
#Correction_info3

#EX1
from	numpy	import	*

def	puiss(n:int,A:array)->array:
				"""renvoie	A**n"""
				p,q=shape(A)
				assert	p==q	#on	teste	quand	même	si	la	matrice	est	carrée.
				P=eye(p)
				for	k	in	range(1,n+1):
								P=dot(P,A)
				return	P

def	puissrec(n:int,A:array)->array:
				"""renvoie	A**n	en	récursif"""
				p,q=shape(A)
				assert	p==q
				if	n==0:
								return	eye(p)
				else:
								return	dot(A,puissrec(n-1,A))

#from	numpy.linalg	import	*
#On	importe	le	sous-module	linalg	et	on	appelle	eigvals(A)...	on	aura
alors	3	valeurs	propres	distinctes,	donc	3	vecteurs	propres
indépendants	qui	définiront	une	base	de	diagonalisation	:	A	est	donc
diagonalisable.

def	expo(n:int,A:array)->array:
				"""calcule	la	somme	partielle	associée	à	exp(A)"""
				p,q=shape(A)
				assert	p==q
				S=zeros((p,q))	#on	fera	bien	attention	à	l'initialisation	!
				for	k	in	range(0,n+1):
								S=S+(1/factorial(k))*puiss(k,A)
				return	S

#EX2
from	numpy	import	*

def	cherchermatrice(A:array)->tuple:
				"""renvoie	le	max	et	sa	place	dans	le	tableau"""
				p,q=shape(A)
				#on	va	stocker	la	place	et	la	valeur	max	au	fur	et	à	mesure	qu'on
traverse	la	matrice.
				ind,max=(0,0),A[0,0]
				for	i	in	range(0,p):
								for	j	in	range(0,q):
												if	A[i,j]>max:
																ind,max=(i,j),A[i,j]
												else:
																pass
				return	ind,max

1

#EX3

#A=array([[0,1],[1,1]])

def	fibo(n:int)->array:
				"""renvoie	le	vecteur	Xn=[[u_n],[u_n+1]]"""
				A=array([[0,1],[1,1]])
				if	n==0:
								return	array([[1],[1]])
				else:
								return	dot(A,fibo(n-1))

#EX4

from	random	import	*

def	mataleatoire()->array:
				"""renvoie	une	matrice	aléatoire	inversible"""
				M=zeros((2,2))
				while	det(M)==0:
								for	i	in	range(0,2):
												for	j	in	range(0,2):
																M[i,j]=random()
				return	M

from	numpy.linalg	import	*

def	mataleatoire2()->array:
				"""renvoie	une	matrice	aléatoire	inversible	et	à	coefficients
dans	N,	et	son	inverse"""
				M=zeros((2,2))
				while	det(M)==0:
								for	i	in	range(0,2):
												for	j	in	range(0,2):
																M[i,j]=randint(1,1000)
				return	M,inv(M)

def	ordre(M:array,N:int)->int:
				"""renvoie	l'ordre	éventuel	d'une	matrice	donnée"""
				p,q=shape(M)
				assert	p==q
				for	k	in	range(1,N+1):
								for	i	in	range(0,p):
												for	j	in	range(0,q):
																if	puiss(k,M)[i,j]==eye(p)[i,j]:	#on	teste	si	les
coefficients	coïncident
																				return	k
				return	0

#EX5

def	listetomatrice(L:list)->array:
				"""renvoie	la	matrice	d'adjacence	d'un	graphe	défini	par	la	liste
des	voisins"""
				n=len(L)	#c'est	le	nombre	de	sommets

2

				M=zeros((n,n))
				for	s	in	range(0,n):	#on	va	parcourir	les	listes	de	voisins	dans
L
								for	v	in	L[s]:
												M[s,v]=1	#on	met	lorsque	v	fait	partie	des	voisins	de	s
				return	M

3

