
#Correction_info4

#EX1

#Dans	les	deux	premières	questions,	la	somme	de	Riemann	représente	l'aire
des	rectangles	construits	à	partir	des	points	retenus.

def	somme(n:int)->float:
				"""renvoie	la	somme	des	aires	des	rectangles	à	droite"""
				f=lambda	t:1/(1+t**2)
				S=0
				for	i	in	range(1,n+1):
								S=S+(1/n)*f(i/n)
				return	S

def	y(n:int)->list:
				"""renvoie	la	liste	des	valeurs	approchées	aux	points	de	la	subdivision
par	la	méthode	d'Euler"""
				h=1/n
				T=[k/n	for	k	in	range(0,n+1)]
				y0=1
				L=[y0]
				for	k	in	range(1,n+1):
								y=L[k-1]+h*tan(T[k-1])*L[k-1]	#attention	au	schéma	qui	tient	compte
de	t_{k-1}	au	rang	k
								L.append(y)
				return	L

#On	applique	la	méthode	habituelle,	et	on	trouve	que	f:t->1/cos(t)	désigne
l'unique	solution	du	problème	de	Cauchy.

from	pylab	import	*
def	euler(n:int)->None:
				T=[k/n	for	k	in	range(0,n+1)]
				Y=y(n)
				Z=[1/cos(t)	for	t	in	T]
				plot(T,Z,label='solution	exacte')
				plot(T,Y,label='solution	approchée')
				legend()
				show()

#EX2
def	somme(n:int)->float:
				"""renvoie	la	somme	des	aires	des	rectangles	à	droite"""
				f=lambda	t:1/(1+t**2)
				S=0
				for	i	in	range(1,n+1):
								S=S+(1/n)*f(i/n)
				return	S

def	trapezes(n:int)->float:
				"""renvoie	la	somme	des	aires	des	trapèzes"""
				f=lambda	t:1/(1+t**2)
				S=0
				for	i	in	range(0,n):
								a=i/n
								b=(i+1)/n
								S=S+(1/n)*(f(a)+f(b))/2
				return	S

1

def	simpson(n:int)->float:
				"""renvoie	la	somme	des	aires	des	paraboles	qui	interpolent	la
fonction"""
				f=lambda	t:1/(1+t**2)
				S=0
				for	i	in	range(0,n):
								a=i/n
								b=(i+1)/n
								m=(a+b)/2	#le	point	milieu
								S=S+(1/n)*(f(a)+4*f(m)+f(b))/6
				return	S

from	math	import	*
def	comparaison(eps:float)->tuple:
				"""renvoie	les	seuils	à	partir	duquel	on	a	appoximation	par	nos	3
méthodes"""
				n1=1
				while	abs(somme(n1)-pi/4)>eps:
								n1=n1+1
				n2=1
				while	abs(trapezes(n2)-pi/4)>eps:
								n2=n2+1
				n3=1
				while	abs(simpson(n3)-pi/4)>eps:
								n3=n3+1
				return	n1,n2,n3

#EX3
def	bornes(n:int)->tuple:
				f=lambda	x:x**2-5*x/2+1
				a0,b0=1,4
				for	k	in	range(1,n+1):
								m=(a0+b0)/2
								if	f(a0)*f(m)<0:
												a1,b1=a0,m	#dans	ce	cas,	on	définit	les	nouveaux	curseurs
								else:
												a1,b1=m,b0	#dans	ce	cas,	on	définit	les	nouveaux	curseurs
								a0,b0=a1,b1	#on	réinjecte	pour	l'étape	suivante
				return	a0,b0

def	approx(p:int)->int:
				n=0
				while	abs(bornes(n)[1]-bornes(n)[0])>10**(-p):
								n=n+1
				return	n

from	pylab	import	*
def	vitesse(N:int)->None:
				P=[k	for	k	in	range(1,N+1)]
				L=[approx(p)	for	p	in	P]
				plot(P,L)
				show()

#Les	curseurs	représentent	des	suites	adjacentes	car	(an)	est	croissante	et
(bn)	décroissante,	et	à	chaque	étape	la	longuer	de	l'intervalle	est	divisé
par	2,	autrement	dit	bn-an=(b0-a0)/2**n	qui	tend	vers	0.	Comme	an<x<bn,	on	a
par	passage	à	la	limite	dans	l'encadrement	et	en	notant	l	la	limite	commune
:	l=x.

2

