
Mines Ponts 2021 (les 3 marches) : éléments de correction

Entrée [1]:

Partie I. Randonnée

 Nombre de participants nés entre 1999 et 2003 (inclus) :

SELECT COUNT(*) FROM Participant
WHERE ne >= 1999 AND ne <= 2003

𝐐1

 Durée moyenne des randonnées pour chaque niveau de difficulté :

SELECT diff,AVG(duree) FROM Rando
GROUP BY diff

𝐐2

 Nom des participants pour lesquels la randonnée n°42 est trop difficile :

avec une sous-requête :

SELECT pnom FROM Participant
WHERE diff_max < (SELECT diff FROM Rando
 WHERE rid=42)

avec un produit cartésien :

SELECT pnom FROM Participant,Rando
WHERE rid = 42 AND diff_max < diff

𝐐3

 Clés primaires des randonnées qui ont un ou des homonymes, sans redondance :

Première version, avec une auto-jointure :

SELECT DISTINCT R.rid
FROM Rando AS R JOIN Rando AS S
ON R.rnom=S.rnom
WHERE R.rid <> S.rid

Deuxième version, avec un GROUP BY et un HAVING :

SELECT DISTINCT rid FROM Rando
WHERE rnom IN (SELECT rnom FROM rando
 GROUP BY rnom
 HAVING COUNT(*) > 1)

𝐐4

 De la lecture de fichier :

Une première version :

def importe_rando(nom_fichier):
 fichier=open(nom_fichier,"r")
 coords=[]
 fichier.readline() # pour ne pas traiter la 1ère ligne
 for ligne in fichier:
 ligne=ligne.split(",")
 ligne=[float(elt) for elt in ligne]
 coords.append(ligne)
 fichier.close()
 return coords

On peut aussi écrire une fonction plus "condensée" :

def importe_rando(nom_fichier):
 fichier=open(nom_fichier,"r")
 fichier.readline() # pour ne pas traiter la 1ère ligne
 coords=[[float(elt) for elt in ligne.split(",")] for ligne in fichier]
 fichier.close()
 return coords

On pourrait également utiliser readlines , ou utiliser une syntaxe de style with open(nom_fichier,"r") as fichier:

𝐐5

 C'est une recherche de maximum :𝐐6

%matplotlib inline

def plus_haut(coords):
 lat,long,m=coords[0][:3]
 for elt in coords[1:]:
 if elt[2] > m:
 lat,long,m = elt[:3]
 return [lat,long]

Une variante :

def plus_haut(coords):
 pos=0
 m=coords[pos][2]
 for i in range(1,len(coords)):
 cur=coord[i][2]
 if cur > m:
 m=cur
 pos=i
 return coords[pos][:2]

NB : Si plusieurs points ont la même altitude maximale, la fonction précédente renvoie le premier point de la liste qui atteint cette attitude.

 On propose deux versions :

Si on ne s'autorise pas la commande sum :

def deniveles(coords):
 pos,neg=0,0
 for i in range(len(coords)-1):
 a,b=coords[i][2],coords[i+1][2]
 if a>b: # dénivelé négatif
 neg+=b-a
 else: # dénivelé positif
 pos+=b-a
 return [pos,neg]

si on s'autorise la commande sum :

def deniveles(coords):
 pentes=[coords[i+1][2]-coords[i][2] for i in range(len(coords)-1)]
 pos=sum([p for p in pentes if p>0])
 neg=sum([p for p in pentes if p<0])
 return [pos,neg]

𝐐7

 On importe les fonctions utiles du module math :

from math import asin,sin,cos,sqrt,radians

RT = 6371 # variable globale donnée dans le canevas

def distance(c1,c2):
 phi1,l1,alt1=c1[:3] # phi,lambda et altitude pour le point c1
 phi2,l2,alt2=c2[:3] # idem pour c2
 phi1,phi2=radians(phi1),radians(phi2) # conversion en radians
 l1,l2=radians(l1),radians(l2)
 alt=RT*1e3+(alt1+alt2)/2 # conversion en mètres de RT + on rajoute l'altitude moyenne
 s=sin((phi2-phi1)/2)**2+cos(phi1)*cos(phi2)*sin((l2-l1)/2)**2
 s=sqrt(s)
 d=2*alt*asin(s) # formule de haversine
 dis=sqrt(d**2+(alt2-alt1)**2) # théorème de Pythagore
 return dis

𝐐8

 Calcul classique de somme :

sans utiliser sum :

def distance_totale(coords):
 d=0
 for i in range(len(coords)-1):
 d+=distance(coords[i],coords[i+1])
 return d

en utilisant sum :

def distance_totale(coords):
 dis=sum(distance(coords[i],coords[i+1]) for i in range(len(coords)-1))
 return dis

𝐐9

Partie II. Mouvement brownien d'une petite particule

def vma(v1,a,v2):
 assert len(v1) == len(v2) # vérification de la longueur identique des listes
 return [v1[i] + a * v2[i] for i in range(len(v1))]

𝐐10

 On projette l'équation du mouvement sur l'axe des abscisses ; on obtient :

On a une relation identique en projetant sur l'axe des ordonnées.

Ne pas oublier l'import du module random :

from math import cos,sin,pi # ou alors déjà fait à la question 8
import random as rd

def derive(E):
 x,y,xp,yp = E
 theta = rd.uniform(0,2*pi)
 norme = abs(rd.gauss(MU,SIGMA))
 fBx = cos(theta)*norme # on projette fB sur (Ox)
 fBy = sin(theta)*norme # idem sur (Oy)
 xpp = (-ALPHA*xp + fBx)/M
 ypp = (-ALPHA*yp + fBy)/M
 return [xp,yp,xpp,ypp]

𝐐11

= − +𝑥
∙∙ 𝛼𝑥

∙

𝑚

𝑓𝐵𝑥

𝑚

 La relation de récurrence produite par la méthode d'Euler (explicite) est la suivante :

i.e. :

On en déduit la fonction suivante :

def euler(E0,dt,n):
 Es = [E0]
 E = E0
 for i in range(n):
 E = vma(E,dt,derive(E)) # relation de récurrence d'Euler
 Es.append(E)
 return Es

𝐐12

=
−𝐸𝑛+1 𝐸𝑛

𝑑𝑡
𝐸𝑛
∙

= + 𝑑𝑡 ×𝐸𝑛+1 𝐸𝑛 𝐸𝑛
∙

Partie III. Marche auto-évitante

 On parcourt les voisins du point pour voir ce qui ont déjà été atteints par le chemin :

def positions_possibles(p,atteints):
 possibles = []
 x,y = p
 voisins = [[x+1,y],[x-1,y],[x,y+1],[x,y-1]] # les 4 voisins de (x,y)
 for v in voisins:
 if not(v in atteints):
 possibles.append(v)
 return possibles

𝐐13 (𝑥, 𝑦)

 Il suffit de tourner en "escargot" pour s'enfermer dans une impossiblité le plus rapidement possible.

Remarque : le code n'était évidemment pas demandé dans l'énoncé !

𝐐14

Entrée [2]:

Il s'agit du plus court chemin auto-bloquant. Il est de longueur . Il y en a en tout, que l'on peut déduire par rotations (d'angle droit et de centre)
composées ou non par une symétrie par rapport à .

7 8 4 (0, 0)

(𝑂𝑥)

 On n'oublie pas les imports (s'ils n'ont pas déjà été faits) :

import random as rd

def genere_chemin_naif(n):
 chemin = [[0,0]]
 p=[0,0]
 for i in range(n): # il faut n+1 points pour un chemin de longueur n
 possibles = positions_possibles(p,chemin)
 if len(possibles) == 0:
 return None # chemin auto-bloquant
 else:
 p = rd.choice(possibles)
 chemin.append(p)
 return chemin

𝐐15

 Dans le pire des cas (aucun blocage), il y aura appels à la fonction positions_possibles , avec comme paramètre chemin , une liste de
taille s'incrémentant de à chaque étape (puisqu'on ne bloque jamais). Chaque appel coûte 4 tests d'appartenance d'une liste de longueur à la liste de
telles listes chemin , soit un len(chemin) comparaisons.

Cela donne donc une complexité d'ordre comparaisons.

N.B. : on a négligé les autres opérations (coût du choice , du append , affectations).

𝐐16 𝑛

1 2

𝑂()

𝑂(1 + 2 +⋯ + 𝑛) = () = 𝑂()
𝑛(𝑛+1)

2
𝑛2

La boucle intérieure for i in range(1,M): détermine la fréquence d'apparition de chemins auto-bloquants de taille fixée n parmi
chemins de longueur générés aléatoirement.
La boucle extérieure for n in range(1,M): effectue ce calcul de fréquence pour toutes les longueurs de chemins entre et .
Il s'agit donc, pour chaque longueur , de donner une approximation de la probabilité de générer un chemin auto-bloquant de taille .
Conclusion : on a donc tracé une approximation de la probabilité pour un chemin de longueur d'être auto-bloquant en fonction de . Cette
probabilité semble croître (ce qui est normal pour un algorithme glouton) vers : plus est grand, moins il est probable de générer un CAE de
longueur par la méthode naïve (et le calcul de complexité quadratique précédent ne sera pas pertinent).

𝐐17

𝑁 = 10000

𝑛

1 𝑀 − 1 = 350

𝑛 ∈ [[1, 350]] 𝑛

𝑛 𝑛

1 𝑛

𝑛

 Le tri-fusion réalise un tri d'une liste de taille , dans le cas le pire, avec une complexité en . C'est la meilleure complexité possible dans le
cas le pire.

Attention : Dans le cas le pire, le tri rapide a une complexité quadratique.

𝐐18 𝑛 𝑂(𝑛 ln 𝑛)

import matplotlib.pyplot as plt
chemin_x = [0,-1,-1,-1,0,1,1,0]
chemin_y = [0,0,1,2,2,2,1,1]
plt.plot(chemin_x,chemin_y,"o-r")
plt.axis("equal")
plt.grid("on")
plt.xticks([-1, 0, 1])
plt.yticks([0, 1, 2])
plt.text(0.1, 0.05, "Départ")
plt.text(-0.5, 1.05, "Bloqué !")
plt.show()

 Une fois la liste des points triée, il suffit de regarder si deux points consécutifs sont égaux :

def est_CAE(chemin):
 chemin_trie=sorted(chemin)
 for i in range(len(chemin)-1):
 if chemin_trie[i]==chemin_trie[i+1]:
 return False
 return True

𝐐19

Si le chemin est de taille , le tri coûte opérations, et la boucle coûte accès et tests d'égalité entre deux points, qui se font en opérations
(complexité amortie ?).

La complexité dans le pire des cas de la fonction précédente est bien en .

𝑛 𝑂(𝑛 ln 𝑛) 𝑛 𝑂(1)

𝑂(𝑛 ln 𝑛)

 On suppose que l'on a orienté le plan dans le sens trigonométrique.

def rot(p,q,a):
 x,y = p
 u,v = q
 assert(a in [0,1,2])
 if a==0:
 return [2*x-u,2*y-v]
 elif a==1:
 return [x+y-v,y+u-x]
 else:
 return [x+v-y,y+x-u]

𝐐20

 On propose 2 versions :

Avec des boucles :

def rotation(chemin,i_piv,a):
 chemin_piv=[]
 for i in range(i_piv+1):
 chemin_piv.append(chemin[i])
 p=chemin[i_piv]
 for i in range(i_piv+1,len(chemin)):
 chemin_piv.append(rot(p,chemin[i],a))
 return chemin_piv

Avec les listes par compréhension :

def rotation(chemin,i_piv,a):
 debut=chemin[:i_piv+1] # le pivot est invariant par rotation
 p=chemin[i_piv]
 fin=[rot(p,q,a) for q in chemin[i_piv+1:]]
 return debut+fin

𝐐21

 À chaque étape, on génère un nouveau chemin pivoté jusqu'à ce que l'on trouve un CAE :

import random as rd # si on ne l'a pas déjà fait avant

def genere_chemin_pivot(n,n_rot):
 chemin = [[i,0] for i in range(n+1)] # intialisation donnée dans l'énoncé
 for i in range(n_rot):
 bloque = True
 while bloque: # tant que l'on génère un chemin qui bloque
 i_piv = rd.randrange(1,n)
 a = rd.randrange(0,3)
 chemin_piv = rotation(chemin,i_piv,a) # nouveau chemin potentiel
 if est_CAE(chemin_piv): # le nouveau chemin est un CAE
 chemin = chemin_piv # mise à jour du chemin
 bloque = False # on sort de la boucle while
 return chemin

𝐐22

 Si désignent le pivot, son point précédent et son point suivant, une des 3 rotations (d'angle , ou) va envoyer sur . Il faut l'éviter
(cela gagne un appel -coûteux- à est_CAE), et pour cela modifier la ligne a = rd.randrange(0,3) de la fonction précédente, et la remplacer par le
code suivant (par exemple) :

𝐐23 , 𝑝, 𝑞𝑝piv 𝜋 𝜋

2
−
𝜋

2
𝑞 𝑝

i_piv = rd.ranrange(1,n) # déjà écrit
p_piv=chemin[i_piv]
p=chemin[i_piv-1]
q=chemin[i_piv+1]
det=(q[0]-p_piv[0])*(p[1]-p_piv[1])-(p[0]-p_piv[0])*(q[1]-p_piv[1])
if det==0:
 a=rd.choice([1,2])
elif det>0:
 a=rd.choice([0,2])
else:
 a=rd.choice([0,1])
chemin_piv = rotation(chemin,i_piv,a) # déjà écrit

On pourrait également tester les 3 rotations possibles pour éliminer celle qui envoie sur .𝑝 𝑞

