
#Correction_info2

#EX1
def	evaluation(L:list,z0:complex)->complex:
				"""calcule	l'image	de	z0	par	P"""
				S=0
				for	k	in	range(0,len(L)):
								S=S+L[k]*z0**k
				return	S

def	horner(L:list,z0:complex)->complex:
				"""calcule	l'image	de	z0	par	P	par	l'algorithme	de	Hörner"""
				n=len(L)-1	#on	définit	le	degré	du	polynôme	pour	faciliter	les
notations
				u0=L[n]
				for	k	in	range(1,n+1):
								u1=u0*z0+L[n-k]
								u0=u1	#une	fois	la	valeur	calculée,	on	la	réinjecte	pour	le
tour	suivant
				return	u0

#EX2
def	fibonacci(n:int)->int:
								"""renvoie	un	de	façon	récursive"""
								if	n==0	or	n==1:
												return	1
								else:
												return	fibonacci(n-1)+fibonacci(n-2)

def	fibonacci2(n:int)->list:
								"""renvoie	un	à	l'aide	d'une	liste	qui	stocke	les	termes	au
fur	et	à	mesure"""
								if	n==0:
												return	[1]
								elif	n==1:
												return	[1,1]
								else:
												L=[1,1]
												for	k	in	range(2,n+1):
																aux=L[k-2]+L[k-1]
																L.append(aux)
												return	L

#EX3
#L'instruction	pour	connaître	l'image	de	1	est	:	s[1].	De	la	meme
façon,	la	transposition	(2	3)	est	définie	par	ses	images	:
t=[0,1,3,2],	en	veillant	à	ce	que	0	et	1	soient	invariants.

def	comp(s1:list,s2:list)->list:
				"""renvoie	la	composition	des	permutations	s1	et	s2"""
				n=len(s1)
				p=len(s2)
				assert	n==p
				s=[]
				for	i	in	range(0,n):

1

								s.append(s2[s1[i]])
				return	s

def	inv(s1:list)->list:
				"""renvoie	l'inverse	de	la	permutation	donnée"""
				n=len(s1)
				s=[0	for	i	in	range(0,n)]	#on	construit	une	liste	de	n	images
qu'on	va	compléter	au	fur	et	à	mesure
				for	i	in	range(0,n):
								s[s1[i]]=i
				return	s

#EX4
def	chercherdicoto(L:list,x:float)->bool:
				"""cherche	par	dichotomie	si	un	nombre	x	est	dans	une	liste	déjà
triée
				"""
				n=len(L)
				a,b=0,n-1
				while	a<=b:
								c=(a+b)//2		#la	liste	étant	triée,	on	regarde	le	terme	du
milieu.
								if	x==L[c]:
												return	True
								elif	x<L[c]:
												b=c-1
								elif	x>L[c]:
												a=c+1
				return	False

#EX5
def	presence(text:str,mot:str)->bool:
				"""teste	la	présence	du	mot	dans	un	texte"""
				#on	va	parcourir	le	texte	jusqu'à	repérer	la	première	lettre	du
mot,	puis	on	vérifiera	les	lettres	suivantes.
				n=len(mot)
				for	k	in	range(0,len(text)-n+1):	#il	est	inutile	d'aller	trop
loin..
								if	text[k]==mot[0]:
												#on	teste	les	autres	lettres	du	mot,	en	utilisant	par
exemple	un	compteur.
												c=0
												for	i	in	range(0,n):
																if	text[k+i]==mot[i]:
																				c=c+1
												if	c==n:
																return	True
								else:
												pass
				return	False

def	position(text:str,mot:str)->tuple:
				"""teste	la	présence	du	mot	dans	un	texte	et	renvoie	la	liste	des
positions	du	mot"""
				#on	adapte	le	programme	précédent	et	on	va	stocker	les	positions

2

				#on	adapte	le	programme	précédent	et	on	va	stocker	les	positions

du	mot	dans	une	liste.
				n=len(mot)
				pos=[]
				for	k	in	range(0,len(text)-n+1):
								if	text[k]==mot[0]:
												#on	teste	les	autres	lettres	du	mot,	en	utilisant	par
exemple	un	compteur.
												c=0
												for	i	in	range(0,n):
																if	text[k+i]==mot[i]:
																				c=c+1
												if	c==n:
																pos.append(k)
								else:
												pass
				#on	étudie	alors	la	liste	des	positions	après	avoir	parcouru	le
texte
				if	len(pos)==0:
								return	False
				else:
								return	True,pos

3

