
MP - Lycée Chrestien de Troyes Info 10

Parcours dans un graphe

On présente ici le principe de coloriage qui permet d’identifier la progression d’un parcours dans un graphe... c’est une notion
délicate mais elle permet de faciliter la programmation des algorithmes de plus court chemin.

Quand on parcourt les sommets d’un graphe, on réalise simplement un chemin entre des sommets : on parle de chemin
reliant deux sommets i et j, et on peut facilement distinguer sur un tel chemin les sommets ascendants ou descendants
en fonction d’une position donnée.

Dans les problèmes d’optimisation, on peut alors chercher des chemins élémentaires minimisant les poids rencontrés
ou le nombre de sommets parcourus. Mais avant cela, on fera quand même attention parce que les algorithmes de parcours
sur les graphes sont souvent très lourds et pour définir un chemin entre deux sommets i et j, si celui-ci existe, il nous faudra
tester tous les chemins partant de i pour trouver ceux qui mènent à j.

Concrètement, on distinguera le parcours en largeur et le parcours en profondeur :

• le parcours en largeur consiste, à partir d’un sommet donné, à visiter tous les sommets successeurs. On répète
l’opération tant qu’il existe des sommets non visités. On explore donc tous les sommets qui sont directement accessibles
puis ceux qui sont accessibles en passant par un sommet, puis deux, puis trois... et ainsi de suite en organisant les
chemins par nombre de sommets.

• le parcours en profondeur lui ne fonctionne pas de la même manière, en effet, il explore un sommet et essaie d’aller
le plus loin possible. Quand ce n’est pas possible, on revient en arrière et on essaie de parcourir en profondeur en
prenant un sommet qui n’a pas encore été visité.

1 Parcours par coloriage des sommets

Les algorithmes précédents procèdent généralement par coloriage des sommets.

Initialement, tous les sommets sont coloriés en blanc, traduisant le fait que ces sommets n’ont pas été ”découverts”.

Lorsqu’un sommet est découvert (autrement dit, quand on arrive pour la première fois sur ce sommet), il est colorié en
gris et doit être exploré. Le sommet reste gris tant qu’il reste des successeurs de ce sommet qui sont blancs, c’est à dire qui
n’ont pas encore été découverts.
Un tel sommet est alors colorié en noir lorsque tous ses successeurs sont gris ou noirs, autrement dit, lorsqu’ils ont tous été
à leur tour découverts.

Pour cela, on utilise tout au long du parcours, une ”liste d’attente au coloriage en noir” dans laquelle on va stocker
tous les sommets gris : un sommet est mis dans la liste d’attente dès qu’il est découvert. Un sommet gris dans la liste
d’attente peut donc faire rentrer dans la liste ses successeurs qui sont encore blancs (en les coloriant en gris). Et quand tous
les successeurs d’un sommet gris de la liste d’attente sont soit gris soit noirs, il est colorié en noir et il sort de la liste d’attente.

On itère alors le processus jusqu’à obtenir ce qu’on souhaite.

Remarques

1. Le parcours en largeur utilise une file d’attente, pour laquelle le premier sommet arrivé est aussi le premier à en sortir
en fin de liste : on parle de liste FIFO pour first in first out.
Par exemple, dans le langage Python, il y a des méthodes pratiques pour enfiler les données par devant et faire cette
extraction :

In : F=[]; F.insert(0,1); F.insert(0,2); F;

[2,1]

In : F.pop(); F;

1; [2]

2. Le parcours en profondeur utilise une pile d’attente, pour laquelle le dernier sommet arrivé dans la pile est le premier
à en sortir en fin de liste : on parle de pile LIFO pour last in first out.
Par exemple, dans le langage Python, il y a des méthodes pratiques pour empiler les données par derrière et faire cette
extraction :

In : P=[]; P.append(1); P.append(2); P;

[1,2]

www.cpgemp-troyes.fr 1/5

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 10

In : P.pop(); P;

2; [1]

Pour finir, on essaiera une fois familiarisé avec les graphes, de mettre en place ces algorithmes de parcours pour tester
l’accessibilité d’un sommet par rapport à un autre, c’est à dire s’il est possible de trouver un chemin permettant
de relier le sommet i au sommet j, puis de tester si un graphe est connexe, c’est à dire on vérifiera si pour tout couple
(i, j) ∈ S2, il existe au moins un chemin permettant de relier les sommets i et j.

Exercice 1 (test d’accessibilité et connexité dans un graphe non pondéré). []
On considère un graphe G = (S,A) à n sommets, qu’on suppose non orienté, non valué et sans boucle. On suppose que celui-ci est
représenté par une liste d’adjacence telle que pour tout i ∈ J0, n− 1K, L[i] contient la liste des voisins du sommet i. Par exemple,
on pourra considérer le graphe de la semaine dernière :

0○ 1○

2○ 3○

4○ 5○

Pour tout couple de sommets (i, j) ∈ J0, n − 1K2, on rappelle ici comment on parcourt le graphe en profondeur pour déterminer
s’il existe un chemin de i vers j :

On considère la donnée de (L, i, j), puis on initialise une liste couleur qui colore à 0
tous les sommets, c’est à dire pour n sommets :

couleur = [0, . . . , 0]

On définit une liste La des sommets gris qui sont à explorer, et donc en attente de
coloriage au noir, en plaçant le premier sommet i, c’est à dire :

La = [i]

Puis, tant que la liste La n’est pas vide,

• on extrait le dernier sommet s de La, et on le colorie en noir : couleur[s] = 2

• si s = j, c’est fini et on retourne True

• sinon, on parcourt les voisins v ∈ L[s] du sommet s :

– si leur couleur est blanche, on les ajoute naturellement à la liste La sous
la forme d’une pile, et on les colorie en gris : couleur[v] = 1.

– sinon, on ne fait rien.

Enfin, si la boucle s’interrompt, c’est qu’il n’y a plus de sommet à traiter, et on
renvoie simplement False : le sommet j n’était finalement pas accessible.

1. Dans le langage Python, construire la fonction accessibilite(L:list,i:int,j:int)->bool qui pour tout graphe donné
par sa liste d’adjacence L et tout couple (i, j) de sommets, teste s’il existe un chemin reliant i à j. On pourra ajouter une
pré-condition pour vérifier si i et j sont bien des sommets possibles.

2. En utilisant le programme précédent, construire la fonction acces(L:list)->array qui pour tout graphe donné par sa
liste d’adjacence L, renvoie le tableau des accessibilités, autrement dit le programme renvoie une matrice dans laquelle le
coefficient mij ∈ {True, False} en fonction de l’accessibilité de i vers j.

3. De la même façon, construire la fonction connexe(L:list)->bool qui teste si un graphe donné par sa liste d’adjacence est
connexe ou non.

On peut aussi adapter le programme d’accessibilité en suivant un parcours en largeur : pour cela, il suffirait de traiter la liste La

sous la forme d’une file d’attente...

www.cpgemp-troyes.fr 2/5

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 10

2 Cas particulier de l’algorithme de Dijkstra

On considère un graphe valué à n sommets qu’on peut supposer orienté et dont on connait le poids de toutes les arêtes. En
particulier, on peut définir M sa matrice d’adjacence de sorte que pour tout (i, j) ∈ J0, n− 1K :

Mi,j = ωij ≥ 0

On cherche alors à déterminer le plus court chemin entre deux sommets, c’est à dire que pour deux sommets connexes,
on cherche le chemin par lequel la somme des poids rencontrés sera minimale.

Pour cela, on présente l’algorithme de Dijkstra qui consiste à parcourir le graphe en largeur, c’est à dire que les som-
mets à explorer sont traités dans une file d’attente, mais en faisant aussi attention à la distance cumulée depuis le
sommet initial et qui devra être minimale... en réalité, c’est cette condition qui définit la priorité du traitement des sommets.

Par exemple, on définit le graphe suivant pour lequel on cherche à déterminer le plus court chemin entre A et F :

A

B

C

D

E

F

4

7

10

4

8

10

5

8

8

2

On construit alors un tableau dans lequel on va ajouter les poids rencontrés au fur et à mesure, et ceci de la façon suivante :

1. on place les sommets de A à F , puis on initialise le sommet initial à 0 et les autres à la valeur ∞.

2. Puis à chaque étape :

• on sélectionne le sommet réalisant la distance cumulée d(n) la plus petite,

• et on complète la ligne suivante en ajoutant les distances parcourues entre deux sommets, et ceci à condition que
la distance obtenue soit strictement plus petite. Sinon, on recopie la distance précédente.

On fera quand même attention à bloquer le sommet quand celui-ci a été traité, et à indexer les distances cumulées par
le sommet précédent : c’est pour cela, qu’on placera plus tard dans la file d’attente un sommet à traiter, auquel on
associera la distance en cours.

3. enfin, quand la distance minimale est obtenue dans la dernière colonne, le sommet cible est atteint et on peut lire la
distance minimale entre les sommets. Il suffit alors de remonter les sommets prédécesseurs, colonne par colonne, pour
identifier le plus court chemin entre A et F .

www.cpgemp-troyes.fr 3/5

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 10

Exercice 2 (algorithme de Dijkstra dans un graphe pondéré). []

1. On considère le graphe suivant :

A

B C

DE

F

1

3

1

2

3

5

1

3

1

(a) Donner la matrice d’adjacence M associée à ce graphe.

(b) En appliquant l’algorithme de Dijkstra, déterminer le plus court chemin du sommet A au sommet F .

2. Plus généralement, on considère un graphe G = (S,A) à n sommets, qu’on suppose orienté et valué. On suppose que celui-ci
est représenté par une matrice d’adjacence M = (mij) telle que pour tout (i, j) ∈ J0, n− 1K,

mij représente le poids de l’arc i −→ j.

De plus, et avant de construire l’algorithme dans le langage Python, on détaille ici comment on parcourt le graphe en
largeur pour déterminer, s’il existe, le plus court chemin de i vers j :

On considère la donnée de (M, i, j), puis on initialise une liste couleur qui colore à 0
tous les sommets, c’est à dire pour n sommets :

couleur = [0, . . . , 0]

On définit une liste La des sommets gris qui sont à explorer, et donc en attente de
coloriage au noir, en plaçant le premier sommet i :

La = [i]

On définit enfin L la liste d’adjacence associée à M , D la liste des distances cumulées
qu’on initialise à :

D = [float(′inf ′), . . . , 0︸︷︷︸
i

, . . . , f loat(′inf ′)]

et P une liste de prédecesseurs qu’on initialise par défaut à :

P = [−1, . . . ,−1]

Puis, tant que la liste La n’est pas vide,

• on extrait le sommet s, associé à une distance minimale, inclus dans La puis on
l’enlève et on le colorie en noir : couleur[s] = 2

• si s = j, c’est fini et on retourne True, et le chemin obtenu à partir de la liste
des prédecesseurs de j, ainsi que la distance totale D[s].

• sinon, on parcourt les voisins v ∈ L[s] du sommet s :

– si le sommet v est blanc, on l’ajoute naturellement à la liste La sous la
forme d’une file, et on le colorie en gris : couleur[v] = 1. De plus,

∗ on calcule la nouvelle distance : D[v] = D[s] + msv,

∗ on place alors le sommet s comme prédecesseur dans P [v].

– si le sommet v est déjà gris. Dans ce cas, on compare les distances D[v]
et D[s] + msv et si D[s] + msv < D[v], on pose D[v] = D[s] + msv, et on
place alors le sommet s comme prédecesseur dans P [v].

Enfin, si la boucle s’interrompt, c’est qu’il n’y a plus de sommet à traiter, et on
renvoie simplement False : le sommet j n’était finalement pas accessible.

www.cpgemp-troyes.fr 4/5

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 10

Pour finir, on aura besoin de fonctions auxiliaires : l’une qui nous permettra d’extraire de la file d’attente les sommets prioritaires
(ici, ceux associés à une distance minimale) et l’autre qui nous permettra de remonter l’ensemble des sommets parcourus pour en
exhiber le plus court chemin.

(a) On considère un graphe à n sommets, et on admet avoir construit une liste L = [s1, . . . , sp] de sommets à traiter. On note
D = [d1, . . . , dn] les distances associées à chacun des sommets du graphe. En particulier, p ≤ n et donc le sommet s1 est
associé à la distance ds1...
Dans le langage Python, construire la fonction sommet(L:list,D:list)->int qui parcourt les distances incluses dans D et
renvoie le sommet si0 de L associé à la distance minimale.
Par exemple, avec L = [0, 1, 4] et D = [15, 12, f loat(′inf ′), 7, 18], il vient :

In : sommet(L,D)

1

(b) On appelle liste des prédecesseurs toute liste P à n sommets pour laquelle P [i] renvoie le sommet qui a permis d’obtenir i,
avec la convention P [i] = −1 si le sommet i n’a pas de successeur. Par exemple, le chemin : 0 −→ 2 −→ 4 aurait pour liste
de prédecesseurs dans un graphe à 6 sommets :

P = [−1,−1, 0,−1, 2,−1]

Dans le langage Python, construire alors la fonction chemin(P:list,j)->list qui renvoie la liste des prédécesseurs du sommet
j, c’est à dire qu’on remonte les sommets jusqu’à obtenir −1, ce qui signifie qu’il n’y a plus de prédecesseur.
Par exemple :

In : chemin(P,4)

[0,2,4]

(c) Construire alors le programme dijkstra qui pour tout graphe donné par sa matrice d’adjacence, et pour tout couple (i, j) ∈ S2

renvoie le plus court chemin éventuel.
On testera évidemment notre programme avec le graphe proposé à la question 1.

Remarques

1. La vitesse d’excution de l’algorithme de Dijkstra dépend surtout de l’implémentation et de la gestion de la file d’attente.
Autrement dit, dans le langage Python, les files sont souvent gérées sous la forme de liste et les méthodes associées
(insert(0,.) ou encore pop()) fonctionnent en un temps quasi-linéaire. C’est très efficace !

2. Attention, l’algorithme de Dijkstra ne convient pas pour des graphes à poids négatifs... et on devra adapter nos graphes
à la situation pour obtenir des poids positifs : par exemple, au lieu de travailler avec des dénivelés, on travaille en
altitude au dessus de la mer.

3. Il existe d’autres algorithmes de calcul du plus court chemin dans un graphe valué et orienté. Certains permettent
même d’imposer une heuristique h, c’est à dire qu’on modifie le choix des sommets dans la file d’attente au cours du
programme.
Concrètement, au lieu de considérer la distance minimale d(n) à chaque étape, on peut par exemple choisir de minimiser:

d′(n) = d(n) + h(n)

où h(n) représente la distance du sommet courant jusqu’au point d’arrivée. C’est notamment le cas de l’algorithme
A∗, on dit alors que l’algorithme est guidé ou informé.

www.cpgemp-troyes.fr 5/5

http://www.cpgemp-troyes.fr/

	Parcours par coloriage des sommets
	Cas particulier de l'algorithme de Dijkstra (lire "Dextra")

