
MP - Lycée Chrestien de Troyes
Chapitre 6

Réduction des endomorphimses et des matrices carrées

Exercice 1 (calcul de l’exponentielle d’une matrice donnée). [ ]
On définit A ∈Mn(R) par :

A =

1 4 2
0 −3 −2
0 4 3


1. La matrice A est-elle diagonalisable ?

2. Calculer explicitement exp(A) = limn→+∞
∑n
k=0

1

k!
Ak.

Exercice 2 (une application de la réduction aux systèmes différentiels). CCINP 74 [ ]

On considère la matrice A =

1 0 2
0 1 0
2 0 1

.

1. (a) Justifier sans calcul que A est diagonalisable.

(b) Déterminer les valeurs propres de A, puis une base de vecteurs propres associés.

2. Résoudre alors le système différentiel donné par :


x′(t) = x(t) + 2z(t)

y′(t) = y(t)

z′(t) = 2x(t) + z(t)

.

Exercice 3 (application du théorème des noyaux). CCINP 93 [ ]
Soit E un R-espace vectoriel de dimension n ≥ 1 et u ∈ L(E) tel que u3 + u2 + u = 0L(E).

1. Montrer que Im(u)⊕Ker(u) = E.

2. (a) Enoncer le lemme des noyaux pour deux polynômes.

(b) En déduire que Im(u) = Ker(u2 + u+ idE).

3. On suppose que u n’est pas bijectif. Déterminer les valeurs propres de u.

Exercice 4 (spectres de u ◦ v et v ◦ u). CCINP 83 [ ]
Soient u, v deux endomorphismes d’un R-espace vectoriel E.

1. Soit λ ∈ R∗. Prouver que si λ est valeur propre de u ◦ v, alors λ est aussi valeur propre de v ◦ u.

2. On se place dans E = R[X] et on définit u : P 7−→
∫ X

1

P (t) dt et v : P 7−→ P ′.

Déterminer Ker(u ◦ v) et Ker(v ◦ u). Le résultat précédent est-il vrai pour λ = 0 ?

3. On suppose que E est de dimension finie. Justifier que le résultat de la première question est vrai, même pour λ = 0.

Exercice 5 (endomorphisme en dimension finie et cardinal des valeurs propres). FFF [ ]
Soient A,B ∈Mn(R) telles que :

AB −BA = B

1. Montrer que B n’est pas inversible.

2. Montrer que pour tout k ∈ N, ABk −BkA = kBk.

3. En déduire que B est nilpotente.

Exercice 6 (matrices à diagonale dominante et disques de Gershgörin). FFF [ ]
Soit A = (aij) ∈Mn(K). On dit que A est à diagonale dominante si et seulement si :

∀i ∈ J1, nK, |aii| >
n∑

j=1,j 6=i

|aij |

1. Montrer qu’une matrice à diagonale dominante est nécessairement inversible.

2. En déduire que les valeurs propres d’une matrice A quelconque appartiennent à l’union pour i ∈ J1, nK des disques de centre
aii et de rayon Ri =

∑n
j=1,j 6=i |aij |, c’est à dire :

Sp(A) ⊂ ∪ni=1Bf (aii, Ri)
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Exercice 7 (polynôme caractéristique d’une matrice compagnon). [ ]
Soient n ∈ N∗ et a0, . . . , an−1 ∈ K. On considère le polynôme Pn = a0 + a1X + . . . an−1X

n−1 + Xn et la matrice compagnon
A ∈Mn(K) définie par :

A =



0 . . . . . . . . . 0 −a0

1
. . .

... −a1

0
. . .

. . .
... −a2

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0 −an−2

0 . . . . . . 0 1 −an−1


1. Montrer que les sous-espaces propres de A sont des droites vectorielles.

2. Etablir que pour tout λ ∈ K, χA(λ) = Pn(λ).

3. En déduire que A est diagonalisable sur K si et seulement si Pn admet n racines distinctes dans K.

Exercice 8 (réduction des matrices circulantes). [ ]
On considère A l’ensemble des matrices circulantes, c’est à dire des matrices de Mn(C) de la forme :

a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

an−2 an−1 a0 . . . an−3

...
. . .

...
a1 a2 a3 . . . a0

 , et on note J =


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

. . . 1
1 0 0 . . . 0

 .

1. Calculer J2, J3, . . . et Jn.

2. Montrer que J est diagonalisable sur C, puis préciser ses éléments propres.

3. En déduire que toute matrice circulante A ∈ A est diagonalisable.

Exercice 9 (diagonalisabilité d’un endomorphisme). CCINP 59 [ ]
Soit n ∈ N, n ≥ 2. Posons E = Kn[X] et on définit alors f sur E par f(P ) = P − P ′.

1. Démontrer que f est bijectif de deux manières : sans utiliser de matrice ou en utilisant une matrice de f .

2. Soit Q ∈ E. Déterminer P ∈ E tel que f(P ) = Q. On pourra considérer P (n+1).

3. L’endomorphisme f est-il diagonalisable ?

Exercice 10 (diagonalisabilité d’une matrice). CCINP 67 [ ]
Soit M ∈M3(R) telle que :

M =

0 a c
b 0 c
b −a 0


La matrice M est-elle diagonalisable dans M3(R) ? et dans M3(C) ?

Exercice 11 (commutant d’une matrice). CCINP 73 [ ]

On pose A =

(
2 1
4 −1

)
.

1. Déterminer les valeurs propres et les vecteurs propres de A.

2. Déterminer C(A), l’ensemble des matrices qui commutent avec A, puis justifier que : C(A) = V ect(I2, A).

Exercice 12 (polynôme minimal et application au calcul des puissances d’une matrice). CCINP 91 [ ]

On considère la matrice A =

 0 2 −1
−1 3 −1
−1 2 0

.

1. Montrer que A n’admet qu’une seule valeur propre qu’on déterminera.

2. La matrice A est-elle inversible ? Est-elle diagonalisable ?

3. Déterminer en le justifiant le polynôme minimal de A.

4. Soit n ∈ N. Déterminer le reste de la division euclidienne de Xn par (X − 1)2, puis calculer An pour tout n ∈ N.

www.cpgemp-troyes.fr 2/4

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 6
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Exercice 13 (étude d’un endomorphisme sur un espace de matrices). CCINP 88 [ ]

1. Soit E un K-espace vectoriel et considérons u ∈ L(E), P ∈ K[X].
Montrer que P (u) = 0⇒ toute valeur propre de u est racine de P .

2. Soit n ≥ 2 et posons E =Mn(R). On défnit alors la matrice A = (aij) par aij = 1 − δij , et on considère u ∈ L(E) défini
par u(M) = M + tr(M)A.

(a) Prouver que le polynôme X2 − 2X + 1 est annulateur de u.

(b) L’endomorphisme u est-il diagonalisable ? On pourra procéder de deux façons.

Exercice 14 (une autre application de la réduction aux systèmes différentiels). CCINP 75 [ ]

On considère la matrice A =

(
−1 −4
1 3

)
.

1. Démontrer que A n’est pas diagonalisable.

2. On note f ∈ L(R2) canoniquement associé à A. Trouver une base B dans laquelle la matrice de f soit triangulaire.

3. En déduire la résolution du système différentiel :

{
x′(t) = −x(t)− 4y(t)

y′(t) = x(t) + 3y(t)
.

Exercice 15 (trigonalisation et application à la décomposition de Dunford). [ ]

On considère la matrice A =

3 −1 1
2 0 1
1 −1 2

, et on note u l’endomorphisme de R3 canoniquement associé à la matrice A.

1. Montrer qu’on a la décomposition spectrale : R3 = Ker(u− id)⊕Ker(u− 2id)2.

2. Déterminer une base (e1, e2, e3) de R3 adaptée à cette décomposition de la forme :

Ker(u− id) = V ect{e1},Ker(u− 2id) = V ect{e2},Ker(u− 2id)2 = V ect{e2, e3}

puis, écrire la matrice B de u dans la base (e1, e2, e3) de R3.

3. En utilisant la matrice B, préciser alors la décomposition de Dunford de la matrice A, c’est à dire déterminer des
matrices D,N telles que : 

A = D +N

D diagonalisable, N nilpotente

DN = ND

Exercice 16 (matrices de rang 1). [ ]
Soit n ≥ 2 et considérons A ∈Mn(K) telle que rg(A) = 1.
Montrer que A est diagonalisable dans Mn(K) si et seulement si tr(A) 6= 0.

Exercice 17 (matrices complexes de spectres disjoints). FFF [ ]
Soient A,B ∈Mn(C). On suppose que A et B n’ont pas de valeur propre commune.

1. En notant χA(X) le polynôme caractéristique de A, montrer que χA(B) ∈ GLn(C).

2. Soit X ∈Mn(C). Etablir que AX = XB ⇔ X = {0}.

3. Montrer que pour tout M ∈Mn(C), il existe un unique X ∈Mn(C) telle que AX −XB = M .

Exercice 18 (limite des puissances d’une matrice diagonalisable). FFF [ ]
Soit λ ∈ R. On définit la suite (An) pour tout n ∈ N∗ par :

An =

 1 −λ
n

λ

n
1


Déterminer la limite de la suite (Ann) quand n→ +∞.

Exercice 19 (diagonalisabilité équivalente de A et A2 pour une matrice inversible). FFF [ ]
Soit A ∈ GLn(C). Montrer que A est diagonalisable si et seulement si A2 est diagonalisable.
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Réduction des endomorphimses et des matrices carrées

Exercice 20 (condition nécessaire et suffisante de diagonalisabilité). FFF [ ]
Soit A ∈Mn(C) et on définit la matrice B par blocs :

B =

(
On A
A On

)

1. Montrer que la matrice P =

(
In In
In −In

)
est inversible. En déduire que B est semblable à la matrice B′ =

(
A 0n
0n −A

)
.

2. Etablir alors que A est diagonalisable si et seulement si B est diagonalisable.

Exercice 21 (utilisation de la réduction simultanée). [ ]
On considère A ∈ GLn(C) et N ∈Mn(C) qu’on suppose nilpotente telle que AN = NA. Montrer alors que :

det(A+N) = det(A)

Exercice 22 (exponentielle de matrices réelles diagonalisables). FFF [ ]
Soient A,B deux matrices de Mn(R) diagonalisables sur R et on suppose de plus que exp(A) = exp(B).
Montrer que nécessairement A = B.

Exercice 23 (comatrice et polynôme caractéristique). X/ENS [ ]
Soient n ∈ N∗, A,B ∈Mn(C).

1. On note com(A) la comatrice de A. Montrer que si A et B sont inversibles, alors on a :

com(AB) = com(A)com(B)

L’égalité est-elle encore vraie si A ou B n’est pas inversible ?

2. On suppose que A et B sont semblables, établir que com(A) et com(B) sont encore semblables.

3. On note χA le polynôme caractéristique de A. Montrer que :

tr(com(A)) = (−1)n−1χ′A(0)

Exercice 24 (caractérisation des matrices nilpotentes à l’aide de la trace). X/ENS [ ]
Soient n ∈ N∗ et A ∈Mn(C). Montrer que A est nilpotente si et seulement si :

tr(A) = tr(A2) = . . . = tr(An) = 0

On pourra essayer de proposer deux méthodes.

Exercice 25 (rayon spectral). X/ENS [ ]
Soit M ∈Mn(C), on définit le rayon spectral par :

ρ(M) = max
λ∈Sp(M)

|λ|

Montrer que les assertions suivantes sont équivalentes :

(i) ρ(M) < 1

(ii) la suite (Mk) converge vers 0

(iii) la série
∑
Mk est convergente
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