
MP - Lycée Chrestien de Troyes
Chapitre 5

Fonctions polynômes et polynômes à une indéterminée

Exercice 1 (utilisation d’un développement en série entière). [ ]
On considère l’intégrale définie pour tout p ∈ N∗ par :

Ip =

∫ +∞

0

tp

et − 1
dt

et on rappelle que pour tout x > 1, on note ζ(x) =
∑+∞
k=1

1

kx
.

1. Fixons p ∈ N∗. Justifier l’existence de l’intégrale Ip.

2. Montrer alors que pour tout p ∈ N∗,
Ip = p!ζ(p+ 1)

Exercice 2 (utilisation d’un développement en série entière). FFF [ ]
Etablir que chacun des membres est bien défini, puis montrer l’égalité :

+∞∑
n=1

n−n =

∫ 1

0

t−t dt

Exercice 3 (base des polynômes de Lagrange). [ ]
Soient n ∈ N et a0, . . . , an ∈ K qu’on suppose distincts. On note P =

∏n
i=0(X − ai) et on introduit (L0, . . . , Ln) la famille des

polynômes de Lagrange associés aux points ai.

1. Rappeler l’expression des polynômes de Lagrange vérifiant :{
∀i ∈ J0, nK, Li ∈ Kn[X]

∀(i, j) ∈ J0, nK2, Li(aj) = δij

2. Justifier que la famille (L0, . . . , Ln) constitue une base de Kn[X].

3. Déterminer alors pour tout A ∈ K[X], le reste de la division euclidienne de A par P .

Exercice 4 (interpolation en des points donnés). CCINP 87 [ ]
Soient a0, a1, . . . , an des réels distincts.

1. Montrer que si b0, b1, . . . , bn désignent n+ 1 réels quelconques, alors il existe un unique polynôme P de degré ≤ n vérifiant :

∀i ∈ J0, nK, P (ai) = bi

2. Soit k ∈ N. Expliciter ce polynôme Lk lorsque pour tout i, bi = δik.

3. Prouver alors que pour tout p ∈ J0, nK,
∑n
k=0 a

p
kLk = Xp.

Exercice 5 (factorisation en produit de polynômes irréductibles). [ ]
Soient n ∈ N∗ et a ∈ R. Factoriser dans C[X], puis dans R[X] le polynôme :

P (X) = X2n − 2 cos(na)Xn + 1

Exercice 6 (factorisation en produit de polynômes irréductibles). [ ]
Soit n ∈ N∗.

1. Former la décomposition en produit de polynômes irréductibles dans C[X] de Pn =
∑n
k=0X

k.

2. En déduire la valeur du produit
∏n
k=1 sin(

kπ

n+ 1
).

Exercice 7 (produit des racines). [ ]
Soit n ∈ N∗. On considère le polynôme P à coefficients réels défini par P (X) = (X + 1)2n − 1.

1. Factoriser P dans C[X].

2. On pose Q(X) =
P (X)

X
. Etablir que Q est encore un polynôme, puis démontrer que :

n−1∏
k=1

sin2(
kπ

2n
) =

n

22n−2
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Exercice 8 (factorisation des polynômes de Legendre). FFF [ ]

Pour tout n ∈ N, on définit le n-ième polynôme de Legendre par Ln(X) =
1

2nn!
((X2 − 1)n)(n).

1. Prouver que pour tout n ∈ N,

Ln(X) =
1

2n

n∑
k=0

(nk )2(X − 1)n−k(X + 1)k

2. En déduire que
∑n
k=0(nk )2 = (2nn ).

3. Soit n ∈ N∗. Montrer que Ln(X) est scindé à racines simples dans ]− 1, 1[.

4. Considérons Q un polynôme de degré inférieur ou égal à n− 1. Montrer que

∫ 1

−1

Ln(t)Q(t) dt = 0.

5. En déduire que (Ln) constitue une base orthogonale de R[X].

Exercice 9 (existence et unicité des polynômes orthogonaux associés à un poids donné). FFF [ ]
Soit I un intervalle de R et considérons ω : I −→ R∗+ qu’on suppose continue sur I et telle que :

∀n ∈ N, tnω(t) ∈ L1(I,R)

1. Montrer que φ : (P,Q) 7−→
∫
I

P (t)Q(t)ω(t) dt définit un produit scalaire sur R[X].

2. Etablir qu’il existe une unique famille de polynômes orthogonaux (Pn) tels que pour tout n ∈ N,

deg(Pn) = n et dom(Pn) = 1

3. Justifier que (Pn) désigne une base orthogonale dénombrable de R[X].

4. Montrer alors que pour tout n ∈ N∗, Pn est nécessairement scindé à racines simples dans R[X].

Exercice 10 (décomposition des polynômes réels positifs). FFF [ ]
Soit P ∈ R[X]. Montrer alors que :

P est de signe constant positif ⇔ ∃ (U, V ) ∈ R[X]2, P = U2 + V 2

Exercice 11 (calcul de ζ(2)). FFF [ ]
Soit n ∈ N∗.

1. Démontrer qu’il existe un unique polynôme Pn ∈ R[X] tel que :

∀ x ∈ ]0,
π

2
[, Pn(cotan2(x)) =

sin((2n+ 1)x)

sin2n+1(x)

2. Déterminer les racines de Pn, ainsi que leur somme.

3. (a) Montrer que pour tout x ∈ ]0, π
2

[, cotan2(x) ≤ 1
x2
≤ 1 + cotan2(x).

(b) En déduire la valeur de ζ(2) =
∑+∞
k=1

1

k2
.

Exercice 12 (théorème des moments pour une fonction continue). CCINP 48 [ ]

Soit f ∈ C0([0, 1],R) telle que pour tout n ∈ N,

∫ 1

0

tnf(t) dt = 0.

1. Enoncer le théorème de Weierstrass d’approximation uniforme par des fonctions polynômiales.

2. Soit (Pn) une suite de fonctions polynomiales convergeant uniformément sur le segment [0, 1] vers f , c’est à dire :

‖Pn − f‖∞ −→
n→+∞

0

(a) Montrer que la suite (Pnf) converge uniformément vers f2.

(b) Justifier que

∫ 1

0

f2(t) dt = lim
n→+∞

∫ 1

0

Pn(t)f(t) dt.

(c) Calculer alors

∫ 1

0

Pn(t)f(t) dt.

3. En déduire que f est nulle sur le segment [0, 1].
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Exercice 13 (borne de Cauchy). X/ENS [ ]
Soit n ∈ N∗, on définit le polynôme Pn à coefficients éventuellement complexes par :

Pn(X) = anX
n + an−1X

n−1 + . . .+ a1X + a0 , avec an 6= 0

et on pose M = max
k∈J0,n−1K

(
|ak|
|an|

). Etablir que pour toute racine α de Pn, on a nécessairement :

|α| ≤ 1 +M

Cette constante majorant le module de α désigne la borne de Cauchy associée à Pn, et elle nous permet de localiser les racines
de Pn de sorte que pour toute racine α, on a :

α ∈ Bf (0, 1 +M)

Exercice 14 (polynômes de Hilbert). X/ENS [ ]
On pose H0 = 1 et pour tout n ∈ N∗,

Hn(X) =
X(X − 1) . . . (X − n+ 1)

n!

1. Montrer que pour tout n ∈ N, Hn(Z) ⊂ Z. En déduire que le produit de n entiers consécutifs dans Z est toujours divisible
par n!.

2. Soit P ∈ Rn[X]. Montrer que les assertions suivantes sont équivalentes :

(i) P (Z) ⊂ Z
(ii) ∀k ∈ J0, nK, P (k) ∈ Z

(iii) il existe (λ0, . . . , λn) ∈ Zn+1 tel que P =
∑n
k=0 λkHk.

Exercice 15 (une preuve de d’Alembert-Gauss). X/ENS [ ]
On considère f une fonction 2π-périodique et de classe C1 sur R à valeurs dans C. Si de plus, f ne s’annule pas, on définit la
fonction indice par :

I(f) =
1

2πi

∫ 2π

0

f ′(t)

f(t)
dt

1. On pose pour tout x ∈ R, ψ(x) = exp(

∫ x

0

f ′(t)

f(t)
dt). Montrer que ψ est de classe C1 sur R, puis justifier que ψ est solution

d’une équation différentielle linéaire d’ordre 1.

2. Etablir qu’il existe λ ∈ K∗, ψ = λf . En déduire ψ est 2π-périodique et que nécessairement I(f) ∈ Z.

3. Soit P ∈ C[X] qu’on suppose de degré n ≥ 1. Montrer alors que P possède au moins une racine dans C.
On pourra raisonner par l’absurde et considérer la fonction fr : t 7−→ P (reit) pour tout r ≥ 0 et définir une intégrale à
paramètre en posant F (r) = I(fr).
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