#Correction_info2

#EX1
def evaluation(L:list,z0:complex)->complex:
"""calcule 1'image de z0 par P"""
S=0
for k in range(0,len(L)):
S=S+L[k]*z0**k
return S

def horner(L:list,z0:complex)->complex:
"""calcule 1'image de zO par P par l'algorithme de H&rner"""
n=len(L)-1 #on définit le degré du polynome pour faciliter les
notations
ud=L[n]
for k in range(l,n+l):
ul=u0*z0+L[n-k]
u0=ul #une fois la valeur calculée, on la réinjecte pour le
tour suivant
return u0@

#EX2
def fibonacci(n:int)->int:
"""renvoie un de facon récursive"""
if n==0 or n==1:
return 1
else:
return fibonacci(n-1)+fibonacci(n-2)

def fibonacci2(n:int)->list:
"""renvoie un a l'aide d'une liste qui stocke les termes au
fur et a mesure"""
if n==0:
return [1]
elif n==1:
return [1,1]
else:
L=[1,1]
for k in range(2,n+1):
aux=L[k-2]1+L[k-1]
L.append(aux)
return L

#EX3

#L'instruction pour connaitre 1'image de 1 est : s[1]. De la meme
facon, la transposition (2 3) est définie par ses images
t=[0,1,3,2], en veillant a ce que 0 et 1 soient invariants.

def comp(sl:list,s2:list)->list:
"""renvoie la composition des permutations sl et s2"""
n=Llen(sl)
p=len(s2)
assert n==p
s=[1
for i in range(0,n):

s.append(s2[s1[i]])
return s

def inv(sl:list)->list:

"""renvoie l'inverse de la permutation donnée"""

n=len(sl)

s=[0 for i in range(0,n)] #on construit une liste de n images
qu'on va compléter au fur et a mesure

for i in range(0,n):

s[si[i]]=1
return s

#EX4
def chercherdicoto(L:list,x:float)->bool:
"""cherche par dichotomie si un nombre x est dans une liste déja
triée
n=len(L)
a,b=0,n-1
while a<=b:
c=(a+b)//2 #la liste étant triée, on regarde le terme du
milieu.
if x==L[c]:
return True
elif x<L[c]:
b=c-1
elif x>L[c]:
a=c+1
return False

#EX5
def presence(text:str,mot:str)->bool:
"""teste la présence du mot dans un texte"""
#on va parcourir le texte jusqu'a repérer la premiére lettre du
mot, puis on vérifiera les lettres suivantes.
n=len(mot)
for k in range(0,len(text)-n+1l): #il est inutile d'aller trop
loin..
if text[k]==mot[0]:
#on teste les autres lettres du mot, en utilisant par
exemple un compteur.
c=0
for i in range(0,n):
if text[k+il==mot[i]:
c=c+1
if c==n:
return True
else:
pass
return False

def position(text:str,mot:str)->tuple:

"""teste la présence du mot dans un texte et renvoie la liste des
positions du mot"""

#on adapte le programme précédent et on va stocker les positions

du mot dans une liste.
n=len(mot)
pos=[]
for k in range(0,len(text)-n+1):
if text[k]==mot[0]:
#on teste les autres lettres du mot, en utilisant par
exemple un compteur.
c=0
for i in range(0,n):
if text[k+il==mot[i]:
c=c+1
if c==n:
pos.append (k)
else:
pass
#on étudie alors la liste des positions aprés avoir parcouru le
texte
if len(pos)==0:
return False
else:
return True,pos

