
#	Correction_info10

#EX1

#Attention,	il	ne	s'agit	pas	juste	de	vérifier	s'il	existe	une	arête	enre	i
et	j,	mais	bien	s'il	existe	un	chemin	constitué	d'une	ou	plusieurs	arêtes
permettant	de	passer	de	i	à	j...	c'est	pour	cela	qu'on	va	parcourir	l'arbre
en	profondeur.

def	accessibilite(L,i,j):
				"""accessibilite(L:list,i:int,j:int)->bool"""
				p=len(L)
				assert	0<=i<p	and	0<=j<p
				couleur=[0	for	k	in	range(0,p)]
				La=[i]
				while	len(La)!=0:
								s=La.pop()
								couleur[s]=2
								if	s==j:
												return	True
								else:
												for	v	in	L[s]:#on	parcourt	les	voisins	du	sommet	s
																if	couleur[v]==0:
																				La.append(v)
																				couleur[v]=1
																else:
																				pass
				return	False

def	acces(L):
				"""acces(L:list)->array"""
				p=len(L)
				G=zeros((p,p))	#on	construit	un	tableau	qu'on	va	compléter	avec	les
accessibilités	entre	i	et	j
				for	i	in	range(0,p):
								for	j	in	range(0,p):
												G[i,j]=accessibilite(L,i,j)
				return	G

#Le	graphe	G	étant	connexe,	quand	on	applique	le	programme	précédent	à	la
liste	d'adjacence	de	G,	on	obtient	des	1	(donc	True)	partout	!
#On	en	déduit	alors	qu'un	graphe	est	connexe	s'il	y	a	des	1	partout	et	donc,
aucun	0	!

def	connexe(L:list):
				"""connexe(L:list)->bool"""
				return	False	not	in	acces(L)

#EX2
from	numpy	import	*
M=array([[0,3,0,0,1,0],[3,0,2,0,1,0],[0,2,0,1,3,3],[0,0,1,0,5,1],
[1,1,3,5,0,0],[0,0,3,1,0,0]])
#on	rappelle	que	la	semaine	dernière,	on	a	vu	comment	obtenir	la	liste	des
voisins	à	partir	de	la	matrice	d'adjacence	du	graphe.	C'est	le	prorgramme
qui	suit	:
def	matricetoliste(M):
				"""matricetoliste(M:array)->list"""
				p,q=shape(M)
				L=[[]	for	k	in	range(0,p)]
				for	i	in	range(0,p):

1

								for	j	in	range(0,q):
												if	M[i,j]!=0:	#si	le	poids	est	non	nul,	c'est	un	voisin
																L[i].append(j)	#on	le	stocke	alors	dans	la	liste	des	voisins
du	sommet	i
												else:
																pass
				return	L

#on	parcourt	les	sommets	situés	dans	L	et	on	compare	les	distances	associées
à	chacun	de	ces	sommets.
def	sommet(L,D):
				"""sommet(L:list,D:list)->int
				"""
				i0=L[0]
				dmin=D[i0]
				for	x	in	L:
								if	D[x]<dmin:
												i0,dmin=x,D[x]#on	stocke	le	nouveau	sommet	et	dmin
								else:
												pass
				return	i0

#on	va	stocker	les	prédecesseurs	de	j	dans	une	liste	L	en	veillant	à	la
compléter	par	devant	et	en	convenant	que	-1	signifie	qu'il	n'y	a	en	fait
aucun	prédecesseur
def	chemin(P,j):
				"""chemin(P:list,j:int)->list
				"""
				n=len(P)
				L=[j]		#on	stocke	le	sommet	d'où	on	part
				k=P[j]	#on	regarde	alors	le	prédecesseur	éventuel	de	j
				while	k!=-1:
								L=[k]+L	#attention,	on	place	les	prédécesseurs	devant	!
								k=P[k]
				return	L

def	dijkstra(M,i,j):
				"""dijkstra(M:array,i:int,j:int)->bool,list,int
				"""
				(p,q)=shape(M)
				couleur=[0	for	k	in	range(0,p)]
				La=[i]
				L=matricetoliste(M)		#on	construit	la	liste	d'adjacence	contenant	les
sommets	voisins
				D=[float('inf')	for	k	in	range(0,p)]	#la	liste	des	distances	cumulées
				D[i]=0
				P=[-1	for	k	in	range(0,p)]	#la	liste	des	prédecesseurs
				while	len(La)!=0:
								#on	extrait	le	sommet	associé	à	la	distance	minimale	et	on	le
supprime	de	la	liste	à	colorier
								s=sommet(La,D)
								del(La[La.index(s)])
								#puis,	on	le	colorie	au	noir
								couleur[s]=2
								if	s==j:
												return	True,chemin(P,j),D[s]
								else:
												for	v	in	L[s]:#on	parcourt	les	voisins	du	sommet	s
																if	couleur[v]==0:
																				La.insert(0,v)	#on	insère	le	sommet	v	dans	la	file	(à

2

																				La.insert(0,v)	#on	insère	le	sommet	v	dans	la	file	(à

l'avant)
																				couleur[v]=1
																				D[v]=D[s]+M[s,v]	#on	ajuste	la	nouvelle	distance
																				P[v]=s	#on	stocke	le	prédecesseur
																elif	couleur[v]==1:
																				dnew=D[s]+M[s,v]
																				if	dnew<D[v]:
																								D[v]=dnew	#on	ajuste	la	nouvelle	distance
																								P[v]=s	#on	stocke	le	prédecesseur
																				else:
																								pass
				return	False

3

