#Correction info9
#EX1

from numpy import *
G=array([lo,1,1,0,0,01,[1,0,0,1,0,0],[1,0,0,1,0,0],10,1,1,0,1,17,[0,0,0,1,0,0],
[0,0,0,1,0,011])

#0n va parcourir le tableau er regarder la iéme ligne.
def voisins(M,i):
"""yoisins(M:array,i:int)->list"""
p,g=shape(M)
assert O<=i<=p
L=[]
for j in range(0,q):
if M[1i,j]!=0: #si le poids est non nul, j est voisin de i
L.append(j) #on stocke alors j
else:
pass
return L

#0n peut utiliser le programme précédent et additionner le nombre de voisins de
chaque sommet... le nombre d'arétes sera alors immédiat.
def degretotal(M):

"""degretotal(M:int)->int"""

p,g=shape(M)

S=0

for i in range(0,p):

S=S+len(voisins(M,i))
return S

def aretes(M):
"""aretes(M:int)->int"""
deg=degretotal(M)
return int(deg/2)

#EX2

#0n va parcourir le tableau avec une double boucle pour repérer les relations entre
deux sommets.
def matricetoliste(M):
"""matricetoliste(M:array)->list"""
p,g=shape(M)
L=[[] for k in range(0,p)]
for i in range(0,p):
for j in range(0,q):
if M[i,j]!=0: #si le poids est non nul, c'est un voisin
L[i].append(j) #on le stocke alors dans la liste des voisins du
sommet i
else:
pass
return L

#0n va parcourir la liste et pour chaque sous-liste, on placera des poids égaux a 1
ou 0 en fonction de la présence du sommet.
def listetomatrice(L):
"""listetomatrice(L:1list)->array"""
p=Llen(L)
M=zeros((p,p),dtype=int) #j'ai ajouté une option a la demande Charly ;) pour
garder des entiers dans le tableau
for i in range(0,p):
for j in range(0,p):
if j in L[i]:
M[i,j]l=1 #on repere les sommets présents et seulement eux
else:
pass
return M



#EX3
def

def

degremax(D:dict)->int:
"""renvoie le degré sortant maximal"""
assert len(D)!=0
M=Tlen(D[0O])
for x in D:
if len(D[x])>M:
M=Tlen(D[x])
else:
pass
return M

grapheinv(D:dict):

assert len(D)!=0

n=Llen(D)

#on construit un dictionnaire avec les bons sommets prét a recevoir les chemins

inverses

def

#Le

d={}
for k in range(0,n):
dlk]=T[1]
#on va alors ajouter les arétes inverses a chacun des sommets
for k in range(0,n):
for x in D:
if k in D[x]:
d[k].append(x)
else:
pass
return d

colorationvalide(D:dict,L:1list)->bool:
#on va simplement tester si deux sommets voisins n'ont pas la méme couleur..
assert len(D)!=0
for x in D:
for k in D[x]:
if L[x]==L[k]:
return False
return True

pire des cas se produit par exemple lorsque le graphe est bien colori é et qu’il

faut donc tout tester. On passe alors N fois dans la premi ere boucle et pour chaque
passage dans cette boucle, on passe au plus M fois dans la seconde boucle. Au total,
on a donc au maximum NM tests d’ égalite.



