
#Correction_info1

#EX1
def	racines(a:float,b:float,c:float)->tuple:
				"""calcule	les	racines	du	trinôme	associé
				"""
				assert	a!=0,'on	veut	un	polynôme	du	second	degré'

				D=b**2-4*a*c	#discriminant
				if	D>0:
								x1=(-b+D**0.5)/(2*a)
								x2=(-b-D**0.5)/(2*a)
								return	x1,x2
				elif	D==0:
								x0=-b/(2*a)
								return	x0
				else:
								d=1j*(-D)**0.5	#on	définit	une	racine	carrée	de	D
								x1=(-b+d)/(2*a)
								x2=(-b-d)/(2*a)
								return	x1,x2

#EX2
def	facto(n:int)->int:
				"""calcule	n!
				"""
				P=1
				for	k	in	range(1,n+1):
								P=P*k
				return	P

def	somme1(n:int)->float:
				"""calcule	la	somme	des	1/k!
				"""
				S=0
				for	k	in	range(0,n+1):
								S=S+1/facto(k)
				return	S

def	somme2(n:int)->float:
				"""calcule	la	somme	des	1/k!
				"""
				S=1
				P=1
				for	k	in	range(1,n+1):
								P=P*k
								S=S+1/P
				return	S

from	math	import	*
from	time	import	*
def	comparaison(eps:float)->list:
				"""comparaison(eps:float)->list
				"""
				assert	eps>0

1

				t1=time()
				n=0
				while	abs(somme1(n)-exp(1))>eps:
								n=n+1
				t2=time()

				t3=time()
				n=0
				while	abs(somme2(n)-exp(1))>eps:
								n=n+1
				t4=time()
				return	[t2-t1,t4-t3]

#EX3
def	u(n:int,u0:int)->int:
				"""calcule	u_n	pour	la	suite	de	Syracuse
				"""
				if	n==0:
								return	u0
				else:
				#sinon,	on	répète	le	même	schéma	à	savoir	:	u1	est	calculé	en
fonction	de	la	parité	de	u0.
								for	k	in	range(1,n+1):
												if	u0%2==0:
																u1=u0//2
												else:
																u1=3*u0+1
												u0=u1	#on	n'oublie	pas	de	replacer	la	valeur	calculée
dans	u0	pour	l'étape	d'après.
								return	u0

def	syraliste(u0:float)->list:
				"""renvoie	la	liste	des	éléments
				"""
				L=[u0]
				n,x=1,u0
				while	x!=1:
								x=u(n,u0)
								L.append(x)
								n=n+1
				return	L

def	recherchemax()->tuple:
				"""renvoie	le	temps	de	vol	maximal	et	la	valeur	de	u0	associé
				"""
				T=[]
				#on	va	stocker	les	temps	de	vol	en	fonction	de	u0,	de	sorte	que
T[0]	correspondent	à	u0=2,	T[1]	à	u0=3...	puis,	on	cherche	le
maximum.
				for	u0	in	range(2,1001):
								T.append(len(syraliste(u0)))

				M,ind=T[0],2
				for	k	in	range(1,len(T)):

2

								if	T[k]>M:
												M,ind=T[k],k
								else:
												pass
				return	M,ind+2

#EX4
def	moyenne(X:list)->float:
				"""calcule	la	moyenne	de	X
				"""
				n=len(L)
				S=0
				for	k	in	range(0,n):
								S=S+X[k]
				return	S/n

def	covariance(X:list,Y:list)->float:
				"""calcule	la	covariance	de	X	et	Y
				"""
				assert	len(X)==len(Y)
				n=len(X)
				S=0
				mX,mY=moyenne(X),moyenne(Y)
				for	k	in	range(0,n):
								S=S+(X[k]-mX)*(Y[k]-mY)
				return	S/n

def	variance(X:list)->float:
				"""calcule	la	variance	de	X
				"""
				return	covariance(X,X)

from	pylab	import	*
def	reglin(X:list,Y:list)->tuple:
				"""calcule	les	coefficients	a	et	b	pour	définir	la	droite	de
régression	linéaire
				"""
				a=covariance(X,Y)/variance(X)
				b=moyenne(Y)-a*moyenne(X)
				U=linspace(min(X),max(X),10)
				V=[a*x+b	for	x	in	U]
				plot(X,Y,"*")
				plot(U,V,label="droite	de	régression	linéaire")
				show()
				legend()
				return	a,b

#EX5
def	chercherliste(L:list)->tuple:
				"""renvoie	la	valeur	maximale	et	son	indice
				"""
				n=len(L)
				ind=0
				MAX=L[0]
				#on	va	alors	comparer	le	éléments	de	la	liste	à	cette	valeur	de

3

				#on	va	alors	comparer	le	éléments	de	la	liste	à	cette	valeur	de

référence	:	on	stocke	ind,MAX	quand	le	max	a	été	dépassé.
				for	k	in	range(1,n):
								if	L[k]>MAX:
												ind=k
												MAX=L[k]
								else:
												pass
				return	ind,MAX

from	numpy	import	*
def	cherchermatrice(M:array)->tuple:
				"""renvoie	la	valeur	maximale	et	son	indice
				"""
				p,q=shape(M)
				ind=0,0
				MAX=M[0,0]
				#on	va	alors	comparer	le	éléments	de	la	matrice	à	cette	valeur	de
référence	:	on	stocke	ind,MAX	quand	le	max	a	été	dépassé.
				for	i	in	range(0,p):
								for	j	in	range(0,q):
												if	M[i,j]>MAX:
																ind=i,j
																MAX=M[i,j]
												else:
																pass
								return	ind,MAX

4

