoulli et matrices aléatoires). [ ]
Soient X1, . . . , Xn des variables aléatoires indépendantes suivant toutes la même loi de Bernoulli de paramètre p. On pose :

D = diag(X1, . . . , Xn) et M = PDP−1 où P ∈ GLn(R).

1. Donner les lois et espérances des variables tr(M), det(M) et rg(M).

2. Déterminer la probabilité que les sous-espaces propres de M soient de même dimension. On raisonnera sur la parité de n.

3. On considère le vecteur colonne U = (X1, . . . , Xn)T et on note A = UUT ∈ Mn(R). Donner la loi des coefficients de A, de
tr(A) et rg(A).

Questions du jury

• Soit p un projecteur d’un espace vectoriel E de dimension finie. Justifier que rg(p) = tr(p).

• Rappeler la caractérisation des matrices de rang r, puis montrer que rg(AB) ≤ min(rg(A), rg(B)).

Exercice 2 (deux expressions intégrales de la constante d’Euler). [ ]
On considère la série harmonique

∑
1
n

et on note Hn la n-ième somme partielle de sorte que pour tout n ∈ N∗, Hn =
∑n
k=1

1
k

.

1. Montrer qu’il existe γ ∈ [0, 1] telle que Hn = ln(n) + γ + o(1), puis établir que :

γ =

∫ +∞

1

1

E(t)
− 1

t
dt > 0

2. On pose pour tout n ∈ N∗, fn : t 7−→

(1− t

n
)n , si 0 < t ≤ n

0 , si t > n
.

(a) Déterminer la limite de (fn) quand n→ +∞.

(b) En déduire alors la valeur de Γ′(1).

Questions du jury

• On note encore Γ la fonction gamma d’Euler. Justifier que Γ(x) −→ +∞ quand x → +∞, puis établir qu’au voisinage de l’infini, on a
pour tout a > 0, ax = ◦(Γ(x)).

• Rappeler la définition de la log-convexité, puis montrer que Γ est log-convexe sur R∗+. On pourra procéder de deux façons.

Exercice 3 (commutant d’une matrice diagonalisable). X/ENS [ ]
Soit A ∈Mn(K). On suppose que A est diagonalisable et on note λ1, . . . , λr les valeurs propres distinctes de A et n1, . . . , nr leurs
multiplicités respectives.
On définit le commutant de A par :

C(A) = {M ∈Mn(K), AM = MA}

et on rappelle que K[A] = {P (A), P ∈ K[X]}.

1. Montrer qu’on a dim(K[A]) = r et dim(C(A)) = n2
1 + . . .+ n2

r.

2. Justifier que K[A] ⊂ C(A), puis établir les équivalences suivantes :

dim(C(A)) = n⇔ dim(K[A]) = n⇔ r = n⇔ C(A) = K[A]
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Exercice 4 (une autre preuve de d’Alembert-Gauss). X/ENS [ ]
On considère f une fonction 2π-périodique et de classe C1 sur R à valeurs dans C. Si de plus, f ne s’annule pas, on définit la
fonction indice par :

I(f) =
1

2πi

∫ 2π

0

f ′(t)

f(t)
dt

1. On pose pour tout x ∈ R, ψ(x) = exp(

∫ x

0

f ′(t)

f(t)
dt). Montrer que ψ est de classe C1 sur R, puis justifier que ψ est solution

d’une équation différentielle linéaire d’ordre 1.

2. Etablir qu’il existe λ ∈ K∗, ψ = λf . En déduire ψ est 2π-périodique et que nécessairement I(f) ∈ Z.

3. Soit P ∈ C[X] qu’on suppose de degré n ≥ 1. Montrer alors que P possède au moins une racine dans C.
On pourra raisonner par l’absurde et considérer la fonction fr : t 7−→ P (reit) pour tout r ≥ 0 et définir une intégrale à
paramètre en posant F (r) = I(fr).

Exercice 5 (autour des groupes finis). [ ]

1. (a) Soit G un groupe fini tel que pour tout x ∈ G, x2 = 1. Montrer que G est nécessairement abélien et que Card(G) est
une puissance de 2.

(b) On note p un nombre premier tel que p ≥ 3. Montrer alors que tout groupe G de cardinal 2p possède au moins un
élément d’ordre p.

2. On suppose désomais que G désigne groupe fini tel que Card(G) = 4. Etablir que G est isomorphe à Z/4Z ou à Z/2Z×Z/2Z.

Indications 1.a) L’hypothèse nous donne que pour tout x ∈ G, x = x−1 et donc, xy = (xy)−1 = . . . = yx. On procède alors par récurrence

sur n = Card(G). Pour n = 1, c’est immédiat. Si n ≥ 2, on introduit H un sous-groupe distinct de G satisfaisant la même condition et de

cardinal maximal et en notant a ∈ G\H, on montre par maximalité que nécessairement G = H taH de cardinal 2Card(H) et donc, c’est encore

une puissance de 2. 1.b) D’après le théorème de Lagrange, les éléments de G sont d’ordre 1, 2, p ou 2p. Par l’absurde, on suppose qu’il n’y a

pas d’éléments d’ordre p : on en déduit que pour tout x, on a x2 = 1 et par suite, Card(G) est une puissance de 2. CONTRADICTION avec

p premier et p ≥ 3. 2. On discute les cas : si G possède un élément d’ordre 4, alors il est cyclique et donc isomorphe à Z/4Z. Sinon, par le

théorème de Lagrange, les éléments de G à l’exception du neutre sont tous d’ordre 2 : d’après 1, G est abélien et on peut construire à la main

un isomorphisme de groupes de G sur (Z/2Z× Z/2Z,+).

Exercice 6 (un exemple de calcul d’intégrales jumelles). [ ]
On considère une fonction f ∈ C0([0, 1],R).

1. Montrer qu’on a l’égalité :
π

2

∫ π

0

f(sin(x)) dx =

∫ π

0

xf(sin(x)) dx

2. En déduire pour tout n ∈ N, le calcul de l’intégrale In =

∫ π

0

x sin2n(x)

cos2n(x) + sin2n(x)
dx.

Indications 1. Dans un premier temps, on pose t = π/2 − x afin de transformer
∫ π
0
xf(sin(x)) dx : on obtient deux intégrales dont l’une

est nulle par imparité puis, on repose t = π/2− x pour se ramener en sinus. 2. D’après 1, on est ramené à l’intégrale d’une fonction rationnelle

en cos et sin. Par π-périodicité, on peut écrire l’intégrale sur [−π/2, π/2] et on introduit son intégrale jumelle pour pouvoir travailler avec les

deux intégrales jumelles.

Exercice 7 (série des inverses des nombres premiers). [ ]

On pose p1 = 2 et on note plus généralement pn le n-ième nombre premier. Montrer que la série
∑ 1

pn
est divergente.

Indications Comme pn −→ +∞, on rappelle que les séries de terme général 1/pn et − ln(1 − 1/pn) sont de même nature. Par l’absurde

si la série
∑

1/pn converge, alors on pourra majorer, à cran fini, les somme partielles
∑N
k=1 ln(1/(1 − 1/pk)) = ln(

∏N
k=1

∑+∞
i=0 1/pik). Mal-

heureusement, en choisissant de travailler avec N = pn, on peut montrer qu’on majore ainsi Hpn ∼ ln(pn) −→ +∞.
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Exercice 8 (étude de deux suites trigonométriques classsiques). [ ]
Pour tout θ ∈ R, on définit les suites (un) et (vn) par un = cos(nθ) et vn = sin(nθ).

1. Montrer que pour tout n ∈ N∗, {
un+1 − un−1 = −2vn sin(θ)

vn+1 − vn−1 = 2un sin(θ)

2. (a) On se place dans le cas où sin(θ) 6= 0. Montrer que (un) est nécessairement divergente.

(b) On se place dans le cas où sin(θ) 6= 0. Montrer de la même façon que (vn) est nécessairement divergente.

3. On se place dans le cas où sin(θ) = 0, c’est à dire θ ∈ {2kπ, (2k+ 1)π, k ∈ Z}. Que pouvez-vous dire de la nature des suites
(un) et (vn) ?

On retrouve en particulier le résultat qu’on a évoqué pendant la préparation : avec θ = 1 [2π], (cos(n)) et (sin(n)) sont divergentes.

Indications 1. On exploite simplement les formules trigonométriques. 2.a) et b) Par l’absurde, si par exemple (un) converge vers une limite

`, alors on obtient de la question 1 : vn −→ 0, puis dans la seconde ligne, ` = 0 mais u2
n + v2n = 1, ce qui livre par passage à la limite 0 = 1.

CONTRADICTION. 3. Par 2π-périodicité, on peut simplifier les calculs et obtenir rapidement le comportement asymptotique des deux suites

dans ces cas particuliers.
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