© 0 N o G A W N e

10

Corrigé - Epreuve IPT - Mines - 2019

Autour des nombres premiers

Partie 1. Préliminaires

dQ1

from math import floor , ceil, log, sqrt
print (log (0.5))

Q2

def sont_proches(x,y):
atol, rtol = le—5, 1e—8
return abs(x—y) <= atol + abs(y)*rtol

[d Q3 La valeur retournée par mystere(1001,10) est 3. En effet,
mystere(1001,10) = 1 + mystere(100.1, 10) = 2 + mystere(10.01, 10) = 3 + mystere(1.001,10)3+0 =3

[d Q4 mystere(x,b) renvoie 0 si z < bet k si b <z < b+l

In() | _ :
On a donc mystere(z,b) = Ll“(b)J = logy(@)] siw>b
0 sinon

remarque : il faut b € N\ {0, 1} pour que le programme fonctionne.

[d Q5 Mathématiquement, on devrait avoir £; = 100000 * 107° = 1 = z5. Le réel 1075 n’est pas représenté de
fagon exacte sous forme de flottant car les flottants sont représentés avec un nombre limité de bits. Dans le calcul
de x2 = 2?2%99 1075, les erreurs d’arrondis s’additionnent & chaque passage dans la boucle, ce qui fait qu’en
premiére approximation, I'erreur initiale est multipliée par 100000. Dans le cas du calcul de 1 = 100000107,

on effectue le produit de deux nombres représentés par des flottants, la précision du résultat est bien meilleure.

Partie I1I. Génération de nombres premiers

II.a Approche systématique

[d Q6 Un Giga-Octet, cest 8.10° bits donc avec 4 Go, on peut travailler au maximum avec une liste de

4.8.10°
32

[Q7 Les booléens peuvent étre codés sur un seul bit. On peut dans ce cas travailler avec 32 fois plus
d’éléments.

= 10° éléments.

conclusion : ’ Si on code les booléens sur 1 bit alors la valeur maximale de N est 32.10°

[Q8 Solution du rapport du concours :

def erato_iter (N):
liste_bool =N % [True]
liste_bool [0] = False
i=2
while i%x%x2 <= N:
if liste_bool[i — 1]:
for k in range(2, N//i + 1):
liste_bool [kxi — 1] = False
i+=1
return liste_bool

Q9

On exécute [V N |, la boucle conditionnelle ”while”. Dans cette boucle, le coit :
e est constant si ¢ n’est pas premier (on ne fait quune comparaison et une incrémentation de variable),
e proportionnelle & L%j si ¢ est premier. En effet, la boucle itérative pour marquer les multiples de i est en

o(X)

?

© W N o o oA W N =

10

11

12

13

14

© ® N o A W N e

10

11

o N e oA W N e

Au final, la complexité est en O(v/N + > %) = O(V'N + N In(In(v/N))) = O(N In(In(N)))

p<VN
(1 Q10 Sin est le nombre de chiffres de N, on a 10! < N < 107, on a donc

10" In(In(10"~1)) < N In(In(N)) < 10™ In(In(10™)).
N———
=0(n 10™) =0(n10m)

La complexité de l'algorithme en fonction du nombre de chiffres n de N est | O(n 10™)

II.b Génération rapide de nombres premiers

2N 1
(A Q11 Si z; est impair & chaque itération alors | A = Z 2" = =2N 1.

J Q12

from time import time

def bbs(N):
pl = 24375763
p2 = 28972763
M = pl*p2
h = time ()
xi = floor ((h—floor (h))*10%%7) # Partie fractionnaire de h.
A=0
for i in range(N):
if xi%2 = 1:
A=A+ 2xxi
xi = (xi*x2)%M
return A

Q13

def premier_rapide (n-max):
trouve = False
while not(trouve):
trouve = True
N = mystere(n-max,2)
p = bbs(N)
for a in [2,3,5,7]:
if (as*(p—1))%p != 1:
trouve = False
break
return p

J Q14

def stats_bbs_fermat (N, nb):
liste_premier = erato_iter (N)
liste_erreur = |[]
for k in range(nb):
p = premier_rapide (N)
if not(liste_premier[p—1]):
liste_erreur .append(p)
return len(liste_erreur)/nb,liste_erreur

o N e oA W N

S R

@

o oA W N

N o oA W N e

Partie 1II. Compter les nombres premiers

ITl.a Calcul de 7(n) via un crible

dQ15

def Pi(N):
liste_premier = erato_iter (N)
compteur = 0
res =]

for n in range(1,N+1):
if liste_premier [n—1]: compteur += 1
res.append ([n, compteur])

return res

d Q16
def verif_Pi(N):
Pi.n = Pi(N)
for n in range(5393,N+1):
ValeurPi.n = Pi_n[n—1][1]
f (n/(log(n)—1)) >= ValeurPi_n
return False
return True

ITL.b Calcul d’une valeur approchée de 7(n)

Estimation de li par quadrature numérique
[Q17 La fonction évaluée dépend du parametre = et I’évaluation dépend du choix de pas. L’évaluation de
lintégrale par la méthode des rectangles est proportionnelle aux nombres de points de calcul de la fonction (égal

au nombre de rectangles) soit en O(pm)

[Q18 La méthode des rectangles centrés et la méthode des trapezes ont la méme complexité que la mé-

thode des rectangles a droite donc dans ces deux nouveaux la complexité reste en O(pas)
Q19
def inv_ln_rect_d (a,b,pas):
S =0.
n = int ((b—a)/pas)
for k in range(1l,n+1):
S =8 + 1/log(atk=*pas)
return Sxpas
d Q20
def 1li_d (x, pas):
if x = 1:
return —float ("inf")
elif x < 1
return inv_Iln_rect_d (0,x,pas)
else : # x>1
return inv_ln_rect_-d(0,1—pas,pas) + inv_ln_rect_-d(l+pas,x,pas)

Analyse des résultats de 1i_d

[Q21 La fonction li s’annule pour zg ~ 1,4. Dans la figure 2, on affiche une erreur relative, soit W

li(z) — li-d(x)
li(z)

[d Q22 On peut remarquer sur le dessin de la figure 4 que la méthode des rectangles & droite, de la part la

/1€ dt et sous-évalue /x dt
-év. —
o In(?) 14e In(t)

/Hf dt / o qt /1+5 dt , / du / dv
— = — —— = lim — + —_—
1—e In(?) a~>0+ In(t) 1ta In(t) a=ot J, In(1—w) J, In(1+wv)

1 [In(1 +u)+In(1 —u) "
)) d“*/o (=) (1 1) °

+oo

or li(z) — 0 ce qui conduit
rT—rx0o

rT—rx0o

monotonie et le signe de In sur]0, 1] et |1, +o00[, sur-évalue

= i
amr0+ o <ln1—u Jrln(l—&—u

© 0 N o G A W N R

[S R
w N o= O

-
=

15

16

17

18

19

20

21

In(1+wu) +In(1 —u)

La fonction A :
a fonction h : u +— (=) (1 £)

est bien intégrable sur 0, ¢] car

u— Yy o(u?)
2 T v
h(u) ~Q (_u2 o u2))

(\/01

e dt
On en déduit aussi que lim — =
=0 /1 ¢ hl(t)

L’aire du dernier rectangle avant z = 1 est (1] ~—1+ —1 et laire du premier rectangle apres x = 1 est
n — & E—
€ 1
—_— ——— .
In(1+2¢) e>1 2
En conclusion, avec la méthode des rectangles a droite, on introduit un biais systématique dans le calcul de
T dt 1
In f(sy pour & > 1.
[d Q23 Pour résoudre ce probleme, il suffit d’évaluer les deux intégrales (0175 hf(’;) et f1$+e %) par la méthode
des rectangles centrés qui respecte mieux la propriété de pseudo-symétrie autour de x = 1.
remarque : on peut aussi choisir la méthode des trapeze en faisant attention a I’évaluation de la fonction ﬁ

en 0.

Estimation de 1i via Ei
JQ24

def Ei(x):
if x <= 0:
return False
gamma, MAXINT = 0.577215664901, 100
k,z =1, x
S = gamma + log(x)
fact = 1 # pour n!
X_-n = X # pour x**n
while not(sont_proches(S,S+z)) and k < MAXIT:
S = S+z
k = k+1
fact = factx*k
X.n = X.n % X
z = x-n /(kxfact)
if k = MAXIT:
return False
else
return S

def li_dev(x):
return Ei(log(x))

Partie IV. Analyse de performance de code

[Q25 1l n’est pas possible d’utiliser I’attribut nom comme clé primaire de la table fonction car plusieurs
enregistrements peuvent avoir le méme nom (une méme fonction peut avoir été testé plusieurs fois).

J Q26
1.
1 SELECT COUNT(x) AS nb_ordi, AVG(ram) AS ram_moy FROM ordinateurs

SELECT nom FROM ordinateurs WHERE nom NOT IN(
SELECT teste_sur FROM fonctions WHERE nom = "1i" AND algorithme="rectangles")

[

N

[

SELECT algorithme, teste_sur ,ram, gflops
FROM ordinateurs JOIN fonctions ON teste_sur = ordinateurs.nom
WHERE fonctions.nom = "Ei" ORDER BY temps_exec DESC

N

w

