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Approximation numérique

Dans de nombreux domaines, il n’est pas toujurs facile d’obtenir les valeurs eractes des quantités étudiées. Parfois, on peut
espérer en obtenir une approrimation numérique. La plupart du temps, cela revient donc a construire des suites qui conver-
gent vers la valeur cherchée.

On pourra illustrer quelques vitesses de convergence et essayer de comprendre la notion d’erreur dans ces approrimations.

1 Meéthode numérique d’intégration et application

Le théoreme fondamental de I’analyse nous permet de calculer la valeur de l'intégrale d’une fonction f continue sur un
segment, mais il exige de connaitre au moins une primitive de f sur l'intervalle considéré. Dans de nombreux cas, et en dépit
de toutes les transformations usuelles, on ne pourra donc pas faire appel a ce théoréme.

Malgré tout, nous allons voir qu’il est possible de construire des suites de fonctions permettant d’approcher une intégrale : on
parle alors de méthodes numériques d’intégration. Celles-ci reposent en particulier sur la convergence des sommes
de Riemann.

Soit n € N*. Considérons f une fonction continue sur [a,b] & valeurs réelles, et notons (x;) une subdivision du segment
[a,b] de sorte que zg = a < z1 < ... < x, = b. On rappelle que la somme de Riemann associée & f et aux points (z;)
désigne la suite (S,) définie par :

3
|
—

S, = (zit1 — i) f(ci), ol pour tout @ € [0,n — 1], ¢; € [, Tiy1]

i
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Et dans le cas particulier ou la subdivision est choisie & pas constant, la suite (S, ) est alors définie pour tout n € N* par :

n—1
(b—a)
Sn = T
% g
1=0
b
et on peut montrer que S, — / f(t) dt.
n——+oo a
Exercice 1 (de la méthode des rectangles & la méthode d’Euler). [ ]
1
On considere ici la fonction f : ¢t —— 5 sur le segment [0,1], et on note pour tout n € N*| zg,...,z, les points de la

subdivision & pas constant.

1. (a) On pose pour tout ¢ € [0,n — 1], ¢; = z;. Donner Pexpression de la somme de Riemann associée, puis en donner une
interprétation géométrique :

(b) On pose pour tout i € [0,n — 1], ¢; = ;4+1. Donner l'expression de la somme de Riemann associée, puis en donner une|
interprétation géométrique :

1
2. Dans le deuxiéme cas, on a ainsi : S, = 1 | ff(i) (méthode des rectangles a droite).

Dans le langage Python, construire la fonction somme(n : int) — float qui pour tout entier n non nul, calcule les termes
successifs de la suite puis renvoie la valeur de S,, une approximation de U'intégrale de f sur [0, 1].
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3. Application On considére un probléeme de Cauchy de la forme :
Y =F(t,y),t € la,b]
y(a) = yo
On note pour tout n € N*, a = tg < t1 < ... < t, = b la subdivision & pas constant définie par :

b—a

Vkel0,n], tk =a+k.h,avec h =

En particulier, si y désigne I'unique solution du probléme de Cauchy, on en déduit par intégration :
tq tq t1 t1
/
[ v@a= [P at ey - ) = [ Feu@) des vt =w+ [ Fea®) d
to to to to

On obtient alors une approximation de y(t1) en approchant lintégrale par la méthode des rectangles. On répete alors
I'opération pour obtenir yi1, ..., y, des valeurs approchées de la solution aux points de la subdivision.
(a) En utilisant Papproximation donnée, justifier la relation obtenue entre y1 et yo. En itérant le procédé, retrouver alors
le schéma d’Euler explicite permettant de construire la suite de points yy.

(b) On se place dans un cas particulier :

{y’ = tan(t)y

y(0) =1
Dans le langage Python, construire la fonction y(n : int) — list qui, pour tout entier n non nul donné, renvoie la liste]
L contenant les valeurs [yo, . .., yn] livrant ainsi les approximations de f aux points to, ..., tn.

(c) Résoudre rigoureusement le probleme de Cauchy, puis construire le programme euler(n : int) — None qui, pour tout
entier n non nul donné, affiche sur un méme graphe la solution approchée, ainsi que I'unique solution du probleme de
Cauchy. On n’oubliera pas d’afficher une légende permettant de reconnaitre les deux solutions.
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Remarques

1. Cette méthode d’Euler peut aussi s’appliquer a une équation différentielle qui ne serait pas linéaire, & condition de
pouvoir la présenter sous forme résolue : y' = F(t,y) et avec une condition initiale.

2. On peut étendre la méthode a la résolution des équations différentielles d’ordre 2, mais il faudra d’abord se ramener
4 un systéme différentiel de la forme X’ = F(¢, X). Par exemple, si y désigne I'unique solution d’un tel probleme de
Cauchy d’ordre 2 avec des conditions initiales données, on a a ’aide des opérations matricielles :

W+ alt)y + bty = c(t) < (fj) + <b8€) a_<t1>) (5) B (?ﬂ)

. _ (v _ (0 _ (0 -1 (s s e
Et donc, en posant X = (y')’ B(t) = (c(t)) et A(t) = (b(t) a(t))’ on est ramené & résoudre le systeme différentiel
suivant :
X' +ANX =B@l) e X' = -A@t)X + B(t)
— —
=F(t,X)

Il suffit encore d’appliquer la méthode d’Euler explicite & ce systéme différentiel en considérant le schéma

suivant :
Xo = A
I

Vke [[O,TL - Hl, Xk+1 = Xr + h.F(tk,Xk)

2 Autres exemples d’approximation

Exercice 2 (comparaison des méthodes numériques d’intégration). [ ]

s . 1 * .
On considére encore la fonction f : ¢t — T+ sur le segment [0, 1], et on note pour tout n € N*, zo,...,x, les points de la

subdivision & pas constant. On décide alors d’affiner I’approximation sur les intervalles rencontrés :

e par exemple, on peut approcher f par une fonction affine par morceaux décrivant un trapéze sur chaque intervalle [z;, z; + 1]
en utilisant la fonction définie par :

_ f(l'i+1) - f(ml) (.’L’ . 1'7,) + f(-Tz)

Tit1 — T4

de sorte qu’on pose :

[un

S, — E_: (b ; a)(f(:vz) +2f(a:¢+1))

(méthode des trapézes)
=0

e de la méme fagon, on peut approcher f par une fonction définie par morceaux décrivant un polynéme d’interpolation passant
par trois points, et donc sur chaque intervalle [z;, z; + 1], on a un polyndme satisfaisant I’équation :

_ () Emmi)(@ = Tiga) o) (& = Z) (@ = @iv1) o (x — @i)(x — mi)
v= f( Z) (171 - mz)(xz — sz‘+1) + f( Z) (mi - mz)(mz - 17¢+1) * f( Z+1) ($i+1 - fCi)(CEi-o—l - mz)

Ti + Tit1
avec m; = % et de sorte qu’on pose :

(méthode de Simpson)

s — Z b= ) Jlo) + 45m) + fainr)

1. Dans le langage Python, construire les fonctions trapezes(n : int) — float et simpson(n : int) — float, qui pour tout entier
n non nul, renvoie la valeur de S,,.

2. On souhaite comparer la vitesse de convergence de ces méthodes. Pour cela, construire la fonction comparaison(e :
float) — tuple qui, pour toute précision e, calcule S, tant que |S, — w/4| > €, puis renvoie le plus petit indice ng pour
lequel :

|Sne — /4| <€

et ceci pour chacune des méthodes numériques d’intégration : méthode des rectangles a droite, trapezes et de Simpson.

Remarque On illustre ici la vitesse de convergence de ces méthodes, mais pour les comparer rigoureusement, il faut chercher
a majorer 'erreur d’approximation. Ainsi, en notant :

b
n = |Sn —/ £(t) dt]

on peut montrer que pour une fonction suffisament réguliere, on a des vitesses de convergence polynomiales :
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erreur | rectangles | trapézes | Simpson

n o(t) oLy | o

n n?

n4

Mais si on veut gagner du temps, on peut aussi faire appel a la commande quad du module scipy.integrate, et on veillera
a placer une fonction en argument, ainsi que les valeurs du segment sur lequel on travaille.

Par exemple, si on cherche & obtenir une valeur approchée de / T+ dt :
0
def f(t):
return 1/(1+t)
@ python
et ainsi, on obtient rapidement ’approximation cherchée :
In : from scipy.integrate import *
quad(£,0,1)
(0.6931471805599454, 7.695479593116622¢-15)
@ python

Cette fonction peut également prendre la valeur inf dans les bornes, et on retiendra qu’elle renvoie un second résultat : il
s’agit simplement d’une majoration de I’erreur d’approximation.

Exercice 3 (approximation d’un zéro d’une fonction par dichotomie). [ ]
On considére ’équation 22 — %:c +1 =0, z € [1,4]. On peut alors rechercher 'unique solution de cette équation & l’aide du
principe de dichotomie : il s’agit en fait de définir par récurrence deux suites (an) et (bn) encadrant la solution donnée.

5 . .
On pose f:x € R — z% — 5%’ + 1 et on définit les suites (an), (bn) par ap = 1,bo = 4, et pour tout n € N,

. an + by
~Joany st flan) f(——) <0 N L"‘b"j si f(an)f(m) <0
Gn+1 = QAn + bn et ntl = 2 2
CE sinon bn, sinon

1. Dans le langage Python, construire la fonction bornes(n : int) — tuple qui pour tout entier n donné, renvoie les valeurs
an et by, encadrant la solution a ’équation donnée.

2. Construire alors le programme approz(p : int) — int qui pour tout entier p donné, renvoie le plus petit indice n, pour
lequel |bpn, — an,| <1077,

En particulier, an, et by, désigneront des valeurs approchées par défaut et par excés de la solution a 1077 prés.

Pour finir, on s’intéresse a la vitesse de convergence de ces deux suites.

3. Construire le programme vitesse(N : int) — None qui pour tout entier N donné, renvoie un graphe représentant I’évolution
du nombre d’itérations (n,) nécessaires pour approcher la solution & 107? pres en fonction de p € [1, N]J.

4. Justifier rapidement que les deux suites (an) et (b,) définissent bien des suites adjacentes dont la limite n’est rien d’autre
que £ € [1,4] vérifiant f(£) = 0. Montrer alors que l'erreur d’approximation vérifie :
1

en = lan — 1] = O(5)

Cette derniére égalité nous permet en fait d’affirmer que la vitesse de convergence du principe de dichotomie est géométrique.

Remarque Cet algorithme est assez efficace, mais il convient d’abord de localiser 'unique solution de ’équation f(z) = 0.
D’ailleurs, ce sera aussi le cas pour les autres méthodes de recherche des zéros d’une fonction donnée : méthode du balayage,
méthode de Newton...
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