
MP - Lycée Chrestien de Troyes
Chapitre 4

Intégrales sur un intervalle quelconque

Exercice 1 (étude d’une suite d’intégrales). [ ]

On pose pour tout n ∈ N, In =

∫ 1

0

(1− x)n

n!
ex dx.

1. Montrer que la suite (In) tend vers 0.

2. Montrer que pour tout n ∈ N, In = 1
(n+1)!

+ In+1, puis retrouver alors que e = lim
n→∞

n∑
k=0

1
k!

.

Exercice 2 (calcul de deux intégrales jumelles). [ ]
Soit n ∈ N∗. On définit les intégrales jumelles In et Jn par :

In =

∫ π/2

0

sinn(t)

sinn(t) + cosn(t)
dt et Jn =

∫ π/2

0

cosn(t)

sinn(t) + cosn(t)
dt

1. Calculer In + Jn.

2. Déterminer alors la valeur de chacune de ces intégrales.

Exercice 3 (développement asymptotique d’une suite d’intégrales définies sur un segment). [ ]

On considère la suite (In) définie pour tout n ∈ N par In =

∫ 1

0

1

1 + xn
dx.

1. Calculer I0, I1 et I2.

2. Montrer que la suite (In) est convergente, puis établir en fait que In −→ 1.

3. Montre que pour tout n ∈ N∗, on a : In = 1− ln(2)

n
+ o(

1

n
).

Exercice 4 (calcul explicite des intégrales de Wallis et formule de Stirling). FFF [ ]
On rappelle qu’on définit les intégrales de Wallis par :

∀n ∈ N, Wn =

∫ π
2

0

cosn(t) dt

1. Montrer que pour tout n ∈ N, n ≥ 2, Wn = (
n− 1

n
).Wn−2.

2. En déduire que pour tout p ∈ N, W2p =
(2p)!

22p(p!)2
.
π

2
et W2p+1 =

22p(p!)2

(2p+ 1)!
.1.

3. Justifier qu’il existe λ > 0 tel que n! ∼
n→+∞

λ
√
n(n

e
)n.

4. On rappelle que W2p ∼
√

π

4p
. Montrer que λ =

√
2π de sorte que : n! ∼

√
2πn(

n

e
)n (formule de Stirling).

Exercice 5 (étude de la convergence d’intégrales). [ ]
Etudier la convergence des intégrales suivantes :

I1 =

∫ +∞

1

1

x
(
√
x2 + x+ 1−

√
x2 − x+ 1) dx , I2 =

∫ +∞

0

sin(x) + cos(x)√
x3 + 1

dx , I3 =

∫ 1

0

ln(x)

x3 + x2
dx , I4 =

∫ +∞

0

ln(x)√
x3 + 1

dx

Exercice 6 (existence et calcul d’une intégrale généralisée). [ ]
Justifier la convergence des intégrales suivantes, puis déterminer leur valeur :

I1 =

∫ +∞

0

1

(x+ 1)(x+ 2)
dx , I2 =

∫ +∞

−∞

ch(x)

ch(2x)
dx , I3 =

∫ 1

0

x2√
1− x2

dx

Exercice 7 (deux études d’intégrabilité). CCINP 28 [ ]

1. La fonction x 7−→ e−x√
x2 − 4

est-elle intégrable sur ]2,+∞[ ?

2. Soit a un réel strictement positif.

La fonction x 7−→ ln(x)√
1 + x2a

est-elle intégrable sur ]0,+∞[ ?

www.cpgemp-troyes.fr 1/3

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 4
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Exercice 8 (existence et calcul d’une intégrale à paramètre entier). FFF [ ]
On définit pour tout n ∈ N∗,

In =

∫ +∞

1

xn−1

(1 + x)n+1
dx

Justifier que ces intégrales sont bien définies, et déterminer l’expression de In pour tout n ∈ N∗.

Exercice 9 (limite et équivalent d’une intégrale à paramètre). [ ]

Sous réserve d’existence, on note pour tout n ∈ N∗, In =

∫ +∞

0

e−x

n+ x
dx.

1. Justifier que pour tout n ∈ N∗, In est bien définie.

2. Etablir que In −→
n→+∞

0 et que In ∼
1

n
.

Exercice 10 (équivalent d’une intégrale à paramètre). [ ]

Sous réserve d’existence, on note pour tout n ∈ N, In =

∫ +∞

1

1

xn(1 + x2)
dx.

1. Justifier que pour tout n ∈ N, In est convergente.

2. Trouver alors un équivalent simple de In quand n→ +∞.

Exercice 11 (équivalent d’une intégrale à paramètre). FFF [ ]

On note, sous réserve d’existence, I(x) =

∫ 1

0

sin(xt)√
t

dt, avec x ∈ R.

1. Montrer que pour tout x ∈ R, I(x) existe.

2. Déterminer la limite de I(x) quand x→ 0, puis déterminer un équivalent de I(x) au voisinage de 0.

Exercice 12 (existence et calcul d’une intégrale en ln(sin(x)) ou ln(cos(x))). FFF [ ]
On définit les intégrales suivantes :

I =

∫ π/2

0

ln(sin(x)) dx et J =

∫ π/2

0

ln(cos(x)) dx

1. Justifier que ces intégrales sont convergentes et déterminer leur valeur.

2. En déduire l’existence et la valeur de :

K =

∫ π/2

0

x

tan(x)
dx

Exercice 13 (calcul de l’intégrale de Gauss à l’aide des intégrales de Wallis). [ ]
On considère les intégrales :

I =

∫ +∞

0

e−x
2

dx, Wn =

∫ π/2

0

sinn(x) dx, In =

∫ 1

0

(1− x2)n dx, Jn =

∫ +∞

0

1

(1 + x2)n
dx

1. Exprimer In et Jn en fonction des termes de la suite (Wn).

2. Montrer que : ∀x ∈ [0, 1], 1− x2 ≤ e−x
2

∀x ≥ 0, e−x
2

≤ 1

1 + x2

3. En déduire un encadrement de I par des intégrales de Wallis, puis retrouver sa valeur.

Exercice 14 (somme de Riemann généralisée). FFF [ ]
On considère f :]a, b] −→ R qu’on suppose décroissante, continue et intégrable sur ]a, b].

1. Montrer que :

(b− a)

n

n∑
k=1

f(a+ k
(b− a)

n
) −→
n→+∞

∫ b

a

f(t) dt

2. En déduire quand n→ +∞ la limite de (
n!

nn
)1/n.
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Exercice 15 (une première approche de la convergence uniforme). CCINP 14 [ ]

1. Soit (fn) une suite de fonctions continues sur [a, b] à valeurs réelles. On suppose de plus que (fn) converge uniformément
vers f sur [a, b], c’est à dire :

‖fn − f‖∞ −→
n→+∞

0

Montrer que nécessairement

∫ b

a

fn(t) dt −→
∫ b

a

f(t) dt.

2. Justifier comment ce résultat peut être utilisé dans le cas des séries de fonctions.

3. Démontrer que : ∫ 1/2

0

(

+∞∑
n=0

xn) dx =

+∞∑
n=1

1

n2n

Exercice 16 (application du théorème de convergence dominée). CCINP 25 [ ]

1. Démontrer que, pour tout entier naturel n, la fonction t 7−→ 1

1 + t2 + tne−t
est intégrable sur [0,+∞[.

2. Pour tout n ∈ N, on pose un =

∫ +∞

0

1

1 + t2 + tne−t
dt. Calculer la limite de un quand n→ +∞.

Exercice 17 (application du théorème de convergence dominée). CCINP 26 [ ]

Pour tout entier n ≥ 1, on pose In =

∫ +∞

0

1

(1 + t2)n
dt.

1. Justifier que In est bien définie.

2. (a) Etudier la monotonie de (In).

(b) Déterminer la limite de la suite (In).

3. La série
∑
n≥1(−1)nIn est-elle convergente ?

Exercice 18 (calcul de l’intégrale de Poisson). X/ENS [ ]
Soient n ∈ N∗ et r ∈ R− {±1}.

1. Etablir que :

(
r + 1

r − 1
).(r2n − 1) =

n∏
k=1

(1− 2r cos(
kπ

n
) + r2)

2. Justifier la convergence de I(r) =

∫ π

0

ln(1− 2r cos(t) + r2) dt, puis retrouver sa valeur.

Exercice 19 (méthode de quadrature de Gauss). X/ENS [ ]
Soient n ≥ 1 et Ln(X) = ((X2 − 1)n)(n).

1. Montrer que pour tout Q ∈ Rn−1[X],

∫ 1

−1

Q(x)Ln(x) dx = 0.

2. Etablir que Ln admet n racines simples x1 < x2 < . . . < xn dans l’intervalle ]− 1, 1[.

3. Montrer alors qu’il existe (α1, . . . , αn) ∈ Rn tel que :

∀Q ∈ R2n−1[X],

∫ 1

−1

Q(x) dx =

n∑
i=1

αiQ(xi)

Exercice 20 (théorème de la limite centrée). X/ENS [ ]
Soit f : R −→ C une fonction continue et périodique. Montrer que :

1

2n

n∑
k=0

(
k
n

)
f(

2k − n√
n

) −→
n→+∞

1√
2π

∫
R
f(x)e−x

2/2 dx

On pourra commencer par f(x) = eiαx avec x ∈ R et utiliser l’égalité

∫
R
e−x

2/2 dx =
√

2π.
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