#Correction info4
#EX1

#Dans les deux premiéres questions, la somme de Riemann représente 1l'aire
des rectangles construits a partir des points retenus.

def somme(n:int)->float:
"""renvoie la somme des aires des rectangles a droite"""
f=lambda t:1/(1+t**2)
S=0
for i in range(1l,n+1)
S=S+(1/n)*f(i/n)
return S

def y(n:int)->list:
"""renvoie la liste des valeurs approchées aux points de la subdivision
par la méthode d'Euler"""
h=1/n
T=[k/n for k in range(0,n+1)]
y0=1
L=[y0]
for k in range(1l,n+1)
y=L[k-1]+h*tan(T[k-1])*L[k-1] #attention au schéma qui tient compte
de t {k-1} au rang k
L.append(y)
return L

#0n applique la méthode habituelle, et on trouve que f:t->1/cos(t) désigne
1'unique solution du probleme de Cauchy.

from pylab import *

def euler(n:int)->None:
T=[k/n for k in range(0,n+1)]
Y=y(n)
Z=[1/cos(t) for t in T]
plot(T,Z,label="solution exacte')
plot(T,Y,label="'solution approchée')
legend()
show()

#EX2
def somme(n:int)->float:
"""renvoie la somme des aires des rectangles a droite
f=lambda t:1/(1+t**2)
S=0
for i in range(1l,n+1)
S=S+(1/n)*f(i/n)
return S

def trapezes(n:int)->float:
"""renvoie la somme des aires des trapézes"""
f=lambda t:1/(1+t**2)
S=0
for i in range(0,n):
a=i/n
b=(i+1)/n
S=S+(1/n)*(f(a)+f(b))/2
return S

def simpson(n:int)->float:
"""renvoie la somme des aires des paraboles qui interpolent la
fonction"""
f=lambda t:1/(1+t**2)
S=0
for i in range(0,n):
a=i/n
b=(i+1)/n
m=(a+b)/2 #le point milieu
S=S+(1/n)*(f(a)+4*f(m)+f(b))/6
return S

from math import *
def comparaison(eps:float)->tuple:

"""renvoie les seuils a partir duquel on a appoximation par nos 3
méthodes"""

nl=1

while abs(somme(nl)-pi/4)>eps:
nl=nl+1

n2=1

while abs(trapezes(n2)-pi/4)>eps:
n2=n2+1

n3=1

while abs(simpson(n3)-pi/4)>eps:
n3=n3+1

return nl,n2,n3

#EX3
def bornes(n:int)->tuple:
f=lambda x:x**2-5%x/2+1
a0,bo6=1,4
for k in range(1l,n+1)
m=(a0+b0)/2
if f(a0)*f(m)<0:
al,bl=a0,m #dans ce cas, on définit les nouveaux curseurs
else:
al,bl=m,b0 #dans ce cas, on définit les nouveaux curseurs
a0,b0=al,bl #on réinjecte pour 1'étape suivante
return a0,bo

def approx(p:int)->int:
n=0
while abs(bornes(n)[1]-bornes(n)[0])>10%*(-p)
n=n+1
return n

from pylab import *

def vitesse(N:int)->None:
P=[k for k in range(1,N+1)]
L=[approx(p) for p in P]
plot(P,L)
show()

#Les curseurs représentent des suites adjacentes car (an) est croissante et
(bn) décroissante, et a chaque étape la longuer de l'intervalle est divisé
par 2, autrement dit bn-an=(b0-a0)/2**n qui tend vers 0. Comme an<x<bn, on a
par passage a la limite dans 1'encadrement et en notant 1 la limite commune
: 1=x.




