MP - Lycée Chrestien de Troyes Info 10

Parcours dans un graphe

On présente ici le principe de coloriage qui permet d’identifier la progression d’un parcours dans un graphe... c’est une notion
délicate mais elle permet de faciliter la programmation des algorithmes de plus court chemin.

Quand on parcourt les sommets d’un graphe, on réalise simplement un chemin entre des sommets : on parle de chemin
reliant deux sommets i et j, et on peut facilement distinguer sur un tel chemin les sommets ascendants ou descendants
en fonction d’une position donnée.

Dans les problemes d’optimisation, on peut alors chercher des chemins élémentaires minimisant les poids rencontrés
ou le nombre de sommets parcourus. Mais avant cela, on fera quand méme attention parce que les algorithmes de parcours
sur les graphes sont souvent tres lourds et pour définir un chemin entre deux sommets i et j, si celui-ci existe, il nous faudra
tester tous les chemins partant de i pour trouver ceux qui meénent & j.

Concrétement, on distinguera le parcours en largeur et le parcours en profondeur :

e le parcours en largeur consiste, a partir d’'un sommet donné, a visiter tous les sommets successeurs. On répete
Popération tant qu’il existe des sommets non visités. On explore donc tous les sommets qui sont directement accessibles
puis ceux qui sont accessibles en passant par un sommet, puis deux, puis trois... et ainsi de suite en organisant les
chemins par nombre de sommets.

e le parcours en profondeur lui ne fonctionne pas de la méme maniére, en effet, il explore un sommet et essaie d’aller
le plus loin possible. Quand ce n’est pas possible, on revient en arriére et on essaie de parcourir en profondeur en
prenant un sommet qui n’a pas encore été visité.

1 Parcours par coloriage des sommets

Les algorithmes précédents procedent généralement par coloriage des sommets.
Initialement, tous les sommets sont coloriés en blanc, traduisant le fait que ces sommets n’ont pas été ”découverts”.

Lorsqu'un sommet est découvert (autrement dit, quand on arrive pour la premiere fois sur ce sommet), il est colorié en
gris et doit étre exploré. Le sommet reste gris tant qu’il reste des successeurs de ce sommet qui sont blancs, c’est a dire qui
n’ont pas encore été découverts.

Un tel sommet est alors colorié en noir lorsque tous ses successeurs sont gris ou noirs, autrement dit, lorsqu’ils ont tous été
a leur tour découverts.

Pour cela, on utilise tout au long du parcours, une ”liste d’attente au coloriage en noir” dans laquelle on va stocker
tous les sommets gris : un sommet est mis dans la liste d’attente dés qu’il est découvert. Un sommet gris dans la liste
d’attente peut donc faire rentrer dans la liste ses successeurs qui sont encore blancs (en les coloriant en gris). Et quand tous
les successeurs d’un sommet gris de la liste d’attente sont soit gris soit noirs, il est colorié en noir et il sort de la liste d’attente.

On itere alors le processus jusqu’a obtenir ce qu’on souhaite.

Remarques

1. Le parcours en largeur utilise une file d’attente, pour laquelle le premier sommet arrivé est aussi le premier a en sortir
en fin de liste : on parle de liste FIFO pour first in first out.
Par exemple, dans le langage Python, il y a des méthodes pratiques pour enfiler les données par devant et faire cette
extraction :

In : F=[]; F.insert(0,1); F.insert(0,2); F;
(2,1]

@ python

In : F.pop(); F;
1; [2]

@ python

2. Le parcours en profondeur utilise une pile d’attente, pour laquelle le dernier sommet arrivé dans la pile est le premier
a en sortir en fin de liste : on parle de pile LIFO pour last in first out.
Par exemple, dans le langage Python, il y a des méthodes pratiques pour empiler les données par derriere et faire cette
extraction :

In : P=[]; P.append(1); P.append(2); P;
(1,2]

@ python

www.cpgemp-troyes.fr

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 10

In : P.pop(); P;
2; [1]

@ python

Pour finir, on essaiera une fois familiarisé avec les graphes, de mettre en place ces algorithmes de parcours pour tester
l'accessibilité d’un sommet par rapport a un autre, c’est a dire s’il est possible de trouver un chemin permettant
de relier le sommet 7 au sommet j, puis de tester si un graphe est connexe, c’est a dire on vérifiera si pour tout couple
(i,5) € 52, il existe au moins un chemin permettant de relier les sommets i et j.

Exercice 1 (test d’accessibilité et connexité dans un graphe non pondéré). []
On considére un graphe G = (S, A) & n sommets, qu’on suppose non orienté, non valué et sans boucle. On suppose que celui-ci est
représenté par une liste d’adjacence telle que pour tout ¢ € [0,n — 1], L[i] contient la liste des voisins du sommet . Par exemple,
on pourra considérer le graphe de la semaine derniere :

© @

@ ®

Pour tout couple de sommets (i,75) € [0,n — 1]]2, on rappelle ici comment on parcourt le graphe en profondeur pour déterminer|
s’il existe un chemin de ¢ vers j :

On considere la donnée de (L, %, j), puis on initialise une liste couleur qui colore a 0
tous les sommets, c’est a dire pour n sommets :

couleur = [0,...,0]

On définit une liste L, des sommets gris qui sont a explorer, et donc en attente de
coloriage au noir, en plagant le premier sommet i, c’est a dire :

La = 1]
Puis, tant que la liste L, n’est pas vide,
e on extrait le dernier sommet s de Lq, et on le colorie en noir : couleur[s] = 2
e si s = j, c’est fini et on retourne True
e sinon, on parcourt les voisins v € L[s] du sommet s :

— si leur couleur est blanche, on les ajoute naturellement & la liste L, sous
la forme d’une pile, et on les colorie en gris : couleur[v] = 1.
— sinon, on ne fait rien.

Enfin, si la boucle s’interrompt, c’est qu’il n’y a plus de sommet & traiter, et on
renvoie simplement False : le sommet j n’était finalement pas accessible.

1. Dans le langage Python, construire la fonction accessibilite(L:1list,i:int,j:int)->bool qui pour tout graphe donné
par sa liste d’adjacence L et tout couple (z,7) de sommets, teste s’il existe un chemin reliant ¢ & j. On pourra ajouter une
pré-condition pour vérifier si 7 et j sont bien des sommets possibles.

2. En utilisant le programme précédent, construire la fonction acces(L:1list)->array qui pour tout graphe donné par sa
liste d’adjacence L, renvoie le tableau des accessibilités, autrement dit le programme renvoie une matrice dans laquelle le
coefficient m;; € {True,False} en fonction de I’accessibilité de ¢ vers j.

3. De la méme fagon, construire la fonction connexe(L:1ist)->bool qui teste si un graphe donné par sa liste d’adjacence est
connexe ou non.

On peut aussi adapter le programme d’accessibilité en suivant un parcours en largeur : pour cela, il suffirait de traiter la liste L
sous la forme d’une file d’attente...

www.cpgemp-troyes.fr 2

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 10

2 Cas particulier de 1’algorithme de Dijkstra

On considére un graphe valué a n sommets qu’on peut supposer orienté et dont on connait le poids de toutes les arétes. En
particulier, on peut définir M sa matrice d’adjacence de sorte que pour tout (i,5) € [0,n — 1] :

Mij; =wi; 20

On cherche alors a déterminer le plus court chemin entre deux sommets, c’est a dire que pour deux sommets connexes,
on cherche le chemin par lequel la somme des poids rencontrés sera minimale.

Pour cela, on présente I’algorithme de Dijkstra qui consiste a parcourir le graphe en largeur, c’est a dire que les som-
mets & explorer sont traités dans une file d’attente, mais en faisant aussi attention & la distance cumulée depuis le
sommet initial et qui devra étre minimale... en réalité, c’est cette condition qui définit la priorité du traitement des sommets.

Par exemple, on définit le graphe suivant pour lequel on cherche & déterminer le plus court chemin entre A et F :

On construit alors un tableau dans lequel on va ajouter les poids rencontrés au fur et a mesure, et ceci de la fagon suivante :

1. on place les sommets de A & F', puis on initialise le sommet initial & 0 et les autres a la valeur oo.
2. Puis a chaque étape :

e on sélectionne le sommet réalisant la distance cumulée d(n) la plus petite,

e et on complete la ligne suivante en ajoutant les distances parcourues entre deux sommets, et ceci a condition que
la distance obtenue soit strictement plus petite. Sinon, on recopie la distance précédente.

On fera quand méme attention a bloquer le sommet quand celui-ci a été traité, et a indexer les distances cumulées par
le sommet précédent : c’est pour cela, qu'on placera plus tard dans la file d’attente un sommet & traiter, auquel on
associera la distance en cours.

3. enfin, quand la distance minimale est obtenue dans la derniére colonne, le sommet cible est atteint et on peut lire la
distance minimale entre les sommets. Il suffit alors de remonter les sommets prédécesseurs, colonne par colonne, pour
identifier le plus court chemin entre A et F.

www.cpgemp-troyes.fr

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 10

Exercice 2 (algorithme de Dijkstra dans un graphe pondéré). []

1. On considere le graphe suivant :

E 5 D

(a) Donner la matrice d’adjacence M associée & ce graphe.

(b) En appliquant l’algorithme de Dijkstra, déterminer le plus court chemin du sommet A au sommet F.

2. Plus généralement, on considére un graphe G = (S, A) a n sommets, qu’on suppose orienté et valué. On suppose que celui-ci
est représenté par une matrice d’adjacence M = (m;;) telle que pour tout (z,5) € [0,n — 1],

my; représente le poids de 'arc 1 — j.

De plus, et avant de construire l'algorithme dans le langage Python, on détaille ici comment on parcourt le graphe en
largeur pour déterminer, s’il existe, le plus court chemin de 7 vers j :

On considere la donnée de (M, 1, 7), puis on initialise une liste couleur qui colore & 0
tous les sommets, c’est a dire pour n sommets :

couleur = [0, ...,0]

On définit une liste L, des sommets gris qui sont a explorer, et donc en attente de
coloriage au noir, en plagant le premier sommet ¢ :

Lo = [i]

On définit enfin L la liste d’adjacence associée & M, D la liste des distances cumulées
qu’on initialise a :
D = [float('inf’),..., 0 ,..., float("inf’

et P une liste de prédecesseurs qu’on initialise par défaut a :

Puis, tant que la liste L, n’est pas vide,

e on extrait le sommet s, associé a une distance minimale, inclus dans L, puis on|
I’enléve et on le colorie en noir : couleur([s] = 2

e si s = j, c’est fini et on retourne True, et le chemin obtenu & partir de la liste
des prédecesseurs de j, ainsi que la distance totale D[s].

e sinon, on parcourt les voisins v € L[s] du sommet s :
— si le sommet v est blanc, on I’ajoute naturellement a la liste L, sous la
forme d’une file, et on le colorie en gris : couleur[v] = 1. De plus,

* on calcule la nouvelle distance : D[v] = D[s] + msy,
* on place alors le sommet s comme prédecesseur dans P[v].
— si le sommet v est déja gris. Dans ce cas, on compare les distances D[v]
et D[s] + msy et si D[s] + msy, < D[v], on pose D[v] = D[s] + msy, et on
place alors le sommet s comme prédecesseur dans P[v].

Enfin, si la boucle s’interrompt, c’est qu’il n’y a plus de sommet a traiter, et on
renvoie simplement False : le sommet j n’était finalement pas accessible.

www.cpgemp-troyes.fr 4

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 10

Po

ur finir, on aura besoin de fonctions auxiliaires : 'une qui nous permettra d’extraire de la file d’attente les sommets prioritaires

(ici, ceux associés & une distance minimale) et ’autre qui nous permettra de remonter I’ensemble des sommets parcourus pour en
exhiber le plus court chemin.

(a) On considére un graphe & n sommets, et on admet avoir construit une liste L = [s1,...,s,] de sommets & traiter. On note

D = [dy,...,dy] les distances associées & chacun des sommets du graphe. En particulier, p < n et donc le sommet s; est
associé a la distance ds;...

Dans le langage Python, construire la fonction sommet(L:1list,D:1list)->int qui parcourt les distances incluses dans D et
renvoie le sommet s;, de L associé a la distance minimale.

Par exemple, avec L = [0,1,4] et D = [15,12, float('inf’),7,18], il vient :

In : sommet(L,D)

@ python

(b) On appelle liste des prédecesseurs toute liste P & n sommets pour laquelle P[i] renvoie le sommet qui a permis d’obtenir %,

avec la convention P[i] = —1 si le sommet ¢ n’a pas de successeur. Par exemple, le chemin : 0 — 2 — 4 aurait pour liste
de prédecesseurs dans un graphe a 6 sommets :

P = [_1a _1707 _1723 _1]

Dans le langage Python, construire alors la fonction chemin(P:1list, j)->1ist qui renvoie la liste des prédécesseurs du sommet
j, c’est a dire qu’on remonte les sommets jusqu’a obtenir —1, ce qui signifie qu’il n’y a plus de prédecesseur.
Par exemple :

In : chemin(P,4)

[0,2,4]

@ python

Construire alors le programme dijkstra qui pour tout graphe donné par sa matrice d’adjacence, et pour tout couple (i, j) € S?
renvoie le plus court chemin éventuel.
On testera évidemment notre programme avec le graphe proposé a la question 1.

Remarques

1. La vitesse d’excution de ’algorithme de Dijkstra dépend surtout de I'implémentation et de la gestion de la file d’attente.
Autrement dit, dans le langage Python, les files sont souvent gérées sous la forme de liste et les méthodes associées
(insert (0, .) ou encore pop()) fonctionnent en un temps quasi-linéaire. C’est tres efficace !

2. Attention, I'algorithme de Dijkstra ne convient pas pour des graphes a poids négatifs... et on devra adapter nos graphes

a la situation pour obtenir des poids positifs : par exemple, au lieu de travailler avec des dénivelés, on travaille en
altitude au dessus de la mer.

3. Il existe d’autres algorithmes de calcul du plus court chemin dans un graphe valué et orienté. Certains permettent

méme d’imposer une heuristique h, c’est a dire qu’on modifie le choix des sommets dans la file d’attente au cours du
programime.
Concretement, au lieu de considérer la distance minimale d(n) & chaque étape, on peut par exemple choisir de minimiser:

d'(n) = d(n) + h(n)

ol h(n) représente la distance du sommet courant jusqu’au point d’arrivée. C’est notamment le cas de I’algorithme
A*, on dit alors que 'algorithme est guidé ou informé.

www.cpgemp-troyes.fr 5

http://www.cpgemp-troyes.fr/

	Parcours par coloriage des sommets
	Cas particulier de l'algorithme de Dijkstra (lire "Dextra")

