
#Correction_info5

#EX1

def	fusion(L1:list,L2:list)->list:
				"""réalise	la	fusion	entre	deux	listes	triées	par	ordre	ccroissant"""
				n1,n2=len(L1),len(L2)
				i1,i2=0,0	#on	définit	des	compteurs	qui	permettront	de	parcourir	les	deux	listes.
				L=[]
				while	i1<n1	and	i2<n2:
								if	L1[i1]<L2[i2]:	#on	compare	les	premiers	éléments	des	listes
												L.append(L1[i1])
												i1=i1+1
								else:
												L.append(L2[i2])
												i2=i2+1
				if	i1==n1	and	i2!=n2:	#la	liste	L1	a	été	épuisée,	on	ajoute	la	fin	de	L2
								L=L+L2[i2:]
				if	i2==n2	and	i1!=n1:	#la	liste	L2	a	été	épuisée,	on	ajoute	la	fin	de	L1
								L=L+L1[i1:]
				return	L

def	trifusion(L:list)->list:
				"""renvoie	une	liste	triée	par	tri	fusion"""
				if	len(L)==1	or	len(L)==0:
								return	L
				else:
								m=len(L)//2
								L1=L[0:m]
								L2=L[m:len(L)]
								return	fusion(trifusion(L1),trifusion(L2))

#A	chaque	étape,	on	appelle	le	programme	sur	la	moitié	des	éléments	de	la	liste...	à
la	fin,	on	est	donc	ramené	à	la	condition	initiale.

#EX2

def	tribulles(L:list):
				for	k	in	range(0,len(L)):	#on	va	faire	n	passages	pour	replacer	tous	les	éléments
								for	i	in	range(0,len(L)-k-1):	#puis,	à	chaque	passage,	on	remonte	la	bulle	si
nécessaire,	par	des	échanges	successifs.
												if	L[i+1]<L[i]:
																L[i],L[i+1]=L[i+1],L[i]
												else:
																pass
				return	L

#EX3

def	selectmin(L:list):
				m,ind=L[0],0		#on	va	comparer	le	min	aux	autres	éléments
				for	i	in	range(0,len(L)):
								if	L[i]<=m:
												m,ind=L[i],i
								else:
												pass
				return	m,ind

def	triselection(L:list):
				L2=[]	#on	va	compléter	cette	nouvelle	liste	au	fur	et	à	mesure
				for	i	in	range(0,len(L)):
								m,ind=selectmin(L)
								L2.append(m)	#on	stocke	la	valeur	min
								del(L[ind])	#puis,	on	l'extrait	de	la	liste	initiale
				return	L2

#EX4

1

def	insertion(L:list,x:float):
				#on	va	chercher	la	place	de	x	dans	cette	liste	triée
				i=0
				while	i<len(L)	and	x>L[i]:	#attention	avec	la	boucle	while,	il	faut	éviter	de
sortir	de	la	liste	:	ce	sont	des	effets	de	bord	qu'il	faut	gérer	convenablement
								i=i+1
				return	L[:i]+[x]+L[i:]

def	triinsertion(L:list):
				L2=[L[0]]	#on	initialise	notre	liste	triée
				for	i	in	range(1,len(L)):
								L2=insertion(L2,L[i])	#puis	on	insère	dans	L2	les	éléments	à	chaque	étape
				return	L2

#EX5

def	trirapide(L:list):
				if	len(L)==0	or	len(L)==1:
								return	L
				else:
								m=len(L)//2
								L1,L2=[],[]
								for	k	in	range(0,len(L)):
												if	k!=m	and	L[k]<=L[m]:
																L1.append(L[k])
												elif	k!=m	and	L[k]>L[m]:
																L2.append(L[k])
								return	trirapide(L1)+[L[m]]+trirapide(L2)

#En	fait,	à	chaque	étape,	on	peut	considérer	qu'on	a	placé	L[m],	et	ainsi	on	est
ramené	à	des	sous-problèmes	de	taille	n-1,	puis	n-2...	ce	qui	permet	d'accrocher	la
condition	d'arrêt	à	un	moment.	Le	programme	peut	alors	remonter	la	pile	d'appels
récursifs	pour	renvoyer	la	liste	triée.

2


