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Planche de préparation pour les oraux

L’oral a pour objectif d’évaluer les candidats sur :

• la connaissance et la compréhension des notions mathématiques des programmes de MPSI et MP,

• la capacité technique de calculs,

• la faculté à restituer une réflexion appropriée à une situation donnée, à gérer l’espace de travail (tableau à disposition),
à interagir avec l’examinateur, celui-ci pouvant à tout moment interroger sur une question annexe au problème posé
ou proposer une indication pour aider le candidat.

Exercice 1 (limite d’une série vectorielle). I Centrale 2 [ ]
On considère la matrice A définie par :

A = −1

4


0 −1 −1 0
−1 0 0 −1
−1 0 0 −1
0 −1 −1 0


1. (a) Dans le langage Python, construire la fonction somme(n : int) −→ array qui, pour tout entier naturel n non nul,

renvoie la valeur de la somme partielle
∑n

k=1
(−1)k+1

k
Ak.

Quel est le comportement asymptotique de la série
∑

k≥1
(−1)k+1

k
Ak ?

(b) En notant S la limite éventuelle de cette série, quelle hypothèse peut-on faire sur la forme de exp(S) ?

Plus généralement, on considère A ∈ S++
n (R) telle qu’il existe a ∈ [0, 1[ vérifiant :

∀X ∈Mn,1(R), XTAX ≤ aXTX

3. Montrer que, sous ces conditions, la série
∑

k≥1

(−1)k+1

k
Ak converge vers une limite S symétrique.

4. Prouver alors le résultat obtenu à la question 2.

Exercice 2 (étude d’une suite d’intégrales). [ ]
Fixons a > 0 et considérons une fonction f continue sur [0, a], décroissante et à valeurs réelles strictement positives telles que
f(0) = 1. On suppose de plus que f est dérivable à droite en 0 avec f ′(0) = −1.

On pose pour tout n ∈ N,

In =

∫ a

0

(f(t))n dt

Déterminer la limite de la suite (In), ainsi qu’un équivalent quand n→ +∞.

Questions du jury

• Citer le théorème de changement de variables pour les intégrales généralisées. Justifier alors que l’intégrale
∫ π/2
0 ln(cos(x)) dx est bien

convergente, puis déterminer sa valeur.

• Rappeler la définition d’une fonction convexe sur un intervalle I, puis démontrer l’inégalité de Jensen.

Exercice 3 (matrice des covariances). [ ]
Soient X1, . . . , Xn des variables aléatoires réelles indépendantes et identiquement distribuées telles que pour tout k ∈ J1, nK,
Xk ∈ L2. On note pour k ∈ J1, nK, Yk = X1 + . . .+Xk et on définit M = (cov(Yi, Yj)) la matrice des covariances des Yk.

1. Justifier que M est diagonalisable et que Sp(M) ⊂ R+.

2. Simplifier les coefficients de M , puis exprimer M en fonction de la matrice A =


1 1 . . . 1
1 2 . . . 2
...

...
. . .

1 2 n

.

3. On suppose que pour tout k ∈ J1, nK, V(Xk) = 1. Donner un encadrement de V(
∑n

k=1 tkYk) en fonction des valeurs propres
extrémales de A et des réels tk.

Questions du jury

• On note X1, . . . , Xn des variables aléatoires discrètes. Etablir que V(X1 + . . .+Xn) =
∑n
i=1 V(Xi) + 2

∑
1≤i<j≤n cov(Xi, Xj).

• Rappeler la définition de la fonction génératrice d’une variable aléatoire à valeurs dans N. On suppose que X1, . . . , Xn désignent des
variables aléatoires indépendantes telles que Xi ∼ P(λi). Justifier que X1 + . . .+Xn suit encore une loi de Poisson dont on précisera le
paramètre.
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Exercice 4 (exponentielle de matrices antisymétriques réelles). X/ENS [ ]
On note An(R) l’ensemble des matrices réelles antisymétiques de taille n. Montrer que l’application :

exp : An(R) −→ SOn(R)

est bien définie et qu’elle désigne une application surjective.

Exercice 5 (exposant d’un groupe abélien fini). X/ENS [ ]
Soit G un groupe multiplicatif qu’on suppose abélien et fini. Pour tout x ∈ G, on note o(x) l’ordre de x.

1. Soit (x, y) ∈ G2 et on pose m = o(x), n = o(y).

(a) On suppose que m et n sont premiers entre eux. Etablir que o(xy) = mn.

(b) Si m et n ne sont pas premiers entre eux, a t-on o(xy) = ppcm(m,n) ?

2. Soit (m,n) ∈ (N∗)2. Montrer qu’il existe deux entiers m′ et n′ tels que :


m′|m et n′|n
pgcd(m′, n′) = 1

ppcm(m,n) = m′n′
.

3. On considère z ∈ G d’ordre maximal m. Montrer que m désigne le ppcm des ordres des éléments de G. On retiendra qu’il
existe un élément d’ordre maximal m, appelé aussi exposant du groupe G, qui n’est rien d’autres que le ppcm des ordres.

4. (a) Soient K un corps commutatif et G un sous-groupe fini du groupe des éléments inversibles U(K) = K∗. Etablir alors
que G est nécessairement cyclique.

(b) En déduire que pour tout nombre premier p, (Z/pZ∗,×) est un groupe cyclique.

Indications 1.a) On justifie d’abord que (xy)mn = 1, puis on montre que pour tout k ∈ N tel que (xy)k = 1, alors mn|k. Autrement dit, c’est

bien la plus petite puissance qui permet de toucher le neutre. 1.b) On prend y = x−1 et ainsi, o(xy) = 1. 2. On écrit la décomposition de m

et n en produit de nombres premiers, et on choisit m′ et n′ à partir de ces facteurs en jouant sur les valuations. 3. Soit x un autre élément de

G d’ordre n, on introduit m′, n′ et on regarde le produit zm/m
′
xn/n

′
: c’est un élément de G d’ordre m′n′ = ppcm(m,n) et donc, inférieur à

m choisi maximal. D’où, ppcm(m,n) = m et ainsi, m est bien multiple de chacun des ordres des éléments de G. 4.a) On note m l’exposant du

groupe G, et étant le ppcm de tous les ordres, alors pour tout x ∈ G, x est racine du polynôme Xm − 1 qui possède un nombre fini de racines,

d’où n = card(G) ≤ m. Or en notant z l’élément d’ordre maximal m, on a par le théorème de Lagrange : m|n, et donc m ≤ n. Finalement, z

est d’ordre m = n et ainsi, G =< z >. 4.b) C’est immédiat, puisque p ∈ P ⇒ Z/pZ désigne un corps commutatif à p éléments.

Exercice 6 (méthode de quadrature de Gauss). [ ]
On pose pour tout n ≥ 1, Ln(X) = ((X2 − 1)n)(n).

1. Montrer que pour tout Q ∈ Rn−1[X],

∫ 1

−1

Q(x)Ln(x) dx = 0.

2. Etablir que Ln admet n racines simples x1 < x2 < . . . < xn dans l’intervalle ]− 1, 1[.

3. Montrer alors qu’il existe un unique n-uplet (α1, . . . , αn) ∈ Rn tel que :

∀Q ∈ R2n−1[X],

∫ 1

−1

Q(x) dx =

n∑
i=1

αiQ(xi)

Indications 1. On réalise des Ipp successives afin d’abaissser le degré de Q... et on n’oubliera pas de rappeler que ±1 sont racines multi-

ples d’ordre n pour simplifier les crochets. 2. C’est une question classique qui a déjà été traitée : on note Pn(X) = (X2− 1)n et par récurrence,

on montre que P (k)
n possède au moins k racines sur ] − 1, 1[. On conclut alors avec le degré de Ln = P (n)

n . 3. Si on effectue la division

euclidienne par Ln, on obtient facilement :
∫ 1
−1

Q =
∫ 1
−1

R, mais l’application φ : P 7−→
∫ 1
−1

P peut être vue comme une forme linéaire sur

Rn−1[X]. L’espace dual L(Rn−1[X],R) est de dimension n et les applications φi : P 7−→ P (xi) en désignent une base, ce qui nous permettra de

relier
∫ 1
−1

Q à R(xi) = Q(xi).

Exercice 7 (la norme-p est une norme sur Kn). [ ]

Soient p, q deux réels tels que p > 1, q > 1 et
1

p
+

1

q
= 1. On définit pour tout x = (x1, . . . , xn) ∈ Kn,

‖x‖p = (

n∑
k=1

|xk|p)1/p et ‖x‖q = (

n∑
k=1

|xk|q)1/q

1. Prouver que pour tout (a, b) ∈ (R+)2, ab ≤ ap

p
+
bq

q
(inégalité de Young).

2. Etablir que pour tout (x, y) ∈ (Kn)2,
∑n

k=1 |xk||yk| ≤ ‖x‖p × ‖x‖q (inégalité de Hölder).

3. Montrer alors que ‖.‖p définit une norme sur Kn, puis justifier en particulier que ‖.‖p −→
p→+∞

‖.‖∞.
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Indications 1. Le cas où a ou b nul est immédiat. Sinon, on peut prendre le logarithme du membre de droite et invoquer la concavité. 2. Encore

une fois, si x ou y nul, c’est immédiat. Sinon, on applique l’inégalité de Young avec a = |xk|/‖x‖p et b = |yk|/‖y‖q . En sommant les inégalités,

on retrouve alors l’inégalité de Hölder. 3. On revient à la définition d’une norme. Seule l’inégalité triangulaire est délicate : pour cela, on travaille

à la puissance p, et on décompose le terme général avant majoration : |xk + yk|p = |xk + yk|p−1|xk + yk| ≤ |xk + yk|p−1|xk|+ |xk + yk|p−1|yk|.
On applique enfin l’inégalité de Hölder à chaque somme et les réels p, q étant associés, on peut retrouver la majoration souhaitée... Pour la

dernière limite, on peut noter k0 un indice qui atteint le maximum des |xk| et factoriser avant le passage à la limite.

Exercice 8 (régularité d’une somme). [ ]

Pour tout n ∈ N∗, on note fn : x 7−→ cos(nx)

n
√
n

.

1. Montrer que
∑
fn converge simplement sur R et que la somme S est continue sur R.

2. Prouver que la série de fonctions
∑
f ′n converge simplement sur R.

3. Montrer que S n’est pas dérivable en 0. En déduire que la converge de la série
∑
f ′n n’est pas uniforme sur R.

Indications 1. A x fixé, on peut dominer |fn(x)| par une série de Riemann convergente. De plus, cette majoration est indépendante de

x, ce qui nous livre la convergence normale sur R. 2. A x fixé, f ′n(x) est le terme général d’une série produit de la forme anbn : on peut alors

invoquer les résultats de convergence liés à la transformation d’Abel... 3. On écrit le taux d’accroissement en 0, puis, la somme obtenue étant

négative, on peut la majorer par la somme sur les seuls entiers n tels que nx/2 ≤ π/2. Comme sin(X) ≥ 2X/π sur [0, π/2], on peut aller

chercher un majorant de sorte qu’en x = π/p, on a une somme finie qui ”pousse” le taux d’accroissement vers −∞. Pour finir, la CU nous

donnerait le critère C1... ce qui est contradictoire avec la non dérivabilité en 0.
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