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Approximation numérique

Dans de nombreux domaines, il n’est pas toujurs facile d’obtenir les valeurs exactes des quantités étudiées. Parfois, on peut
espérer en obtenir une approximation numérique. La plupart du temps, cela revient donc à construire des suites qui conver-
gent vers la valeur cherchée.
On pourra illustrer quelques vitesses de convergence et essayer de comprendre la notion d’erreur dans ces approximations.

1 Méthode numérique d’intégration et application

Le théorème fondamental de l’analyse nous permet de calculer la valeur de l’intégrale d’une fonction f continue sur un
segment, mais il exige de connaitre au moins une primitive de f sur l’intervalle considéré. Dans de nombreux cas, et en dépit
de toutes les transformations usuelles, on ne pourra donc pas faire appel à ce théorème.
Malgré tout, nous allons voir qu’il est possible de construire des suites de fonctions permettant d’approcher une intégrale : on
parle alors de méthodes numériques d’intégration. Celles-ci reposent en particulier sur la convergence des sommes
de Riemann.

Soit n ∈ N∗. Considérons f une fonction continue sur [a, b] à valeurs réelles, et notons (xi) une subdivision du segment
[a, b] de sorte que x0 = a < x1 < . . . < xn = b. On rappelle que la somme de Riemann associée à f et aux points (xi)
désigne la suite (Sn) définie par :

Sn =

n−1∑
i=0

(xi+1 − xi)f(ci), où pour tout i ∈ J0, n− 1K, ci ∈ [xi, xi+1]

Et dans le cas particulier où la subdivision est choisie à pas constant, la suite (Sn) est alors définie pour tout n ∈ N∗ par :

Sn =

n−1∑
i=0

(b− a)

n
f(ci)

et on peut montrer que Sn −→
n→+∞

∫ b

a

f(t) dt.

Exercice 1 (de la méthode des rectangles à la méthode d’Euler). [ ]

On considère ici la fonction f : t 7−→ 1

1 + t2
sur le segment [0, 1], et on note pour tout n ∈ N∗, x0, . . . , xn les points de la

subdivision à pas constant.

1. (a) On pose pour tout i ∈ J0, n − 1K, ci = xi. Donner l’expression de la somme de Riemann associée, puis en donner une
interprétation géométrique :

(b) On pose pour tout i ∈ J0, n− 1K, ci = xi+1. Donner l’expression de la somme de Riemann associée, puis en donner une
interprétation géométrique :

2. Dans le deuxième cas, on a ainsi : Sn =
∑n

i=1

1

n
f(
i

n
) (méthode des rectangles à droite).

Dans le langage Python, construire la fonction somme(n : int) → float qui pour tout entier n non nul, calcule les termes
successifs de la suite puis renvoie la valeur de Sn, une approximation de l’intégrale de f sur [0, 1].

www.cpgemp-troyes.fr 1/4

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes Info 4

3. Application On considère un problème de Cauchy de la forme :{
y′ = F (t, y) , t ∈ [a, b]

y(a) = y0

On note pour tout n ∈ N∗, a = t0 < t1 < . . . < tn = b la subdivision à pas constant définie par :

∀ k ∈ J0, nK, tk = a+ k.h , avec h =
b− a
n

En particulier, si y désigne l’unique solution du problème de Cauchy, on en déduit par intégration :∫ t1

t0

y′(t) dt =

∫ t1

t0

F (t, y(t)) dt⇔ y(t1)− y(t0) =

∫ t1

t0

F (t, y(t)) dt⇔ y(t1) = y0 +

∫ t1

t0

F (t, y(t)) dt

On obtient alors une approximation de y(t1) en approchant l’intégrale par la méthode des rectangles. On répète alors
l’opération pour obtenir y1, . . . , yn des valeurs approchées de la solution aux points de la subdivision.

(a) En utilisant l’approximation donnée, justifier la relation obtenue entre y1 et y0. En itérant le procédé, retrouver alors
le schéma d’Euler explicite permettant de construire la suite de points yk.

(b) On se place dans un cas particulier : {
y′ = tan(t)y

y(0) = 1

Dans le langage Python, construire la fonction y(n : int)→ list qui, pour tout entier n non nul donné, renvoie la liste
L contenant les valeurs [y0, . . . , yn] livrant ainsi les approximations de f aux points t0, . . . , tn.

(c) Résoudre rigoureusement le problème de Cauchy, puis construire le programme euler(n : int) → None qui, pour tout
entier n non nul donné, affiche sur un même graphe la solution approchée, ainsi que l’unique solution du problème de
Cauchy. On n’oubliera pas d’afficher une légende permettant de reconnâıtre les deux solutions.
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Remarques

1. Cette méthode d’Euler peut aussi s’appliquer à une équation différentielle qui ne serait pas linéaire, à condition de
pouvoir la présenter sous forme résolue : y′ = F (t, y) et avec une condition initiale.

2. On peut étendre la méthode à la résolution des équations différentielles d’ordre 2, mais il faudra d’abord se ramener
à un système différentiel de la forme X ′ = F (t,X). Par exemple, si y désigne l’unique solution d’un tel problème de
Cauchy d’ordre 2 avec des conditions initiales données, on a à l’aide des opérations matricielles :

y′′ + a(t)y′ + b(t)y = c(t)⇔
(
y′

y′′

)
+

(
0 −1
b(t) a(t)

)(
y
y′

)
=

(
0
c(t)

)

Et donc, en posant X =

(
y
y′

)
, B(t) =

(
0
c(t)

)
et A(t) =

(
0 −1
b(t) a(t)

)
, on est ramené à résoudre le système différentiel

suivant :
X ′ +A(t)X = B(t)⇔ X ′ = −A(t)X +B(t)︸ ︷︷ ︸

=F (t,X)

Il suffit encore d’appliquer la méthode d’Euler explicite à ce système différentiel en considérant le schéma
suivant : X0 =

(
λ

µ

)
∀ k ∈ J0, n− 1K, Xk+1 = Xk + h.F (tk, Xk)

2 Autres exemples d’approximation

Exercice 2 (comparaison des méthodes numériques d’intégration). [ ]

On considère encore la fonction f : t 7−→ 1

1 + t2
sur le segment [0, 1], et on note pour tout n ∈ N∗, x0, . . . , xn les points de la

subdivision à pas constant. On décide alors d’affiner l’approximation sur les intervalles rencontrés :

• par exemple, on peut approcher f par une fonction affine par morceaux décrivant un trapèze sur chaque intervalle [xi, xi +1]
en utilisant la fonction définie par :

y =
f(xi+1)− f(xi)

xi+1 − xi
(x− xi) + f(xi)

de sorte qu’on pose :

Sn =

n−1∑
i=0

(b− a)

n
(
f(xi) + f(xi+1)

2
) (méthode des trapèzes)

• de la même façon, on peut approcher f par une fonction définie par morceaux décrivant un polynôme d’interpolation passant
par trois points, et donc sur chaque intervalle [xi, xi + 1], on a un polynôme satisfaisant l’équation :

y = f(xi)
(x−mi)(x− xi+1)

(xi −mi)(xi − xi+1)
+ f(mi)

(x− xi)(x− xi+1)

(mi − xi)(mi − xi+1)
+ f(xi+1)

(x− xi)(x−mi)

(xi+1 − xi)(xi+1 −mi)

avec mi =
xi + xi+1

2
et de sorte qu’on pose :

Sn =

n−1∑
i=0

(b− a)

n
(
f(xi) + 4f(mi) + f(xi+1)

6
) (méthode de Simpson)

1. Dans le langage Python, construire les fonctions trapezes(n : int)→ float et simpson(n : int)→ float, qui pour tout entier
n non nul, renvoie la valeur de Sn.

2. On souhaite comparer la vitesse de convergence de ces méthodes. Pour cela, construire la fonction comparaison(ε :
float) → tuple qui, pour toute précision ε, calcule Sn tant que |Sn − π/4| > ε, puis renvoie le plus petit indice n0 pour
lequel :

|Sn0 − π/4| ≤ ε

et ceci pour chacune des méthodes numériques d’intégration : méthode des rectangles à droite, trapèzes et de Simpson.

Remarque On illustre ici la vitesse de convergence de ces méthodes, mais pour les comparer rigoureusement, il faut chercher
à majorer l’erreur d’approximation. Ainsi, en notant :

εn = |Sn −
∫ b

a

f(t) dt|

on peut montrer que pour une fonction suffisament régulière, on a des vitesses de convergence polynomiales :
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erreur rectangles trapèzes Simpson

εn O(
1

n
) O(

1

n2
) O(

1

n4
)

Mais si on veut gagner du temps, on peut aussi faire appel à la commande quad du module scipy.integrate, et on veillera
à placer une fonction en argument, ainsi que les valeurs du segment sur lequel on travaille.

Par exemple, si on cherche à obtenir une valeur approchée de

∫ 1

0

1

1 + t
dt :

def f(t):
return 1/(1+t)

et ainsi, on obtient rapidement l’approximation cherchée :

In : from scipy.integrate import *
quad(f,0,1)

(0.6931471805599454, 7.695479593116622e-15)

Cette fonction peut également prendre la valeur inf dans les bornes, et on retiendra qu’elle renvoie un second résultat : il
s’agit simplement d’une majoration de l’erreur d’approximation.

Exercice 3 (approximation d’un zéro d’une fonction par dichotomie). [ ]
On considère l’équation x2 − 5

2
x + 1 = 0, x ∈ [1, 4]. On peut alors rechercher l’unique solution de cette équation à l’aide du

principe de dichotomie : il s’agit en fait de définir par récurrence deux suites (an) et (bn) encadrant la solution donnée.

On pose f : x ∈ R 7−→ x2 − 5

2
x+ 1 et on définit les suites (an), (bn) par a0 = 1, b0 = 4, et pour tout n ∈ N,

an+1 =


an, si f(an)f(

an + bn
2

) < 0

an + bn
2

, sinon
et bn+1 =


an + bn

2
, si f(an)f(

an + bn
2

) < 0

bn, sinon

1. Dans le langage Python, construire la fonction bornes(n : int) −→ tuple qui pour tout entier n donné, renvoie les valeurs
an et bn encadrant la solution à l’équation donnée.

2. Construire alors le programme approx(p : int) −→ int qui pour tout entier p donné, renvoie le plus petit indice np pour
lequel |bnp − anp | ≤ 10−p.

En particulier, anp et bnp désigneront des valeurs approchées par défaut et par excès de la solution à 10−p près.

Pour finir, on s’intéresse à la vitesse de convergence de ces deux suites.

3. Construire le programme vitesse(N : int) −→ None qui pour tout entier N donné, renvoie un graphe représentant l’évolution
du nombre d’itérations (np) nécessaires pour approcher la solution à 10−p près en fonction de p ∈ J1, NK.

4. Justifier rapidement que les deux suites (an) et (bn) définissent bien des suites adjacentes dont la limite n’est rien d’autre
que ` ∈ [1, 4] vérifiant f(`) = 0. Montrer alors que l’erreur d’approximation vérifie :

εn = |an − `| = O(
1

2n
)

Cette dernière égalité nous permet en fait d’affirmer que la vitesse de convergence du principe de dichotomie est géométrique.

Remarque Cet algorithme est assez efficace, mais il convient d’abord de localiser l’unique solution de l’équation f(x) = 0.
D’ailleurs, ce sera aussi le cas pour les autres méthodes de recherche des zéros d’une fonction donnée : méthode du balayage,
méthode de Newton...
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