
Corrigé - Épreuve IPT - Mines - 2019

Autour des nombres premiers

Partie I. Préliminaires

Q1

1 from math import f l o o r , c e i l , log , s q r t
2 print ( l og ( 0 . 5 ) )

Q2

1 def sont proche s (x , y ) :
2 ato l , r t o l = 1e−5, 1e−8
3 return abs (x−y ) <= ato l + abs ( y )∗ r t o l

Q3 La valeur retournée par mystere(1001,10) est 3. En effet,
mystere(1001, 10) = 1 + mystere(100.1, 10) = 2 + mystere(10.01, 10) = 3 + mystere(1.001, 10)3 + 0 = 3

Q4 mystere(x,b) renvoie 0 si x < b et k si bk 6 x < bk+1.

On a donc mystere(x, b) =

{
b ln(x)ln(b) c = blogb(x)c si x > b

0 sinon

remarque : il faut b ∈ N \ {0, 1} pour que le programme fonctionne.

Q5 Mathématiquement, on devrait avoir x1 = 100000 ∗ 10−5 = 1 = x2. Le réel 10−5 n’est pas représenté de
façon exacte sous forme de flottant car les flottants sont représentés avec un nombre limité de bits. Dans le calcul
de x2 =

∑99999
i=0 10−5, les erreurs d’arrondis s’additionnent à chaque passage dans la boucle, ce qui fait qu’en

première approximation, l’erreur initiale est multipliée par 100000. Dans le cas du calcul de x1 = 100000∗10−5,
on effectue le produit de deux nombres représentés par des flottants, la précision du résultat est bien meilleure.

Partie II. Génération de nombres premiers

II.a Approche systématique

Q6 Un Giga-Octet, c’est 8.109 bits donc avec 4 Go, on peut travailler au maximum avec une liste de
4.8.109

32 = 109 éléments.

Q7 Les booléens peuvent être codés sur un seul bit. On peut dans ce cas travailler avec 32 fois plus
d’éléments.

conclusion : Si on code les booléens sur 1 bit alors la valeur maximale de N est 32.109

Q8 Solution du rapport du concours :

1 def e r a t o i t e r (N) :
2 l i s t e b o o l = N ∗ [ True ]
3 l i s t e b o o l [ 0 ] = Fal se
4 i=2
5 while i ∗∗2 <= N:
6 i f l i s t e b o o l [ i − 1 ] :
7 for k in range (2 , N// i + 1 ) :
8 l i s t e b o o l [ k∗ i − 1 ] = False
9 i += 1

10 return l i s t e b o o l

Q9
On exécute b

√
Nc, la boucle conditionnelle ”while”. Dans cette boucle, le coût :

• est constant si i n’est pas premier (on ne fait qu’une comparaison et une incrémentation de variable),

• proportionnelle à bNi c si i est premier. En effet, la boucle itérative pour marquer les multiples de i est en

O(Ni )

1



Au final, la complexité est en O(
√
N +

∑
p premier

p<
√

N

N
p ) = O(

√
N + N ln(ln(

√
N))) = O(N ln(ln(N)))

Q10 Si n est le nombre de chiffres de N , on a 10n−1 6 N 6 10n, on a donc

10n−1 ln(ln(10n−1))︸ ︷︷ ︸
=O(n 10n)

6 N ln(ln(N)) 6 10n ln(ln(10n))︸ ︷︷ ︸
=O(n 10n)

.

La complexité de l’algorithme en fonction du nombre de chiffres n de N est O(n 10n)

II.b Génération rapide de nombres premiers

Q11 Si xi est impair à chaque itération alors A =

N−1∑
i=0

2i =
2N − 1

2− 1
= 2N − 1.

Q12

1 from time import time
2

3 def bbs (N) :
4 p1 = 24375763
5 p2 = 28972763
6 M = p1∗p2
7 h = time ( )
8 x i = f l o o r ( ( h−f l o o r (h ))∗10∗∗7 ) # Partie fractionnaire de h.

9 A = 0
10 for i in range (N) :
11 i f x i%2 == 1 :
12 A = A + 2∗∗ i
13 x i = ( x i ∗∗2)%M
14 return A

Q13

1 def premie r rap ide (n max ) :
2 trouve = False
3 while not ( trouve ) :
4 trouve = True
5 N = mystere (n max , 2 )
6 p = bbs (N)
7 for a in [ 2 , 3 , 5 , 7 ] :
8 i f ( a ∗∗(p−1))%p != 1 :
9 trouve = False

10 break
11 return p

Q14

1 def s t a t s bb s f e rma t (N, nb ) :
2 l i s t e p r em i e r = e r a t o i t e r (N)
3 l i s t e e r r e u r = [ ]
4 for k in range (nb ) :
5 p = premie r rap ide (N)
6 i f not ( l i s t e p r em i e r [ p−1 ] ) :
7 l i s t e e r r e u r . append (p)
8 return len ( l i s t e e r r e u r )/nb , l i s t e e r r e u r
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Partie III. Compter les nombres premiers

III.a Calcul de π(n) via un crible

Q15

1 def Pi (N) :
2 l i s t e p r em i e r = e r a t o i t e r (N)
3 compteur = 0
4 r e s =[ ]
5 for n in range (1 ,N+1):
6 i f l i s t e p r em i e r [ n−1] : compteur += 1
7 r e s . append ( [ n , compteur ] )
8 return r e s

Q16

1 def v e r i f P i (N) :
2 Pi n = Pi (N)
3 for n in range (5393 ,N+1):
4 ValeurPi n = Pi n [ n−1 ] [ 1 ]
5 i f (n/( l og (n)−1)) >= ValeurPi n :
6 return False
7 return True

III.b Calcul d’une valeur approchée de π(n)

Estimation de li par quadrature numérique

Q17 La fonction évaluée dépend du paramètre x et l’évaluation dépend du choix de pas. L’évaluation de
l’intégrale par la méthode des rectangles est proportionnelle aux nombres de points de calcul de la fonction (égal
au nombre de rectangles) soit en O( x

pas )

Q18 La méthode des rectangles centrés et la méthode des trapèzes ont la même complexité que la mé-
thode des rectangles à droite donc dans ces deux nouveaux la complexité reste en O( x

pas ).

Q19

1 def i n v l n r e c t d (a , b , pas ) :
2 S = 0 .
3 n = int ( ( b−a )/ pas )
4 for k in range (1 , n+1):
5 S = S + 1/ log ( a+k∗pas )
6 return S∗pas

Q20

1 def l i d (x , pas ) :
2 i f x == 1 :
3 return −f loat ("inf" )
4 e l i f x < 1 :
5 return i n v l n r e c t d (0 , x , pas )
6 else : # x>1

7 return i n v l n r e c t d (0 ,1−pas , pas ) + i n v l n r e c t d (1+pas , x , pas )

Analyse des résultats de li_d

Q21 La fonction li s’annule pour x0 ' 1, 4. Dans la figure 2, on affiche une erreur relative, soit li(x)−li d(x)
li(x)

or li(x) −−−−→
x→x0

0 ce qui conduit

∣∣∣∣ li(x)− li d(x)

li(x)

∣∣∣∣ −−−−→x→x0

+∞

Q22 On peut remarquer sur le dessin de la figure 4 que la méthode des rectangles à droite, de la part la

monotonie et le signe de ln sur ]0, 1[ et ]1,+∞[, sur-évalue

∣∣∣∣∫ 1−ε

0

dt

ln(t)

∣∣∣∣ et sous-évalue

∫ x

1+ε

dt

ln(t)
.

∫ 1+ε

1−ε

dt

ln(t)
= lim

α→0+

∫ 1−α

1−ε

dt

ln(t)
+

∫ 1+ε

1+α

dt

ln(t)
= lim
α→0+

∫ ε

α

du

ln(1− u)
+

∫ ε

α

dv

ln(1 + v)

= lim
α→0+

∫ ε

α

(
1

ln(1− u)
+

1

ln(1 + u)

)
du =

∫ ε

0

ln(1 + u) + ln(1− u)

ln(1− u) ln(1 + u)
du
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La fonction h : u 7→ ln(1 + u) + ln(1− u)

ln(1− u) ln(1 + u)
est bien intégrable sur ]0, ε] car

h(u) ∼0

u− u2

2 − u− u2

2 + o(u2)

(−u2 + o(u2))
∼0 1

On en déduit aussi que lim
ε→0

∫ 1+ε

1−ε

dt

ln(t)
= 0.

L’aire du dernier rectangle avant x = 1 est
ε

ln(1− ε)
−−−→
ε→1

−1 et l’aire du premier rectangle après x = 1 est

ε

ln(1 + 2 ε)
−−−→
ε→1

1

2
.

En conclusion, avec la méthode des rectangles à droite, on introduit un biais systématique dans le calcul de∫ x
0

dt
ln(t) pour x > 1.

Q23 Pour résoudre ce problème, il suffit d’évaluer les deux intégrales (
∫ 1−ε
0

dt
ln(t) et

∫ x
1+ε

dt
ln(t) ) par la méthode

des rectangles centrés qui respecte mieux la propriété de pseudo-symétrie autour de x = 1.
remarque : on peut aussi choisir la méthode des trapèze en faisant attention à l’évaluation de la fonction 1

ln(t)
en 0.

Estimation de li via Ei

Q24

1 def Ei (x ) :
2 i f x <= 0 :
3 return False
4 gamma, MAXINT = 0.577215664901 , 100
5 k , z = 1 , x
6 S = gamma + log (x )
7 f a c t = 1 # pour n!

8 x n = x # pour x**n

9 while not ( sont proche s (S , S+z ) ) and k < MAXIT:
10 S = S+z
11 k = k+1
12 f a c t = f a c t ∗k
13 x n = x n ∗ x
14 z = x n /(k∗ f a c t )
15 i f k == MAXIT:
16 return False
17 else :
18 return S
19

20 def l i d e v (x ) :
21 return Ei ( l og (x ) )

Partie IV. Analyse de performance de code

Q25 Il n’est pas possible d’utiliser l’attribut nom comme clé primaire de la table fonction car plusieurs
enregistrements peuvent avoir le même nom (une même fonction peut avoir été testé plusieurs fois).

Q26

1.

1 SELECT COUNT(∗ ) AS nb ordi , AVG( ram) AS ram moy FROM o rd ina t eu r s

2.

1 SELECT nom FROM o rd ina t eu r s WHERE nom NOT IN(
2 SELECT t e s t e s u r FROM f o n c t i o n s WHERE nom = "li" AND a lgor i thme="rectangles" )

3.

1 SELECT algor ithme , t e s t e s u r , ram , g f l o p s
2 FROM o rd ina t eu r s JOIN f o n c t i o n s ON t e s t e s u r = ord ina t eu r s . nom
3 WHERE f o n c t i o n s . nom = "Ei" ORDERBY temps exec DESC
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