#Correction_infol

#EX1
def racines(a:float,b:float,c:float)->tuple:
"""calcule les racines du trindme associé

assert a!=0, 'on veut un polynéme du second degré'

D=b**2-4*a*c #discriminant

if D>0:
x1=(-b+D**0.5)/(2*a)
x2=(-b-D**0.5)/(2*a)
return x1,x2

elif D==0:
x0=-b/(2*a)
return x0
else:

d=1j*(-D)**0.5 #on définit une racine carrée de D
x1=(-b+d)/(2*a)

x2=(-b-d)/(2*a)

return x1,x2

#EX2
def facto(n:int)->int:
"""calcule n!
P=1
for k in range(1l,n+1):
P=P*k
return P

def sommel(n:int)->float:
"""calcule la somme des 1/k!
S=0
for k in range(0,n+1):
S=S+1/facto(k)
return S

def somme2(n:int)->float:
"""calcule la somme des 1/k!
S=1
P=1
for k in range(1l,n+l):
P=P*k

from math import *

from time import *

def comparaison(eps:float)->list:
"""comparaison(eps:float)->list

assert eps>0

tl=time()

n=0

while abs(sommel(n)-exp(1l))>eps:
n=n+1

t2=time()

t3=time()

n=0

while abs(somme2(n)-exp(1l))>eps:
n=n+1

td=time()

return [t2-t1,t4-t3]

#EX3
def u(n:int,u0:int)->int:
"""calcule u n pour la suite de Syracuse
if n==0:
return u0®
else:
#sinon, on répete le méme schéma a savoir : ul est calculé en
fonction de la parité de u0.
for k in range(1l,n+1):
if u0%2==0:
ul=u0//2
else:
ul=3*uf+1
ub=ul #on n'oublie pas de replacer la valeur calculée
dans u@ pour 1'étape d'apres.
return u0

def syraliste(u0:float)->list:
"""renvoie la liste des éléments
L=[u0]
n,x=1,u0
while x!=1:
x=u(n,ud)
L.append(x)
n=n+1
return L

def recherchemax()->tuple:
"""renvoie le temps de vol maximal et la valeur de u® associé

T=[1

#on va stocker les temps de vol en fonction de u®, de sorte que
T[0] correspondent a u0=2, T[1] a uB=3... puis, on cherche le
maximum.

for u® in range(2,1001):
T.append(len(syraliste(u0)))

M,ind=T[0],2
for k in range(1l,len(T)):

if T[K]>M:
M, ind=T[k], k
else:
pass
return M,ind+2

#EX4

def moyenne(X:list)->float:
"""calcule la moyenne de X
n=len(L)
S=0
for k in range(0,n):

S=S+X[k]

return S/n

def covariance(X:list,Y:list)->float:

"""calcule la covariance de X et Y

assert len(X)==len(Y)

n=Llen(X)

S=0

mX,mY=moyenne(X) ,moyenne(Y)

for k in range(0,n):
S=S+(X[KT-mX)*(Y[k]-mY)

return S/n

def variance(X:list)->float:
"""calcule la variance de X

return covariance(X,X)

from pylab import *
def reglin(X:list,Y:list)->tuple:

"""calcule les coefficients a et b pour définir la droite de
régression linéaire

a=covariance(X,Y)/variance(X)

b=moyenne(Y) -a*moyenne (X)

U=linspace(min(X),max(X),b10)

V=[a*x+b for x in U]

plot(X,Y,"*")

plot(U,V,label="droite de régression linéaire")
show()

legend()

return a,b

#EX5
def chercherliste(L:list)->tuple:
"""renvoie la valeur maximale et son indice
n=len(L)
ind=0
MAX=L[0]
#on va alors comparer le éléments de la liste a cette valeur de

référence : on stocke ind,MAX quand le max a été dépassé.
for k in range(1l,n):
if L[k]>MAX:
ind=k
MAX=L[k]
else:
pass
return ind,MAX

from numpy import *
def cherchermatrice(M:array)->tuple:
"""renvoie la valeur maximale et son indice
p,q=shape(M)
ind=0,0
MAX=M[0,0]
#on va alors comparer le éléments de la matrice a cette valeur de
référence : on stocke ind,MAX quand le max a été dépassé.
for i in range(0,p):
for j in range(0,q):
if M[i,j]>MAX:
ind=i,]j
MAX=M[1i,j]
else:
pass
return ind,MAX

