
MP - Lycée Chrestien de Troyes Info 2

Le cas particulier des listes

La semaine dernière, nous avons rappelé quelques rudiments du langage Python, et parmi les premiers exercices, vous avez pu
remarquer que les listes de données jouent un rôle particulier. En effet, c’est un objet incontournable qu’il faudra apprendre
à manipuler rapidement.

1 Trois présentations pratiques et des méthodes déjà implémentées

On a rappelé que les listes pouvaient être définies de trois façons :

1. en convertissant une variable de type tuple grâce à la commande list,

2. en complétant la liste au fur et à mesure dans un programme itératif avec une boucle for ou while,

3. en décrivant la séquence contenue dans la liste. On parle alors de liste par compréhension pour laquelle les éléments
sont exprimés en fonction de l’indice associé :

In : L = [k**2 for k in range(0,11)]; L

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Et en plus, on pourra même y ajouter des instructions conditionnelles :

In : L = [k**2 for k in range(0,11) if k%2 == 0]; L

[0, 4, 16, 36, 64, 100]

Contrairement aux n-uplets, on pourra cette fois-ci en modifier le contenu et on fera bien entendu attention à l’indexation
car les éléments sont toujours numérotés de 0 jusqu’à la longueur de la liste obtenue par la commande len −1 :

In : L = list(range(11)); L[5] = 0; print(L); len(L)

[0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 10]
11

Si de plus, on cherche à supprimer un élément, on pourra toujours le faire au moyen de la commande del :

In : del(L[2:5]); L

[0, 1, 0, 6, 7, 8, 9, 10]

En fait, la donnée de deux indices sous la forme i:j nous permet d’extraire les éléments d’une liste, mais on veillera à bien
comprendre que l’élément d’indice i est toujours inclus, alors que l’élément d’indice j est exclus.

De la même façon, on retiendra quelques méthodes pratiques qui vous ont déjà été présentées. Ce sont des fonctions
qui opèrent sur la liste donnée :

commande Python interprétation

L.append(x) ajoute l’élément x à la fin de la liste L

L1.extend(L2) ajoute à la fin de L1 les éléments de L2

L.insert(i,x) insère au rang i l’élément x

L.remove(x) supprime la première occurrence de x dans L

L.reverse() permet de retourner la liste L en inversant les éléments

L.sort() permet d’ordonner la liste L

Remarque Ces commandes existent, mais encore une fois, on ne vous demande pas de toutes les connâıtre mais plutôt de
les reconstruire.

www.cpgemp-troyes.fr 1/3

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 2

Exercice 1 (utilisation des listes pour la gestion des polynômes). []
On considère le polynôme :

P (X) = a0 + a1X + . . .+ anX
n

celui-ci pourra être représenter à l’aide d’une liste L = [a0, a1, . . . , an] de sorte que pour tout z0 ∈ C :

P (z0) =

n∑
k=0

L[k]zk0

1. Dans le langage Python, construire le programme evaluation(L : list, z0 : complex) −→ complex qui, pour tout polynôme
L donné sous la forme d’une liste et tout complexe z0, renvoie l’image de z0 par P .

2. On définit alors l’algorithme de Hörner par :

{
u0 = an

∀ k ∈ J1, nK, uk = uk−1z0 + an−k

.

(a) Justifier rapidement qu’à la n-ième étape, un = P (z0).

(b) Dans le langage Python, construire le programme horner(L : list, z0 : complex) −→ complex qui, pour tout polynôme
L donné sous la forme d’une liste et tout complexe z0, renvoie l’image de z0 en utilisant l’algorithme précédent.

Remarque On vient donc de présenter deux façons de calculer l’image d’un complexe par un polynôme. Mais si on détermine
soigneusement le nombre d’opérations pour obtenir chacune de ces images, on montre que la méthode de Hörner est plus
efficace. Ainsi, on retiendra que la complexité en nombre d’opérations pour un polynôme de degré n est donnée par :

Cevaluation(n) = O(n2) et Chorner(n) = O(n)

2 Applications

Exercice 2 (suite de Fibonacci). []
On rappelle que la suite de Fibonacci est définie par :{

u0 = u1 = 1

∀n ∈ N, un+2 = un+1 + un

1. Dans le langage Python, construire la fonction récursive fibonacci(n : int)→ int qui renvoie la valeur de un.

2. On souhaite travailler à l’aide des listes. Dans le langage Python, construire la fonction itérative fibonacci2(n : int)→ list
qui renvoie la liste des valeurs de [u0, . . . , un].

www.cpgemp-troyes.fr 2/3

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 2

Exercice 3 (le groupe symétrique). []
Pour n ∈ N∗, on note Sn le groupe des permutations de l’ensemble J0, n− 1K. Une permutation de Sn sera représentée en Python
par une liste, dont l’élément d’indice i est l’image de i par cette permutation.

Par exemple, si on note σ ∈ S4 définie par : (
0 1 2 3
3 1 0 2

)
alors on a σ(0) = 3, σ(1) = 1, σ(2) = 0 et σ(3) = 2. Ainsi, en Python, cette permutation sera décrite par la liste des images
obtenues par σ : [3, 1, 0, 2].

Dans tout l’exercice, on pourra utiliser librement les tests Python du type x in L (respectivement x not in L) permet-
tant de vérifier si x est présent dans la liste L (respectivement de vérifier si x n’est pas présent dans la liste L).

1. Si s est une liste Python représentant une permutation de S4, quelle instruction Python permet de trouver l’image de 1 par
cette permutation ? Quelle liste Python représente la transposition (2 3) ∈ S4 ?

2. Écrire une fonction Python composition(s1 : list, s2 : list) −→ listprenant en entrée deux listes représentant des permuta-
tions σ1 et σ2 du même groupe de permutations et renvoyant la liste représentant la permutation σ1 ◦ σ2. On fera attention
à longueur des permutations données en entrée.

3. Écrire une fonction Python inv(s : list) −→ list prenant en entrée une liste représentant une permutation σ et renvoyant
la liste représentant σ−1.

Exercice 4 (recherche dichotomique dans une liste déjà triée). []
On considère une liste L constituée de n nombres réels et on cherche à savoir si un nombre réel x appartient à la liste L.
Pour cela, on introduit deux curseurs représentant les indices qui encadreront ma recherche :

a = 0 et b = len(L)-1

puis, on coupe la liste en deux avant de comparer x avec le terme du milieu L[(a+ b)//2].
La liste étant triée, on peut donc savoir si x est atteint, ou s’il se trouve éventuellement dans une des deux parties de la liste. On
peut alors déplacer les curseurs et itèrer le procédé tant que les bornes d’encadrement sont dans le bon sens.

Dans le langage Python, construire la fonction chercherdicoto(L : list, x : float) → bool qui renvoie True ou False en
fonction de l’appartenance de x à la liste L.

Exercice 5 (des listes aux chaines de caractères). []
On étend le travail effectué sur les listes aux chaines de caractère, car il s’agit encore d’un type de données structurées.
Par exemple, on peut encore identifier les caractères par leur place :

In : nom=’chaimaa’; nom[0]; len(nom)

’c’
7

Ici, on considère un texte donné et on souhaite relever les positions d’un mot dans ce texte.

Pour cela, on parcourt les caractères du texte et lorsque l’un d’entre eux cöıncident avec la première lettre de notre mot,
on teste les lettres suivantes afin de noter l’emplacement du mot si celui-ci appartient au texte. Concrètement, où est Charly ?
on cherchera d’abord à identifier la position de la lettre c avant de comparer les suivantes au mot ”charly” :

t c a c h r l e n a c h a r l y d p o

1. Dans le le langage Python, construire la fonction booléenne presence(text : str,mot : str)→ bool qui renvoie si oui ou non
le mot est présent dans la châıne de caractère.

2. En déduire le programme position(text : str,mot : str) −→ list qui teste si le mot est présent dans la châıne, puis dans ce
cas renvoie la liste des positions du mot mot dans le texte text.

www.cpgemp-troyes.fr 3/3

http://www.cpgemp-troyes.fr/

	Trois présentations pratiques et des méthodes déjà implémentées
	Applications

