
#Correction_info9

#EX1

from	numpy	import	*
G=array([[0,1,1,0,0,0],[1,0,0,1,0,0],[1,0,0,1,0,0],[0,1,1,0,1,1],[0,0,0,1,0,0],
[0,0,0,1,0,0]])

#On	va	parcourir	le	tableau	er	regarder	la	ième	ligne.
def	voisins(M,i):
				"""voisins(M:array,i:int)->list"""
				p,q=shape(M)
				assert	0<=i<=p
				L=[]
				for	j	in	range(0,q):
								if	M[i,j]!=0:	#si	le	poids	est	non	nul,	j	est	voisin	de	i
												L.append(j)	#on	stocke	alors	j
								else:
												pass
				return	L

#On	peut	utiliser	le	programme	précédent	et	additionner	le	nombre	de	voisins	de
chaque	sommet...	le	nombre	d'arêtes	sera	alors	immédiat.
def	degretotal(M):
				"""degretotal(M:int)->int"""
				p,q=shape(M)
				S=0
				for	i	in	range(0,p):
								S=S+len(voisins(M,i))
				return	S

def	aretes(M):
				"""aretes(M:int)->int"""
				deg=degretotal(M)
				return	int(deg/2)

#EX2

#On	va	parcourir	le	tableau	avec	une	double	boucle	pour	repérer	les	relations	entre
deux	sommets.
def	matricetoliste(M):
				"""matricetoliste(M:array)->list"""
				p,q=shape(M)
				L=[[]	for	k	in	range(0,p)]
				for	i	in	range(0,p):
								for	j	in	range(0,q):
												if	M[i,j]!=0:	#si	le	poids	est	non	nul,	c'est	un	voisin
																L[i].append(j)	#on	le	stocke	alors	dans	la	liste	des	voisins	du
sommet	i
												else:
																pass
				return	L

#On	va	parcourir	la	liste	et	pour	chaque	sous-liste,	on	placera	des	poids	égaux	à	1
ou	0	en	fonction	de	la	présence	du	sommet.
def	listetomatrice(L):
				"""listetomatrice(L:list)->array"""
				p=len(L)
				M=zeros((p,p),dtype=int)	#j'ai	ajouté	une	option	à	la	demande	Charly	;)	pour
garder	des	entiers	dans	le	tableau
				for	i	in	range(0,p):
								for	j	in	range(0,p):
												if	j	in	L[i]:
																M[i,j]=1	#on	repère	les	sommets	présents	et	seulement	eux
												else:
																pass
				return	M

1



#EX3
def	degremax(D:dict)->int:
				"""renvoie	le	degré	sortant	maximal"""
				assert	len(D)!=0
				M=len(D[0])
				for	x	in	D:
								if	len(D[x])>M:
												M=len(D[x])
								else:
												pass
				return	M

def	grapheinv(D:dict):
				assert	len(D)!=0
				n=len(D)
				#on	construit	un	dictionnaire	avec	les	bons	sommets	prêt	à	recevoir	les	chemins
inverses
				d={}
				for	k	in	range(0,n):
								d[k]=[]
				#on	va	alors	ajouter	les	arêtes	inverses	à	chacun	des	sommets
				for	k	in	range(0,n):
								for	x	in	D:
												if	k	in	D[x]:
																d[k].append(x)
												else:
																pass
				return	d

def	colorationvalide(D:dict,L:list)->bool:
				#on	va	simplement	tester	si	deux	sommets	voisins	n'ont	pas	la	même	couleur...
				assert	len(D)!=0
				for	x	in	D:
								for	k	in	D[x]:
												if	L[x]==L[k]:
																return	False
				return	True

#Le	pire	des	cas	se	produit	par	exemple	lorsque	le	graphe	est	bien	colori	é	et	qu’il
faut	donc	tout	tester.	On	passe	alors	N	fois	dans	la	premi`ere	boucle	et	pour	chaque
passage	dans	cette	boucle,	on	passe	au	plus	M	fois	dans	la	seconde	boucle.	Au	total,
on	a	donc	au	maximum	NM	tests	d’	égalite.

2


