
MP - Lycée Chrestien de Troyes Info 9

Les graphes : présentation des deux modèles de représentation

On présente ici les graphes qui peuvent avoir de nombreuses applications : ils illustrent parfaitement la notion de réseau de
sommets et on essaiera de comprendre quelles sont les modélisations possibles de ces graphes dans le langage Python.
D’ailleurs, cela nous permettra de mieux appréhender, plus tard, le principe de coloriage, indispensable pour la bonne gestion
des parcours dans un graphe.

1 Introduction à la notion de graphe

Les graphes sont très utiles, car leur compréhension permet de modéliser différentes situtations dans lesquelles il y a différents
états possibles et pour lesquelles on peut passer d’un état à un autre.

Bien entendu, ils vous ont permis de décrire vos premières situations probabilistes, mais ils nous permettront aussi de
modéliser d’autres problèmes d’évolution que ce soit pour le transport d’informations, la répartition de tâches ou d’actions à
effectuer, pour le déplacement physique d’individus, ou plus généralement tous les problèmes nécessitant de représenter des
réseaux d’objets reliés les uns aux autres.

Concrètement, on peut définir un graphe non orienté comme un couple (S,A) avec :{
S l’ensemble des sommets du graphe

A une partie de S × S, décrivant l’ensemble des arêtes (i, j) ∈ S2 reliant deux sommets

Par exemple, on peut considérer le graphe suivant :

0○

1○2○ 3○

4○

5○

Dans un graphe non orienté de sommets S = J0, nK, on appelle degré d’un sommet di le nombre d’arêtes sortantes de ce
sommet i, et on peut montrer que le nombre d’arêtes A vérifie toujours : A = 1

2

∑n
i=0 di.

D’ailleurs,

• un graphe peut être orienté si on distingue le sens de parcours d’un sommet à un autre. Autrement dit, en notant
S = J0, nK les sommets d’un graphe, on distingue l’arête (i, j) de l’arête (j, i) pour i 6= j, (i, j) ∈ S2.
Dans ce cas, on parle plutôt d’arcs entre deux sommets que d’arêtes.

• un graphe peut être valué si pour toute arête (i, j) ∈ S2, on lui associe un poids ωij ∈ R. Ce poids peut alors
représenter une probabilité, une distance, un temps ou toute autre mesure associée au problème donné.

Remarque Ici, on travaillera avec des graphes sans boucle, c’est à dire qu’on suppose qu’il n’y a pas d’arête permettant
de relier le sommet i à lui-même, mais il faut savoir que cela ne décrit pas toutes les situations.

2 Deux modèles de représentation

Pour représenter un graphe dans le langage Python, on pourra procéder de deux façons :

1. à l’aide d’une liste d’adjacence, c’est à dire qu’on fait le choix de décrire les relations entre les sommets à l’aide d’une
liste ou d’un dictionnaire, pour lesquelles l’indice du sommet renvoie le nom de ses voisins : les sommets qui lui sont
adjacents. Par exemple, si on reprend le graphe précédent :

In : G=[[1,2,3,4],[0],[0],[0,4,5],[0,3,5],[4,3]]

ou encore :

In : G={0:[1,2,3,4],1:[0],2:[0],3:[0,4,5],4:[0,3,5],5:[4,3]}

En fait, le réel avantage du dictionnaire est de pouvoir nommer comme on veut les sommets du graphe, et de faire des
appels directs pour aller chercher les sommets voisins.

www.cpgemp-troyes.fr 1/3

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 9

2. à l’aide d’une matrice d’adjacence, c’est à dire que pour un graphe à n sommets, on fait le choix de décrire les
relations entre les sommets à l’aide d’une matrice carrée d’ordre M ∈Mn(R) et pour laquelle on convient que :

∀(i, j) ∈ J0, nK2, mij =

{
1, s’il existe une arête entre les sommets i et j

0, sinon

Par exemple, si on reprend le graphe précédent :

In : M=array([[0,1,1,1,1,0],[1,0,0,0,0,0],[1,0,0,0,0,0],[1,0,0,0,1,1],[1,0,0,1,0,1],[0,0,0,1,1,0]])

Evidemment, quand le graphe est non orienté, on aura une matrice symétrique. Par contre, pour les graphes plus
complexes, qu’ils soient orientés, valués avec ou sans boucle, c’est cette représentation qu’on préfèrera car elle
pemet d’ajouter le poids des arcs entre deux sommets en posant :

∀(i, j) ∈ J0, nK2, mij =

{
ωij , s’il existe un arc reliant i à j et de poids ωij

0, sinon

Remarques

1. Il y a quand même une limite à cette représentation, c’est qu’elle nécessite de stocker n2 informations et peut donc être
gourmande en place mémoire.

2. Pour les graphes valués, on peut choisir de mettre le poids à 0 pour exprimer qu’il n’y a pas d’arc entre deux sommets.
Pourtant, on choisit souvent une autre convention :
dans le langage Python, on peut utiliser la borne float(’inf’) car elle donne un poids infini, ce qui permet de faire
des comparaisons avec les autres poids. En effet,

In : a=float(’inf’); a>2

True

Exercice 1 (première utilisation de la matrice d’adjacence). []
On considère un graphe G = (S,A) à n sommets, qu’on suppose non orienté, non valué et sans boucle, et on note MG sa matrice
d’adjacence.

1. Donner, pour le graphe suivant, sa matrice d’adjacence :

0○ 1○

2○ 3○

4○ 5○

2. Dans le langage Python, construire la fonction voisins(M:array,i:int)->list qui pour tout graphe de matrice d’adjacence
M renvoie la liste des voisins du sommet i. On pourra ajouter une pré-condition pour vérifier si i est bien un sommet possible.

3. Construire les fonctions aretes(M:array)->int et degretotal(M:array)->int qui pour tout graphe de matrice d’adjacence
M renvoie le nombre d’arêtes, et la somme des degrés du graphe.

Exercice 2 (matrice d’adjacence et liste d’adjacence). []
On considère un graphe G = (S,A) à n sommets, qu’on suppose non orienté, non valué et sans boucle, et on note LG sa liste
d’adjacence.

1. Donner, pour le graphe suivant, sa liste d’adjacence :

0○ 1○

2○ 3○

4○ 5○

2. Dans le langage Python, construire la fonction de conversion matricetoliste(M:array)->list qui pour tout graphe de
matrice d’adjacence M renvoie la liste d’adjacence de ce graphe.

3. De la même façon, construire la fonction de conversion listetomatrice(L:list)->array qui pour tout graphe de liste
d’adjacence L renvoie la matrice d’adjacence de ce graphe.

www.cpgemp-troyes.fr 2/3

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 9

Exercice 3 (utilisation d’un dictionnaire pour modéliser un graphe orienté). []
Dans cet exercice, les graphes ont leurs sommets numérotés à partir de 0 et ils sont orientés. On les représente par un dictionnaire
d’adjacence.
Par exemple, le graphe :

0 1 2

3 4 5 6

est représenté par le dictionnaire qui associe chaque sommet (clef) à ses voisins (valeurs) :

d = {0: [1, 3], 1: [2], 2: [4, 5], 3: [4], 4: [1], 5: [], 6: [2]}

Enfin, on appelle degré d’un sommet le nombre d’arêtes qui partent depuis ce sommet vers des sommets voisins.

1. Ecrire en langage Python une fonction degreMax(d : dict) −→ int qui reçoit en entrée un dictionnaire d’adjacence
représentant un graphe orienté et renvoie le degré sortant maximal parmi tous les degrés sortants des sommets du graphe.

Si G est un graphe orienté, on appelle graphe inverse de G le graphe possédant les mêmes sommets ainsi que les mêmes arêtes
mais en sens inverse par rapport à celles de G.

2. Représenter le graphe inverse du graphe orienté donné en introduction. Ecrire alors en langage Python une fonction
grapheInv(d : dict) −→ dict qui renvoie un dictionnaire d’adjacence du graphe inverse du graphe représenté par d.

On souhaite colorier notre graphe orienté. Les couleurs sont représentées par des entiers naturels. La coloration du graphe est
modélisée par une liste L telle que L[s] est égale à la couleur attribuée au sommet s. Deux sommets du graphe reliés par une arête
ne doivent pas être de la même couleur (coloration du graphe valide).

3. Ecrire en langage Python une fonction colorationV alide(d : dict, L : list) −→ bool qui renvoie True si la coloration L du
graphe représenté par d est valide et False dans le cas contraire.

4. Donner la complexité dans le pire des cas de la fonction précédente en fonction du nombre N de sommets et du nombre M
d’arêtes. Justifier votre réponse.

www.cpgemp-troyes.fr 3/3

http://www.cpgemp-troyes.fr/

	Introduction à la notion de graphe
	Deux modèles de représentation

