#Correction info5
#EX1

def fusion(L1l:list,L2:list)->list:
"""réalise la fusion entre deux listes triées par ordre ccroissant"""
nl,n2=len(L1),len(L2)
i1,12=0,0 #on définit des compteurs qui permettront de parcourir les deux listes.
L=[1
while il<nl and i2<n2:
if L1[i1]<L2[i2]: #on compare les premiers éléments des listes
L.append(L1[il])

il=i1+1
else:
L.append(L2[i2])
i2=12+1
if il==nl and i2!=n2: #la liste L1 a été épuisée, on ajoute la fin de L2
L=L+L2[i2:]
if i2==n2 and il!=nl: #la liste L2 a été épuisée, on ajoute la fin de L1
L=L+L1[i1:]
return L

def trifusion(L:list)->list:
"""renvoie une liste triée par tri fusion
if len(L)==1 or len(L)==0:
return L
else:
m=len(L)//2
L1=L[0:m]
L2=L[m:len(L)]
return fusion(trifusion(L1),trifusion(L2))

#A chaque étape, on appelle le programme sur la moitié des éléments de la liste... a
la fin, on est donc ramené & la condition initiale.

#EX2

def tribulles(L:list):
for k in range(0,len(L)): #on va faire n passages pour replacer tous les éléments
for i in range(0,len(L)-k-1): #puis, a chaque passage, on remonte la bulle si
nécessaire, par des échanges successifs.
if L[i+1]<L[i]:
L[i],L[i+2]=L[i+1],L[1]
else:
pass
return L

#EX3

def selectmin(L:list):
m,ind=L[0],0 #on va comparer le min aux autres éléments
for i in range(0,len(L)):
if L[i]<=m:
m,ind=L[1],1
else:
pass
return m,ind

def triselection(L:list):
L2=[] #on va compléter cette nouvelle liste au fur et a mesure
for i in range(0,len(L)):
m,ind=selectmin(L)
L2.append(m) #on stocke la valeur min
del(L[ind]) #puis, on l'extrait de la liste initiale
return L2

#EX4

def insertion(L:list,x:float):
#on va chercher la place de x dans cette liste triée
i=0
while i<len(L) and x>L[i]: #attention avec la boucle while, il faut éviter de
sortir de la liste : ce sont des effets de bord qu'il faut gérer convenablement
i=i+1
return L[:i]+[x]+L[1i:]

def triinsertion(L:list):
L2=[L[0]] #on initialise notre liste triée
for i in range(1,len(L)):
L2=insertion(L2,L[i]) #puis on insére dans L2 les éléments a chaque étape
return L2

#EX5

def trirapide(L:list):
if len(L)==0 or len(L)==1:
return L
else:
m=len(L)//2
L1,L2=[],1]
for k in range(0,len(L)):
if k!=m and L[k]<=L[m]:
L1.append(L[k])
elif k!=m and L[k]>L[m]:
L2.append(L[Kk])
return trirapide(L1)+[L[m]]+trirapide(L2)

#En fait, a chaque étape, on peut considérer qu'on a placé L[m], et ainsi on est
ramené a des sous-problémes de taille n-1, puis n-2... ce qui permet d'accrocher la
condition d'arrét a un moment. Le programme peut alors remonter la pile d'appels
récursifs pour renvoyer la liste triée.




