
MP - Lycée Chrestien de Troyes Info 1

Rappels sur le langage Python : typage dynamique et importation

Ces dernières années, vous avez dû apprendre un nouveau langage de programmation avec ses particularités : le langage
Python. Si celui-ci est assez accessible de par sa simplicité de programmation, nous reviendrons ici sur quelques notions
fondamentales afin de faire tourner des exemples classiques sur machine.

1 Présentation de l’interface et premier exemple

Au cours de cette année, nous n’apprendrons pas à programmer des séquences d’instructions sous un format binaire, mais
nous privilégierons le langage Python, un langage de haut niveau parmi d’autres : ce type de langage représente en
fait un ensemble de mots-clefs qui définissent un code compréhensible par chacun d’entre nous et qui sera interprété par la
machine avant d’être exécuté. Si la programmation semble aisée, cela nécessite d’abord :

1. d’installer le langage Python sur la machine (par exemple sur www.anaconda.com)

2. puis d’utiliser un logiciel interpréteur (par exemple sur www.pyzo.org) qui nous facilitera l’édition et l’interprétation
de nos instructions, et ceci afin que les tâches soient effectuées par l’ordinateur.

Concrètement, l’environnement de travail se présentera de la façon suivante :

dans lequel on pourra distinguer :

• un module d’édition qui nous permet de construire nos différents scripts d’instructions dans le langage Python ;

• une console interactive qui permet d’exécuter certaines commandes.

La plupart du temps, on cherchera donc à construire nos programmes dans l’éditeur sous la forme de fonctions, c’est à
dire qu’à partir de données formelles appelées aussi arguments, le programme renverra un ou plusieurs résultats, puis ces
fonctions seront appelées dans la console.

Remarque Dans la construction de nos scripts, il faudra veiller à la structure physique de nos programmes et les sauts
de ligne ou indentation seront indispensables. D’ailleurs, on fera souvent appel à des blocs d’instructions classiques :{

les boucles conditionnelles if, elif, elif..., else

les boucles itératives for... ou while...

www.cpgemp-troyes.fr 1/6

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 1

Exercice 1 (résolution d’une équation du second degré à coefficients réels). []
On considère l’équation ax2 + bx+ c = 0, où (a, b, c) ∈ R3 et a 6= 0.

Dans le langage Python, construire un programme racines(a : float, b : float, c : float) → tuple calcule le discriminant
associé, puis renvoie les racines éventuellement complexes de l’équation.

Remarque Il y aura toujours plusieurs façons de construire un programme, mais on préfèrera des instructions compréhensibles
à l’économie des lignes. Cela facilite le debugage et c’est cette attitude qu’il faudra privilégier tout au long de l’année... on
pourra même songer à renseigner nos fonctions en précisant par exemple :

• le type des variables utilisées dans la définition de la fonction,

• une description sommaire de la fonction à placer en préambule et entre guillemets ””” . . . ”””,

• des commentaires bien placés à l’aide du symbole #,

• tester quelques conditions en amont ou en aval à l’aide de la commande assert.

On pourra ensuite lire le fichier d’aide associé à l’aide de la commande help.

Exercice 1 (résolution d’une équation du second degré à coefficients réels). []
On considère l’équation ax2 + bx+ c = 0, où (a, b, c) ∈ R3 et a 6= 0.

Dans le langage Python, construire un programme racines(a : float, b : float, c : float) → tuple calcule le discriminant
associé, puis renvoie les racines éventuellement complexes de l’équation. On veillera à renseigner la fonction ainsi construite.

www.cpgemp-troyes.fr 2/6

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 1

2 Typage dynamique et importation de librairies additionnelles

Le langage Python est un langage léger : il ne nécessite pas de déclarer au préalable les variables qui seront utilisées : on
parle de typage dynamique, c’est à dire que pour chaque variable, l’interpréteur identifie sa classe à l’assignation et ceci
en fonction des commandes utilisées. On fera donc attention aux différentes classes des objets mais aussi à leurs attributs
(des propriétés propres à la classe de l’objet) et aux nombreuses méthodes associées (des fonctions particulières définies
pour les objets d’une même classe).

Par exemple, vous avez déjà travaillé avec :

• les objets booléens du type bool et qui ne prennent que deux valeurs True ou False. Ces valeurs nous permettent
de vérifier des conditions logiques qu’elles soient simples ou multiples.

• les nombres entiers : ce sont les objets du type int et parmi les opérations associées les plus courantes, il y a :

commande Python interprétation

x//y renvoie le quotient de la division euclidienne de x par y

x%y renvoie le reste de la division euclidienne de x par y

range(x) renvoie la liste des entiers [0, 1, . . . , x− 1]

• les nombres réels : ce sont les objets du type float et parmi les opérations associées les plus courantes, il y a :

commande Python interprétation

round(x) ou round(x,n) renvoie la valeur arrondie de x à 10−n près

abs(x) renvoie la valeur absolue de x

ainsi que toutes les opérations usuelles.

Et si on veut aller plus loin, il sera parfois nécessaire d’importer des librairies additionnelles : il s’agit généralement
de modules externes qui contiennent des fonctions déjà programmées. Ici, nous prendrons souvent l’habitude d’importer la
librairie math ajoutant les fonctions mathématiques usuelles qui ne sont pas intégrées par défaut :

In : import math

On peut alors obtenir une rapide description des fonctions données :

In : help(math)

Help on module math:
(...)
FUNCTIONS
acos(...)
acos(x)
Return the arc cosine (measured in radians) of x.
(...)

On retiendra en particulier le nom des fonctions usuelles ainsi que la donnée des constantes e et π :

acos, acosh, asin, asinh, atan, atanh, ceil, cos, cosh, degrees, exp, fabs, factorial, floor, fsum, log, log10, sin,
sinh, radians, sqrt, tan, tanh et e, pi

Par contre, ces fonctions sont associées à la librairie importée et cela exige de préfixer les fonctions par le nom du module ou
d’un alias bien choisi... Alors, pour simplifier nos scripts, on préfèrera, quand c’est possible, importer le module d’une autre
façon :

In : from math import *; sqrt(169)

13.0

Au fil de l’année, on sera donc amené à travailler avec différents modules en fonction de nos besoins et on pourra d’ores et
déjà retenir l’existence des librairies suivantes :

• le module cmath pour travailler sur les nombres complexes,

• le module random permettant de générer des nombres pseudos-aléatoires,

• le module time pour gérer l’horloge interne du système,

• les modules pylab ou matplotlib pour représenter les fonctions usuelles ou des objets géométriques,

• le module numpy pour travailler sur les tableaux,

• le module scipy apportant de nombreuses méthodes d’approximation pour la résolution de problèmes mathématiques.

www.cpgemp-troyes.fr 3/6

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 1

3 Le cas particulier des données structurées

Certaines classes nous permettront de gérer des objets constitués eux-mêmes d’autres objets, on parle plutôt de données
structurées ou de conteneurs.
L’avantage de ces objets, c’est que tous les termes contenus seront numérotés de 0 à la longueur-1, et on distinguera :

• les n-uplets du type tuple
Ils représentent la classe la plus courante et leur définition est implicite puisqu’il suffira de juxtaposer les éléments à
l’aide d’une virgule, avec des parenthèses ou non.

• les ensembles du type set
Ils représentent une classe très pratique car on y retrouve toutes les opérations ensemblistes usuels. On pourra construire
de tels ensembles à l’aide d’accolades ou tout simplement par la commande de conversion set.

• les châınes de caractères du type string
Elles sont construites soit en utilisant la fonction de conversion str, soit à l’aide de guillemets simples ’ ’ ou doubles ”
”, selon la présence d’apostrophes dans la châıne donnée :

In : s,t= ’sans apostrophe!’,"avec l’apostrophe"; type(s); type(t)

<class ’str’>
<class ’str’>

• les listes du type list
Les listes permettent de représenter des séquences modifiables. C’est le type que l’on préférera manipuler tant les
méthodes sont nombreuses. On pourra définir une telle liste de trois façons :

1. en convertissant une variable de type tuple grâce à la commande list,

2. en complétant la liste au fur et à mesure dans un programme itératif avec une boucle for ou while,

3. en décrivant la séquence contenue dans la liste. On parle alors de liste par compréhension pour laquelle les
éléments sont exprimés en fonction de l’indice associé :

In : L = [k**2 for k in range(0,11)]; L

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Et en plus, on pourra même y ajouter des instructions conditionnelles :

In : L = [k**2 for k in range(0,11) if k%2 == 0]; L

[0, 4, 16, 36, 64, 100]

Contrairement aux n-uplets, on pourra cette fois-ci en modifier le contenu et on fera bien entendu attention à l’indexation
car les éléments sont toujours numérotés de 0 jusqu’à la longueur de la liste obtenue par la commande len −1 :

In : L = list(range(11)); L[5] = 0; print(L); len(L)

[0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 10]
11

Si de plus, on cherche à supprimer un élément, on pourra toujours le faire au moyen de la commande del :

In : del(L[2:5]); L

[0, 1, 0, 6, 7, 8, 9, 10]

En fait, la donnée de deux indices sous la forme i:j nous permet d’extraire les éléments d’une liste, mais on veillera à
bien comprendre que l’élément d’indice i est toujours inclus, alors que l’élément d’indice j est exclus.

Pour finir, on présente ici quelques opérations déjà rencontrées dans des programmes précédents :

commande Python interprétation

x in L ou x not in L teste si x appartient ou non à la liste L

L1 + [x] ajoute l’élément x à la liste L1

L1 + L2 renvoie la concaténation des listes L1 et L2

L * n renvoie la concaténation de n-fois la liste L

max(L) ou min(L) renvoie le maximum ou le minimum de la liste L

www.cpgemp-troyes.fr 4/6

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 1

Cette classe possède des fonctions plus spécifiques encore, appelées aussi attributs, et qui permettent d’obtenir des
propriétés liées à l’objet lui-même :

commande Python interprétation

L.index(x) renvoie le premier indice de l’élément qui vaut x

L.count(x) renvoie le nombre d’occurrences de x dans L

De la même façon, on retrouvera cette notation pointée dans l’utilisation des méthodes. Ce sont des fonctions qui
opèrent sur la liste donnée :

commande Python interprétation

L.append(x) ajoute l’élément x à la fin de la liste L

L1.extend(L2) ajoute à la fin de L1 les éléments de L2

L.insert(i,x) insère au rang i l’élément x

L.remove(x) supprime la première occurrence de x dans L

L.reverse() permet de retourner la liste L en inversant les éléments

L.sort() permet d’ordonner la liste L

Remarque Ces commandes existent, mais encore une fois, on ne vous demande pas de toutes les connâıtre mais plutôt de
les reconstruire.

4 Applications

Ces premiers exemples ont pour seul but de vous aider à mieux appréhender l’environnement et la syntaxe du langage Python.

Exercice 2 (approximation de e et comparaison de la complexité en temps). []
On rappelle que le développement en série entière de l’exponentielle nous donne par exemple :

e =

+∞∑
k=0

1

k!

1. (a) Dans le langage Python, construire la fonction itérative facto(n : int)→ int qui renvoie la valeur de n!.

(b) En déduire le programme somme1(n : int)→ float renvoie la valeur de Sn =
∑n

k=0
1
k!

à l’aide de votre fonction facto.

(c) De la même façon, construire le programme somme2(n : int) → float qui renvoie la valeur de Sn sans votre fonction
facto, mais en calculant k! à partir de l’itération précédente.

2. Importer le module time, puis définir la fonction comparaison(ε : float) → list qui calcule les valeurs de Sn par les
programmes somme1 et somme2, et renvoie les temps de calcul [t1, t2] nécessaires pour que |e− Sn| ≤ ε.

Exercice 3 (suite de Syracuse et temps de vol). []
On définit la suite de Syracuse par :

u0 ∈ R et pour tout n ∈ N, un+1 =

{un

2
, si un est pair

3un + 1, si un est impair

1. Dans le langage Python, écrire la fonction syracuse(n : int, u0 : float)→ float qui renvoie le n-ième terme de la suite.

2. Construire le programme syraliste(u0 : float)→ list qui calcule les termes de la suite tant que un 6= 1, puis renvoie la liste
[u0, . . . , 1] ainsi que la longueur de celle-ci, aussi appelé temps de vol.

3. Pour quelle valeur de u0 ∈ J2, 1000K le temps de vol est-il le plus élevé ?

www.cpgemp-troyes.fr 5/6

http://www.cpgemp-troyes.fr/

MP - Lycée Chrestien de Troyes Info 1

Exercice 4 (nuage de points et droite de régression linéaire). []
Lorsqu’on étudie certains phénomènes physiques, on peut être amené à relier des paramètres, c’est à dire à chercher une relation
de dépendance entre ces paramètres. Dans le cas le plus simple, quand les données relevées sur deux paramètres fournissent un
nuage de points alignés, on pourra faire l’hypothèse que le modèle est affine et on cherchera naturellement à identifier la droite
de régression linéaire qui s’approche au plus près de chacun des points.

Concrètement, si X = [x0, . . . , xn−1] et Y = [y0, . . . , yn−1] désignent les mesures effectuées pour deux paramètres physiques, le
nuage de points associés sera constitué des points de coordonnées (xk, yk):

On se propose de construire une fonction qui nous permettra de déterminer l’équation de la droite de régression linéaire traduisant
une relation affine de la forme Y = aX + b.
Dans les programmes suivants, on évitera de faire appel à la commande sum.

1. Construire une fonction moyenne qui pour une liste X donnée, renvoie la moyenne des coefficients définie par :

x =
1

n
(x0 + . . .+ xn−1)

2. Construire une fonction covariance qui pour deux listes X,Y données, renvoie la covariance de X et Y définie par :

cov(X,Y) =
1

n

n−1∑
k=0

(xk − x)(yk − y)

On pensera à anticiper ici et imposer une pré-condition pour que les listes X et Y aient la même taille.

3. Construire une fonction variance qui pour une liste X donnée, renvoie la variance de X définie par :

var(X) =
1

n

n−1∑
k=0

(xk − x)2

4. Construire alors la fonction principale reglin qui pour deux listes de mesures données X,Y , renvoie les coefficients a et b de
la droite de régression linéaire, définis par :

a =
cov(X,Y)

var(X)
et b = y − ax

puis affiche la représentation graphique de la droite d’équation y = ax + b sur le segment [m,M] où m,M désignent les
valeurs minimales et maximales de la liste X.
Pour cette représentation, on n’hésitera pas à importer les librairies numpy et matplotlib, et faire appel aux commandes
linspace et plot, qui sont très efficaces pour construire des graphiques.

Exercice 5 (recherche d’un plus grand élément et place de celui-ci). []
On considère une liste L constituée de n nombres réels et une matrice A ∈Mnp(R).

1. Dans le langage Python, construire la fonction chercherliste(L : list) → tuple qui renvoie la valeur du plus grand élément
de la liste L, ainsi que un indice correspondant à sa place.

2. De la même façon, construire la fonction cherchermatrice(A : array) → tuple qui renvoie la valeur du plus grand élément
de la matrice A, ainsi que un couple d’indices correspondant à sa place.

www.cpgemp-troyes.fr 6/6

http://www.cpgemp-troyes.fr/

	Présentation de l'interface et premier exemple
	Typage dynamique et importation de librairies additionnelles
	Le cas particulier des données structurées
	Applications

