
MP - Lycée Chrestien de Troyes
Chapitre 8

Suites et séries de fonctions

Exercice 1 (convergence simple et convergence uniforme). CCINP 9 [ ]

1. Soit X un ensemble, et notons (gn) une suite de fonctions de X à valeurs dans C et g : X −→ C. Donner la définition de la
convergence uniforme de la suite (gn) vers g.

2. On pose pour tout n ∈ N, fn(x) =
n+ 2

n+ 1
e−nx

2

cos(
√
nx).

(a) Etudier la convergence simple de (fn).

(b) La suite (fn) converge t-elle uniformément sur [0,+∞[ ?

(c) Soit a > 0. La suite (fn) converge t-elle uniformément sur [a,+∞[ ? Converge t-elle uniformément sur ]0,+∞[ ?

Exercice 2 (limite d’une suite d’intégrales définies sur un segment). CCINP 10 [ ]

On pose pour tout n ∈ N∗, fn(x) = (x2 + 1)
nex + xe−x

n+ x
.

1. Démontrer que la suite de fonctions (fn) converge uniformément sur [0, 1].

2. Calculer alors la limite :

lim
n→+∞

∫ 1

0

(x2 + 1)
nex + xe−x

n+ x
dx

Exercice 3 (autour de la convergence uniforme). CCINP 11 [ ]

1. Soit X une partie de R et notons (fn) une suite de fonctions définies sur X et à valeurs réelles et telles que fn
CS−→ f . On

suppose qu’il existe (xn) ∈ XN telle que fn(xn)− f(xn) 6−→ 0.
Démontrer que la suite (fn) ne peut pas converger uniformément vers f sur X.

2. Pour tout x ∈ R, on pose fn(x) =
sin(nx)

1 + n2x2
.

(a) Etudier la convergence simple de la suite (fn).

(b) Etudier alors la convergence uniforme de (fn) sur [a,+∞[ (a > 0), puis sur ]0,+∞[.

Exercice 4 (convergence uniforme sur tout compact). FFF [ ]
Soit z ∈ C, on veut montrer que :

(1 +
z

n
)n −→

n→+∞
ez

1. Soient a, b ∈ C et on pose m = max{|a|, |b|}. Montrer que pour tout n ∈ N∗, |an − bn| ≤ |a− b|.nmn−1.

2. En déduire que pour tout u ∈ C, |enu − (1 + u)n| ≤ |u|2.nen|u|, puis établir la convergence simple demandée.

3. On note fn : z 7−→ (1 +
z

n
)n. Montrer que (fn) converge uniformément vers la fonction exponentielle sur tout compact K.

Exercice 5 (convergence d’une suite de fonctions définies par récurrence). [ ]
Soit f0 : R −→ R qu’on suppose positive et bornée sur R, et on définit la suite d’applications (fn) par :

∀n ∈ N, fn+1(x) =
√

1 + fn(x)

1. Etablir que la suite (fn) converge simplement vers une fonction constante notée f .

2. Montrer alors que fn
CU−→ f .

Exercice 6 (le théorème des moments). FFF [ ]

On considère f une fonction continue sur [a, b] à valeurs dans R, et telle que pour tout n ∈ N,

∫ b

a

xnf(x) dx = 0.

Montrer que f = 0.

Exercice 7 (utilisation du critère spécial des séries alternées). CCINP 8 [ ]

1. Soit (un) une suite décroissante et de limite nulle.
Démontrer que la série

∑
(−1)nun est convergente et donner une majoration du reste partiel.

2. On pose pour tout n ∈ N∗ et pour tout x ∈ R, fn(x) =
(−1)ne−nx

n
.

(a) Etudier la convergence simple de la série de fonctions
∑
fn.

(b) Montrer que la série converge uniformément sur [0,+∞[.
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Exercice 8 (une condition nécessaire de convergence uniforme). CCINP 17 [ ]
Soit A ⊂ C et notons (fn) une suite de fonctions définies sur A à valeurs dans C.

1. Démontrer l’implication : ∑
fn converge uniformément ⇒ fn

CU−→ 0

2. On pose pour tout n ∈ N et pour tout x ∈ [0,+∞[, fn(x) = nx2e−x
√
n.

(a) Prouver que la série de fonctions
∑
fn converge simplement sur [0,+∞[.

(b) La série de fonctions converge t-elle uniformément sur [0,+∞[ ? Justifier.

Exercice 9 (une application du théorème de la double limite). CCINP 53 [ ]
On considère pour tout n ∈ N∗ la fonction fn définie sur R par :

fn(x) =
x

1 + n4x4

1. Prouver que la série
∑
fn converge simplement sur R vers une fonction notée f .

2. Soit [a, b] ⊂ R∗+. La série converge t-elle normalement sur [a, b] ? sur [a,+∞[ ?

3. La série converge t-elle normalement sur [0,+∞[ ?

4. Justifier que f est continue sur R∗.

5. Déterminer alors la limite de f(x) quand x→ +∞.

Exercice 10 (dérivabilité de la somme d’une série de fonctions). CCINP 16 [ ]
On considère la série de fonctions de terme général un définie par :

∀n ∈ N∗, ∀x ∈ [0, 1], un(x) = ln(1 +
x

n
)− x

n

On pose, sous réserve d’existence, S(x) =
∑+∞
n=1 ln(1 +

x

n
)− x

n
.

1. Etablir que S est bien définie sur [0, 1] et dérivable sur [0, 1].

2. Calculer alors S′(1).

Exercice 11 (développement asymptotique d’une somme de séries de fonctions). FFF [ ]

On définit pour tout n ∈ N∗ la fonction fn sur [0,+∞[ par fn(x) =
(−1)n√
1 + nx

.

1. Montrer que la série de fonctions
∑
fn converge simplement sur ]0,+∞[ et uniformément sur [1,+∞[. On note S la somme

de la série.

2. Justifier que S(x) −→
x→+∞

0.

3. On pose a =
∑+∞
n=1

(−1)n√
n

. Etablir que : S(x) =
a√
x

+ O
x→+∞

(
1

x
√
x

).

Exercice 12 (étude de la somme d’une série de fonctions). [ ]
On note pour tout n ∈ N fn : [0, 1] −→ R et définie par :

fn(x) = ln(1 + xn)

1. Etudier la convergence de la série
∑
fn et sous réserve d’existence, on note encore S sa somme.

2. Montrer que S est de classe C1 sur [0, 1[ et que S est strictement croissante sur [0, 1[.

3. Etablir que pour tout n ∈ N∗ et pour tout x ∈ [0, 1[,

n∑
k=0

fk(x) ≥ ln(

n∑
k=0

xk)

En déduire la limite de S(x) quand x→ 1.
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Exercice 13 (dérivabilité de la somme d’une série de fonctions). FFF [ ]

On pose sous réserve d’existence f(x) =
∑+∞
n=2

x exp(−nx)

ln(n)
.

1. Déterminer l’ensemble de définition de f .

2. Montrer que f est de classe C1 sur R∗+.

3. Etablir que f n’est pas dérivable en 0.

Exercice 14 (limite d’une suite d’intégrales définies sur un intervalle). CCINP 27 [ ]

Pour tout n ∈ N∗, on pose fn(x) =
e−x

1 + n2x2
et un =

∫ 1

0

fn(x) dx.

1. Etudier la convergence simple de la suite (fn) sur [0, 1].

2. Soit a ∈]0, 1[. La suite (fn) converge t-elle uniformément sur [a, 1] ?

3. La suite de fonctions converge t-elle uniformément sur [0, 1] ?

4. Trouver alors la limite de la suite (un).

Exercice 15 (une autre définition de la fonction Γ). FFF [ ]
Soit λ ∈ R∗+. On considère alors la suite de fonction (fn) définie sur ]0,+∞[ par :

fn(t) =

(1− t

n
)ntλ−1 , si t ∈]0, n]

0 , sinon

Montrer que (fn) converge simplement sur R∗+ vers une fonction f intégrable sur R∗+, et établir que :∫ +∞

0

f(t) dt = lim
n→+∞

nλn!

λ(λ+ 1) . . . (λ+ n)

Exercice 16 (intégration terme à terme pour une série de fonctions définies sur un intervalle). CCINP 49 [ ]
Soit

∑
an une série absolument convergente à termes complexes et on pose M =

∑+∞
n=0 |an|. On définit alors pour tout n ∈ N et

pour tout t ∈ [0,+∞[, fn(t) =
ant

n

n!
e−t.

1. (a) Justifier que la suite (an) est bornée.

(b) Prouver que la série de fonctions
∑
fn converge simplement sur [0,+∞[. On admet alors que sa somme f est continue

sur [0,+∞[.

2. (a) Justifier que, pour tout n ∈ N, la fonction gn : t 7−→ tne−t est intégrable sur [0,+∞[ et calculer
∫ +∞
0

gn(t) dt.

En déduire la convergence et la valeur de
∫ +∞
0
|fn(t)| dt.

(b) Montrer alors que : ∫ +∞

0

+∞∑
n=0

ant
n

n!
e−t dt =

+∞∑
n=0

an

Exercice 17 (une autre application du théorème d’intégration terme à terme). [ ]
Soient a, b > 0. Montrer que : ∫ +∞

0

xe−ax

1− e−bx dx =

+∞∑
n=0

1

(a+ bn)2

On pensera à vérifier si toutes ces expressions sont bien convergentes.

Exercice 18 (calcul de l’expression d’une intégrale à l’aide des fonctions ζ et Γ). FFF [ ]
Montrer que pour tout α > 0, ∫ +∞

0

xα−1(x− ln(ex − 1)) dx = ζ(α+ 1).Γ(α)

où ζ(α+ 1) =
∑+∞
n=1

1

nα+1
et Γ(α) =

∫ +∞

0

tα−1e−t dt.
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Exercice 19 (intégration terme à terme à l’aide du théorème de convergence dominée). [ ]
Soit α > 0. Etablir que : ∫ 1

0

1

1 + xα
dx =

+∞∑
n=0

(−1)n

nα+ 1

Exercice 20 (résolution d’une équation fonctionnelle). FFF [ ]

1. Montrer qu’il existe une unique fonction f : R∗+ → R telle que f(x) −→
x→+∞

0 et pour tout x ∈ R∗+ :

f(x) + f(x+ 1) =
1

x2

2. Montrer que f est continue, intégrable sur [1,+∞[ et calculer

∫ +∞

1

f(x) dx.

Exercice 21 (résolution d’une équation différentielle à l’aide d’une intégrale à paramètre). CCINP 30 [ ]

1. Démontrer que la fonction f : x 7−→
∫ +∞

0

e−t
2

cos(xt) dt est de classe C1 sur R.

2. Trouver une équation différentielle (E) d’ordre 1 dont f est solution, puis déterminer l’expression de f sur R.

Exercice 22 (équivalent d’une intégrale à paramètre). CCINP 50 [ ]

On considère la fonction F : x 7−→
∫ +∞

0

e−2t

x+ t
dt.

1. Prouver que F est définie et continue sur ]0,+∞[.

2. Montrer que xF (x) admet une limite quand x→ +∞ et préciser sa valeur.

3. En déduire un équivalent de F (x) au voisinage de +∞.

Exercice 23 (calcul explicite d’une intégrale à paramètre). [ ]

Soit x ∈ R∗+, on pose F (x) =

∫ +∞

0

ln(t)

t2 + x
dt.

1. Justifier l’existence de F (x), x ∈ R∗+.

2. Montrer que F est de classe C1 sur R∗+.

3. Montrer que F (1) = 0, puis déterminer la valeur de F (x) pour tout x ∈ R∗+.

Exercice 24 (la fonction Trigamma). [ ]

Soit x ∈ R. On note, lorsque cela a un sens, H(x) =

∫ 1

0

tx ln(t)

t− 1
dt.

1. Montrer que l’ensemble de définition de la fonction H est DH =]− 1,+∞[.

2. Démontrer que H est de classe C1 sur DH , puis déterminer limx→+∞H(x).

3. Etablir que pour tout x > −1, H(x)−H(x+ 1) = 1
(x+1)2

.

4. En déduire que pour tout x > −1,

H(x) =

+∞∑
k=1

1

(x+ k)2

Exercice 25 (calcul explicite des intégrales de Wallis). FFF [ ]
Pour tout x ∈ R, on note :

J(x) =

∫ π/2

0

cos(x sin(t)) dt

1. Montrer que J est solution de (E) xy′′ + y′ + xy = 0.

2. Etablir que J peut s’écrire sous la forme d’un développement en série entière définie sur R. On pourra introduire (Wn) la
suite des intégrales de Wallis.

3. Déterminer les solutions développables en série entière de (E), puis en comparant les résultats obtenus, donner l’expression
des intégrales de Wallis W2n.
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Exercice 26 (intégrale à paramètre et somme d’une série de fonctions). FFF [ ]

Sous réserve d’existence, on pose f(x) =

∫ +∞

0

sin(xt)

et − 1
dt.

1. Montrer que f est bien définie sur R et qu’elle est continue sur R.

2. Etablir que f est même de classe C1 sur R.

3. Montrer finalement que pour tout t ∈ R, ∫ +∞

0

sin(xt)

et − 1
dt =

+∞∑
n=1

x

n2 + x2

Exercice 27 (calcul de l’intégrale de Dirichlet). FFF [ ]

Sous réserve d’existence, on pose f(x) =

∫ +∞

0

e−t
sin(xt)

t
dt.

1. Montrer que f est définie sur R.

2. Justifier que f est de classe C1 sur R, et établir que pour tout x ∈ R, f ′(x) =
1

1 + x2
.

3. En déduire la valeur de : ∫ +∞

0

sin(t)

t
dt

On pourra introduire pour tout x ≥ 0, φ(x) =
∫ x
0
h(t) dt où h : t 7−→ sin(t)

t
qu’on prolonge par continuté sur R+.

Exercice 28 (théorème de Dini). X/ENS [ ]
Soit (fn) une suite de fonctions à valeurs réelles telles que :{

fn
CS−→ f , avec f est une fonction continue sur [a, b]

∀n ∈ N, fn est croissante sur [a, b]

Montrer que (fn) converge uniformément vers f sur [a, b].

Exercice 29 (approximation de l’unité et produit de convolution). X/ENS [ ]
On considère une approximation de l’unité, c’est à dire une suite (ϕn) d’éléments de C0(R,R+) telle que :

∀n ∈ N,
∫
R
ϕn = 1 et ∀δ > 0,

∫
R\[−δ,δ]

ϕn −→
n→+∞

0

De plus, pour tout f ∈ C0(R,R) et à support compact, on note le produit de convolution :

f ∗ ϕn(x) =

∫
R
f(t)ϕn(x− t) dt =

∫
R
f(x− t)ϕn(t) dt

1. Justifier l’existence des intégrales définissant le produit de convolution sur R, et montrer qu’elles sont effectivement égales.

2. Montrer alors que la suite f ∗ ϕn converge uniformément vers f sur R.

Exercice 30 (une autre preuve de d’Alembert-Gauss). X/ENS [ ]
On considère f une fonction 2π-périodique et de classe C1 sur R à valeurs dans C. Si de plus, f ne s’annule pas, on définit la
fonction indice par :

I(f) =
1

2πi

∫ 2π

0

f ′(t)

f(t)
dt

1. On pose pour tout x ∈ R, ψ(x) = exp(

∫ x

0

f ′(t)

f(t)
dt). Montrer que ψ est de classe C1 sur R, puis justifier que ψ est solution

d’une équation différentielle linéaire d’ordre 1.

2. Etablir qu’il existe λ ∈ K∗, ψ = λf . En déduire ψ est 2π-périodique et que nécessairement I(f) ∈ Z.

3. Soit P ∈ C[X] qu’on suppose de degré n ≥ 1. Montrer alors que P possède au moins une racine dans C.
On pourra raisonner par l’absurde et considérer la fonction fr : t 7−→ P (reit) pour tout r ≥ 0 et définir une intégrale à
paramètre en posant F (r) = I(fr).
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