#Correction info3

#EX1
from numpy import *

def puiss(n:int,A:array)->array:
"""renvoie A**p"""
p,q=shape(A)
assert p==q #on teste quand méme si la matrice est carrée.
P=eye(p)
for k in range(1l,n+1):
P=dot(P,A)
return P

def puissrec(n:int,A:array)->array:
"""renvoie A**n en récursif"""
p,q=shape(A)
assert p==q
if n==0:
return eye(p)
else:
return dot(A,puissrec(n-1,A))

#from numpy.linalg import *

#0n importe le sous-module linalg et on appelle eigvals(A)... on aura
alors 3 valeurs propres distinctes, donc 3 vecteurs propres
indépendants qui définiront une base de diagonalisation : A est donc
diagonalisable.

def expo(n:int,A:array)->array:
"""calcule la somme partielle associée a exp(A)"""
p,g=shape(A)
assert p==q
S=zeros((p,q)) #on fera bien attention a 1'initialisation !
for k in range(0,n+1):
S=S+(1/factorial(k))*puiss(k,A)
return S

#EX2
from numpy import *

def cherchermatrice(A:array)->tuple:
"""renvoie le max et sa place dans le tableau
p,q=shape(A)
#on va stocker la place et la valeur max au fur et a mesure qu'on
traverse la matrice.
ind,max=(0,0),A[0,0]
for i in range(0,p):
for j in range(0,q):
if A[i,j]l>max:
ind,max=(1i,j),A[1,j]
else:
pass
return ind,max

#EX3
#A=array([[0,1],[1,1]])

def fibo(n:int)->array:
"""renvoie le vecteur Xn=[[u n],[u n+1]]"""
A=array([[0,11,[1,111)
if n==0:
return array([[1],[111)
else:
return dot(A,fibo(n-1))

#EX4
from random import *

def mataleatoire()->array:
"""renvoie une matrice aléatoire inversible"""
M=zeros((2,2))
while det(M)==0:
for i in range(0,2):
for j in range(0,2):
M[i,jl=random()

return M

from numpy.linalg import *

def mataleatoire2()->array:

"""renvoie une matrice aléatoire inversible et a coefficients
dans N, et son inverse"""

M=zeros((2,2))

while det(M)==0:

for i in range(0,2):
for j in range(0,2):
M[i,j]=randint(1,1000)
return M,inv(M)

def ordre(M:array,N:int)->int:
"""renvoie l'ordre éventuel d'une matrice donnée"""
p,g=shape(M)
assert p==q
for k in range(1,N+1):
for i in range(0,p):
for j in range(0,q):
if puiss(k,M)[i,jl==eye(p)[i,j]: #on teste si les
coefficients coincident
return k
return 0

#EX5

def listetomatrice(L:list)->array:

"""renvoie la matrice d'adjacence d'un graphe défini par la liste
des voisins"""

n=len(L) #c'est le nombre de sommets

M=zeros((n,n))
for s in range(0,n): #on va parcourir les listes de voisins dans

for v in L[s]:
M[s,v]=1 #on met lorsque v fait partie des voisins de s
return M

