Entrée [1]:

Mines Ponts 2021 (les 3 marches) : éléments de correction

%matplotlib inline

Partie I. Randonnée

Nombre de participants nés entre 1999 et 2003 (inclus) :

SELECT COUNT(*) FROM Participant
WHERE ne >= 1999 AND ne <= 2003

Durée moyenne des randonnées pour chaque niveau de difficulté :

SELECT diff,AVG(duree) FROM Rando
GROUP BY diff

Nom des participants pour lesquels la randonnée n°42 est trop difficile :

avec une sous-requéte :

SELECT pnom FROM Participant
WHERE diff max < (SELECT diff FROM Rando
WHERE rid=42)

avec un produit cartésien :

SELECT pnom FROM Participant,Rando
WHERE rid = 42 AND diff max < diff

Clés primaires des randonnées qui ont un ou des homonymes, sans redondance :

Premiére version, avec une auto-jointure :

SELECT DISTINCT R.rid

FROM Rando AS R JOIN Rando AS S
ON R.rnom=S.rnom

WHERE R.rid <> S.rid

Deuxiéme version, avec un GROUP BY et un HAVING :

SELECT DISTINCT rid FROM Rando

WHERE rnom IN (SELECT rnom FROM rando
GROUP BY rnom
HAVING COUNT(*) > 1)

De la lecture de fichier :

« Une premiére version :

def importe_rando(nom_fichier):
fichier=open(nom_fichier,"r")
coords=[]
fichier.readline() # pour ne pas traiter la lére ligne
for ligne in fichier:
ligne=ligne.split(",")
ligne=[float(elt) for elt in ligne]
coords.append (ligne)
fichier.close()
return coords

« On peut aussi écrire une fonction plus "condensée" :

def importe_rando(nom_fichier):
fichier=open(nom_fichier,"r")
fichier.readline() # pour ne pas traiter la lére ligne
coords=[[float(elt) for elt in ligne.split(",")] for ligne in fichier]
fichier.close()
return coords

« On pourrait également utiliser readlines , ou utiliser une syntaxe de style with open(nom fichier,"r") as fichier:

C'est une recherche de maximum :

def plus_haut(coords):
lat, long,m=coords[0][:3]
for elt in coords[l:]:
if elt[2] > m:
lat,long,m = elt[:3]
return [lat,long]

Une variante :

NB

def plus_haut(coords):
pos=0
m=coords[pos][2]
for i in range(l,len(coords)):
cur=coord[i][2]
if cur > m:
m=cur
pos=i
return coords[pos][:2]

: Si plusieurs points ont la méme altitude maximale, la fonction précédente renvoie le premier point de la liste qui atteint cette attitude.

On propose deux versions :
Si on ne s'autorise pas la commande sum :

def deniveles(coords):
pos,neg=0,0
for i in range(len(coords)-1):
a,b=coords[i][2],coords[i+1][2]
if a>b: # dénivelé négatif
neg+=b-a
else: # dénivelé positif
pos+=b-a
return [pos,neg]

si on s'autorise la commande sum :

def deniveles(coords):
pentes=[coords[i+1][2]-coords[i][2] for i in range(len(coords)-1)]
pos=sum([p for p in pentes if p>0])
neg=sum([p for p in pentes if p<0])
return [pos,neg]

On importe les fonctions utiles du module math :

from math import asin,sin,cos,sqrt,radians
RT = 6371 # variable globale donnée dans le canevas

def distance(cl,c2):
phil,11,altl=cl[:3] # phi,lambda et altitude pour le point cl
phi2,12,alt2=c2[:3] # idem pour c2
phil,phi2=radians(phil),radians(phi2) # conversion en radians
11,12=radians(11),radians(12)
alt=RT*le3+(altl+alt2)/2 # conversion en métres de RT + on rajoute 1'altitude moyenne
s=sin((phi2-phil)/2)**2+cos(phil)*cos(phi2)*sin((12-11)/2)**2
s=sqrt(s)
d=2*alt*asin(s) # formule de haversine
dis=sqrt(d**2+(alt2-altl)**2) # théoréme de Pythagore

return dis

Calcul classique de somme :
sans utiliser sum :

def distance_totale(coords):
d=0
for i in range(len(coords)-1):
d+=distance (coords[i],coords[i+1])
return d

en utilisant sum :

def distance_totale(coords):
dis=sum(distance(coords[i],coords[i+1]) for i in range(len(coords)-1))

return dis

Partie Il. Mouvement brownien d'une petite particule

def vma(vl,a,v2):

assert len(vl) == len(v2) # vérification de la longueur identique des listes
return [vl[i] + a * v2[i] for i in range(len(vl))]

On projette I'équation du mouvement sur |'axe des abscisses ; on obtient :

. ax
PR 1Y
m m

On a une relation identique en projetant sur I'axe des ordonnées.
Ne pas oublier I'import du module random :

from math import cos,sin,pi # ou alors déja fait a la question 8
import random as rd

def derive(E):
X,¥,Xp,yp = E
theta = rd.uniform(0,2*pi)
norme = abs(rd.gauss(MU,SIGMA))
£Bx = cos(theta)*norme # on projette fB sur (Ox)
£By = sin(theta)*norme # idem sur (Oy)
xXpp = (-ALPHA*xXp + f£Bx)/M
ypp = (-ALPHA*yp + £By)/M
return [Xp,yp,Xpp,yPp]

La relation de récurrence produite par la méthode d'Euler (explicite) est la suivante :

E, — E
dt

=E,

E,, =E,+dtxXE,
On en déduit la fonction suivante :

def euler(E0,dt,n):
Es = [EO]
E = EO
for i in range(n):
E = vma(E,dt,derive(E)) # relation de récurrence d'Euler
Es.append (E)
return Es

Partie lll. Marche auto-évitante

On parcourt les voisins du point (x, y) pour voir ce qui ont déja été atteints par le chemin :

def positions_possibles(p,atteints):

possibles = []
XYy =P
voisins = [[x+1,y],[%-1,y],[X,y+1],[X,y-11] # les 4 voisins de (x,y)
for v in voisins:

if not(v in atteints):

possibles.append(v)

return possibles

Il suffit de tourner en "escargot" pour s'enfermer dans une impossiblité le plus rapidement possible.

Remarque : le code n'était évidemment pas demandé dans I'énoncé !

Entrée [2]:

import matplotlib.pyplot as plt
chemin_x = [0,-1,-1,-1,0,1,1,0]
chemin_y = [0,0,1,2,2,2,1,1]
plt.plot(chemin_x,chemin_y,"o-r")
plt.axis("equal")

plt.grid("on")

plt.xticks([-1, 0, 1])
plt.yticks([0, 1, 2])
plt.text(0.1, 0.05, "Départ")
plt.text(-0.5, 1.05, "Bloqué !")

plt.show()
2
EBlogque !
. loque L
Départ
o) épart
a 0 1

Il s'agit du plus court chemin auto-bloquant. Il est de longueur 7. Il'y en a 8 en tout, que I'on peut déduire par 4 rotations (d'angle droit et de centre (0, 0))
composées ou non par une symétrie par rapport a (Ox).

On n'oublie pas les imports (s'ils n'ont pas déja été faits) :
import random as rd

def genere_chemin_naif(n):
chemin = [[0,0]]
p=[0,0]
for i in range(n): # il faut n+l points pour un chemin de longueur n
possibles = positions_possibles(p,chemin)
if len(possibles) == 0:
return None # chemin auto-bloquant
else:
p = rd.choice(possibles)
chemin.append(p)
return chemin

Dans le pire des cas (aucun blocage), il y aura n appels a la fonction positions_possibles , avec comme paramétre chemin , une liste de
taille s'incrémentant de 1 a chaque étape (puisqu'on ne bloque jamais). Chaque appel colite 4 tests d'appartenance d'une liste de longueur 2 a la liste de
telles listes chemin , soit un O(len(chemin)) comparaisons.

Cela donne donc une complexité d'ordre O(1 +2 + -+ + n) = (%) = O(n*) comparaisons.

N.B. : on a négligé les autres opérations (colt du choice , du append , affectations).

La boucle intérieure for i in range(1,M): détermine la fréquence d'apparition de chemins auto-bloquants de taille fixée n parmi N = 10000
chemins de longueur n générés aléatoirement.

La boucle extérieure for n in range(1,M): effectue ce calcul de fréquence pour toutes les longueurs de chemins entre 1 et M — 1 = 350.

Il s'agit donc, pour chaque longueur n € [[1,350]], de donner une approximation de la probabilité de générer un chemin auto-bloguant de taille n.
Conclusion : on a donc tracé une approximation de la probabilité pour un chemin de longueur 1 d'étre auto-bloquant en fonction de n. Cette
probabilité semble croitre (ce qui est normal pour un algorithme glouton) vers 1 : plus n est grand, moins il est probable de générer un CAE de
longueur n par la méthode naive (et le calcul de complexité quadratique précédent ne sera pas pertinent).

Le tri-fusion réalise un tri d'une liste de taille n, dans le cas le pire, avec une complexité en O(n In n). C'est la meilleure complexité possible dans le

cas le pire.

Attention : Dans le cas le pire, le tri rapide a une complexité quadratique.

Une fois la liste des points triée, il suffit de regarder si deux points consécutifs sont égaux : i_piv = rd.ranrange(l,n) # déja écrit
p_piv=chemin[i_piv]

def est_CAE(chemin): p=chemin[i_piv-1]
chemin_trie=sorted(chemin) q=chemin[i_piv+1]
for i in range(len(chemin)-1): det=(q[0]-p_piv[0])*(p[1]1-p_Piv[1])-(p[0]-p_piv[0])*(qa[1]-p_piv[1])
if chemin_trie[i]==chemin_trie[i+1]: if det==0:
return False a=rd.choice([1,2])
return True elif det>0:
a=rd.choice([0,2])
else:
Si le chemin est de taille n, le tri codte O(n In n) opérations, et la boucle codte n accés et tests d'égalité entre deux points, qui se font en O(1) opérations a=rd.choice([0,1])
(complexité amortie ?). chemin_piv = rotation(chemin,i piv,a) # déja écrit
La complexité dans le pire des cas de la fonction précédente est bien en O(n In n). On pourrait également tester les 3 rotations possibles pour éliminer celle qui envoie p sur g.

On suppose que I'on a orienté le plan dans le sens trigonométrique.

def rot(p,q,a):
X,y =p
u,v =gq
assert(a in [0,1,2])
if a==0:
return [2%x-u,2%y-v]
elif a==1:
return [x+y-v,y+u-x]
else:
return [x+v-y,y+x-u]

On propose 2 versions :
« Avec des boucles :

def rotation(chemin,i piv,a):

chemin_piv=[]

for i in range(i_piv+l):
chemin_piv.append(chemin[i])

p=chemin[i_piv]

for i in range(i_piv+l,len(chemin)):
chemin_piv.append(rot(p,chemin[i],a))

return chemin_piv

« Avec les listes par compréhension :

def rotation(chemin,i_piv,a):
debut=chemin[:i_piv+1l] # le pivot est invariant par rotation
p=chemin[i_piv]
fin=[rot(p,q,a) for q in chemin[i_piv+1l:]]
return debut+fin

A chaque étape, on génére un nouveau chemin pivoté jusqu'a ce que I'on trouve un CAE :

import random as rd # si on ne 1'a pas déja fait avant

def genere_chemin_pivot(n,n_rot):
chemin = [[i,0] for i in range(n+1)] # intialisation donnée dans 1'énoncé
for i in range(n_rot):
bloque = True
while bloque: # tant que 1'on génére un chemin qui blogue
i_piv = rd.randrange(1,n)
a = rd.randrange(0,3)
chemin_piv = rotation(chemin,i_piv,a) # nouveau chemin potentiel
if est_CAE(chemin_piv): # le nouveau chemin est un CAE
chemin = chemin_piv # mise & jour du chemin
bloque = False # on sort de la boucle while
return chemin

Si pyiy» P> q désignent le pivot, son point précédent et son point suivant, une des 3 rotations (d'angle 7, f ou —f) va envoyer g sur p. |l faut I'éviter
(cela gagne un appel -colteux- & est_CAE), et pour cela modifier laligne a = rd.randrange(0,3) de lafonction précédente, et la remplacer par le
code suivant (par exemple) :

