Correction infol0@
#EX1

#Attention, il ne s'agit pas juste de vérifier s'il existe une aréte enre i
et j, mais bien s'il existe un chemin constitué d'une ou plusieurs arétes
permettant de passer de i a j... c'est pour cela qu'on va parcourir l'arbre
en profondeur.

def accessibilite(L,i,j):
"""accessibilite(L:list,i:int,j:int)->bool"""
p=len(L)
assert O<=i<p and 0O<=j<p
couleur=[0 for k in range(0,p)]
La=[1i]
while len(La)!=0:
s=La.pop()
couleur[s]=2
if s==j:
return True
else:
for v in L[s]:#on parcourt les voisins du sommet s
if couleur[v]==0:
La.append(v)
couleur[v]=1
else:
pass
return False

def acces(L):

"""acces(L:list)->array"""

p=len(L)

G=zeros((p,p)) #on construit un tableau qu'on va compléter avec les
accessibilités entre i et j

for i in range(0,p):

for j in range(0,p):
G[i,jl=accessibilite(L,1i,j)
return G

#Le graphe G étant connexe, quand on applique le programme précédent a la
liste d'adjacence de G, on obtient des 1 (donc True) partout !

#0n en déduit alors qu'un graphe est connexe s'il y a des 1 partout et donc,
aucun 0 !

def connexe(L:list):
"""connexe(L:list)->bool"""
return False not in acces(L)

#EX2
from numpy import *
M=array([[0,3,0,0,1,0],[3,0,2,0,1,0],[6,2,0,1,3,3],[0,0,1,0,5,1],
[1,1,3,5,0,0]1,[0,0,3,1,0,0]1)
#on rappelle que la semaine derniére, on a vu comment obtenir la liste des
voisins a partir de la matrice d'adjacence du graphe. C'est le prorgramme
qui suit
def matricetoliste(M):

"""matricetoliste(M:array)->list"""

p,qg=shape(M)

L=[[] for k in range(0,p)]

for i in range(0,p):

for j in range(0,q):
if M[i,j]!=0: #si le poids est non nul, c'est un voisin
L[i].append(j) #on le stocke alors dans la liste des voisins
du sommet i
else:
pass
return L

#on parcourt les sommets situés dans L et on compare les distances associées
a chacun de ces sommets.

def sommet(L,D):

sommet(L:list,D:list)->int

i0=L[0]
dmin=D[i0]
for x in L:
if D[x]<dmin:
i0,dmin=x,D[x]#on stocke le nouveau sommet et dmin
else:
pass
return i0

#on va stocker les prédecesseurs de j dans une liste L en veillant a la
compléter par devant et en convenant que -1 signifie qu'il n'y a en fait
aucun prédecesseur
def chemin(P,j):
"""chemin(P:list,j:int)->1list
n=len(P)
L=[j] #on stocke le sommet d'ol on part
k=P[j] #on regarde alors le prédecesseur éventuel de j
while k!=-1:
L=[k]+L #attention, on place les prédécesseurs devant !
k=P[k]
return L

def dijkstra(M,i,j):
"""dijkstra(M:array,i:int,j:int)->bool,list,int
(p,q)=shape (M)
couleur=[0 for k in range(0,p)]
La=[1]
L=matricetoliste(M) #on construit la liste d'adjacence contenant les
sommets voisins
D=[float('inf') for k in range(0,p)] #la liste des distances cumulées
D[i]=0
P=[-1 for k in range(0,p)] #la liste des prédecesseurs
while len(La)!=0:
#on extrait le sommet associé a la distance minimale et on le
supprime de la liste a colorier
s=sommet(La,D)
del(La[La.index(s)])
#puis, on le colorie au noir
couleur[s]=2
if s==j:
return True,chemin(P,j),D[s]
else:
for v in L[s]:#on parcourt les voisins du sommet s
if couleur[v]==0:
La.insert(0,v) #on inseére le sommet v dans la file (a

1'avant)

couleur[v]=1

D[v]=D[s]+M[s,v] #on ajuste la nouvelle distance

P[v]=s #on stocke le prédecesseur

elif couleur[v]==1:

dnew=D[s]+M[s, V]

if dnew<D[v]:
D[v]=dnew #on ajuste la nouvelle distance
P[v]=s #on stocke le prédecesseur

else:
pass

return False

