MP - Lycée Chrestien de Troyes Info 2

Le cas particulier des listes

La semaine derniére, nous avons rappelé quelques rudiments du langage Python, et parmi les premiers exercices, vous avez pu
remarquer que les listes de données jouent un réle particulier. En effet, c’est un objet incontournable qu’il faudra apprendre
a manipuler rapidement.

1 Trois présentations pratiques et des méthodes déja implémentées

On a rappelé que les listes pouvaient étre définies de trois fagons :
1. en convertissant une variable de type tuple grace a la commande list,
2. en complétant la liste au fur et & mesure dans un programme itératif avec une boucle for ou while,

3. en décrivant la séquence contenue dans la liste. On parle alors de liste par compréhension pour laquelle les éléments
sont exprimés en fonction de l'indice associé :

In : L = [k**2 for k in range(0,11)]; L
[0,1,4,9,16,25,36,49, 64,81, 100]
@ python
Et en plus, on pourra méme y ajouter des instructions conditionnelles :
In : L = [k**2 for k in range(0,11) if k%2 == 0]; L
[0, 4, 16, 36, 64, 100]
@ python

Contrairement aux n-uplets, on pourra cette fois-ci en modifier le contenu et on fera bien entendu attention & l'indexation
car les éléments sont toujours numérotés de 0 jusqu'a la longueur de la liste obtenue par la commande len —1 :

In : L = list(range(11)); L[5] = 0; print(L); len(L)

[0,1,2,3,4,0,6, 78,9, 10]
11

@ python

Si de plus, on cherche & supprimer un élément, on pourra toujours le faire au moyen de la commande del :

In : del(L[2:5]); L

[0,1,0,6,7 8,9, 10]

@ python

En fait, la donnée de deux indices sous la forme i:j nous permet d’extraire les éléments d’une liste, mais on veillera a bien
comprendre que 1’élément d’indice ¢ est toujours inclus, alors que 1’élément d’indice j est exclus.

De la méme fagon, on retiendra quelques méthodes pratiques qui vous ont déja été présentées. Ce sont des fonctions
qui operent sur la liste donnée :

commande Python | interprétation
L.append (x) ajoute I’élément z a la fin de la liste L
L1.extend(L2) ajoute a la fin de L1 les éléments de L2
L.insert(i,x) insere au rang ¢ I’élément z
L.remove (x) supprime la premieére occurrence de x dans L
L.reverse() permet de retourner la liste L en inversant les éléments
L.sort() permet d’ordonner la liste L

Remarque Ces commandes existent, mais encore une fois, on ne vous demande pas de toutes les connaitre mais plutot de
les reconstruire.

www.cpgemp-troyes.fr 1

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 2

Exercice 1 (utilisation des listes pour la gestion des polynomes). []
On considere le polynéme :

PX)=a+auX+...+a X"
celui-ci pourra étre représenter a l’aide d’une liste L = [ao, a1, ..., an] de sorte que pour tout zo € C :

P(z0) = Y L[k]z5
k=0

1. Dans le langage Python, construire le programme evaluation(L : list, zo : complex) — complex qui, pour tout polyndme

L donné sous la forme d’une liste et tout complexe zo, renvoie I'image de zo par P.
, . . . Up = an
2. On définit alors 'algorithme de Horner par :
Vke [[17n]],uk = Uk—120 + Gn—k
(a) Justifier rapidement qu’a la n-iéme étape, u, = P(z0).

(b) Dans le langage Python, construire le programme horner(L : list, zo : complex) — complex qui, pour tout polynéme
L donné sous la forme d’une liste et tout complexe zo, renvoie 'image de zp en utilisant I’algorithme précédent.

Remarque On vient donc de présenter deux fagons de calculer 'image d’un complexe par un polynéme. Mais si on détermine
soigneusement le nombre d’opérations pour obtenir chacune de ces images, on montre que la méthode de Horner est plus
efficace. Ainsi, on retiendra que la complexité en nombre d’opérations pour un polynéome de degré n est donnée par :

Ceva,luat'ion (n) = O(NQ) et C;Lo,.ne,.(n) = O(n)

2 Applications

Exercice 2 (suite de Fibonacci). []
On rappelle que la suite de Fibonacci est définie par :

Uug = U1 = 1
Yn € N, Unt2 = Unt1 + Un
1. Dans le langage Python, construire la fonction récursive fibonacci(n : int) — int qui renvoie la valeur de .

2. On souhaite travailler a l’aide des listes. Dans le langage Python, construire la fonction itérative fibonacci2(n : int) — list
qui renvoie la liste des valeurs de [ug, .. ., Un].

www.cpgemp-troyes.fr 2

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 2

Exercice 3 (le groupe symétrique). []
Pour n € N*, on note Sy, le groupe des permutations de ensemble [0,n — 1]. Une permutation de S,, sera représentée en Python
par une liste, dont I’élément d’indice i est I'image de ¢ par cette permutation.

01 2 3
31 0 2

alors on a 0(0) = 3, 0(1) = 1, 0(2) = 0 et 0(3) = 2. Ainsi, en Python, cette permutation sera décrite par la liste des images
obtenues par o : [3,1,0,2].

Par exemple, si on note o € Sy définie par :

Dans tout Dexercice, on pourra utiliser librement les tests Python du type x in L (respectivement x not in L) permet-
tant de vérifier si x est présent dans la liste L (respectivement de vérifier si n’est pas présent dans la liste L).

1. Si s est une liste Python représentant une permutation de S4, quelle instruction Python permet de trouver I'image de 1 par
cette permutation ? Quelle liste Python représente la transposition (2 3) € Sy 7

2. Ecrire une fonction Python composition(sl : list, s2 : list) —> listprenant en entrée deux listes représentant des permuta-
tions o1 et 02 du méme groupe de permutations et renvoyant la liste représentant la permutation o1 0 o2. On fera attention)
a longueur des permutations données en entrée.

3. Ecrire une fonction Python inv(s : list) — list prenant en entrée une liste représentant une permutation o et renvoyant

la liste représentant o~ .

Exercice 4 (recherche dichotomique dans une liste déja triée). []
On considére une liste L constituée de n nombres réels et on cherche a savoir si un nombre réel z appartient a la liste L.
Pour cela, on introduit deux curseurs représentant les indices qui encadreront ma recherche :

a=0et b=1len(L)-1

puis, on coupe la liste en deux avant de comparer x avec le terme du milieu L[(a + b)//2].
La liste étant triée, on peut donc savoir si = est atteint, ou s’il se trouve éventuellement dans une des deux parties de la liste. On|
peut alors déplacer les curseurs et iterer le procédé tant que les bornes d’encadrement sont dans le bon sens.

Dans le langage Python, construire la fonction chercherdicoto(L : list,x : float) — bool qui renvoie True ou False en
fonction de 'appartenance de x & la liste L.

Exercice 5 (des listes aux chaines de caracteres). []
On étend le travail effectué sur les listes aux chaines de caractére, car il s’agit encore d’un type de données structurées.
Par exemple, on peut encore identifier les caracteres par leur place :

In : nom=’chaimaa’; nom[0]; len(nom)

@ python

Ici, on considere un texte donné et on souhaite relever les positions d’'un mot dans ce texte.

Pour cela, on parcourt les caracteres du texte et lorsque I'un d’entre eux coincident avec la premiere lettre de notre mot,
on teste les lettres suivantes afin de noter I’emplacement du mot si celui-ci appartient au texte. Concrétement, ou est Charly ?
on cherchera d’abord & identifier la position de la lettre ¢ avant de comparer les suivantes au mot ”charly” :

[tlcfafe[h[r[l]e[nfafc]hfafr]I]y[d][p]o]

1. Dans le le langage Python, construire la fonction booléenne presence(text : str,mot : str) — bool qui renvoie si oui ou non
le mot est présent dans la chaine de caractere.

2. En déduire le programme position(text : str,mot : str) — list qui teste si le mot est présent dans la chaine, puis dans ce
cas renvoie la liste des positions du mot mot dans le texte text.

www.cpgemp-troyes.fr 3

http://www.cpgemp-troyes.fr/

	Trois présentations pratiques et des méthodes déjà implémentées
	Applications

