Chapitre 0
MP - Lycée Chrestien de Troyes Espaces vectoriels et cas particulier de la dimension finie

Exercice 1 (décomposition en somme directe sur un espace de fonctions). [ ]
Soit n € N*. On note F ’ensemble des applications de R dans C qui sont de classe C*° et on définit F' ’ensemble des applications
polynomiales de R dans C de degré inférieur ou égal a n, G ’ensemble tel que :

G={feE, vpelo,n],f®©0)=0}
1. Justifier rapidement que F' et G désignent des sous-espaces vectoriels de E, puis montrer que £ = F & G.

2. Préciser alors ce qu’est la projection sur F' parallelement a G.

Exercice 2 (décomposition en somme directe de n sous-espaces vectoriels). [ ]
Soient n € N* et ao, ..., a, des réels deux & deux distincts. Pour tout 7 € [0, n], on note :

Fi = {P € Rn[XL v] € IIO,TI]] - {Z}a P(aj) = 0}
Montrer que Fy,... F;, désignent des sous-espaces vectoriels de R,,[X] et qu’ils vérifient :

Fo®...® Fn=Rn[X]

Exercice 3 (décomposition en somme directe et endomorphisme diagonalisable). [ ]
On donne f € £L(R?) définie par f(z,y,2) = (x +y+ 2,2 — 2,22 + 7).

1. L’application f est-elle bijective ?

2. On note Ef(—1) = Ker(f +id) et Ef(2) = Ker(f — 2id).
Montrer que les sous-espaces Ef(—1) et Ef(2) sont des droites vectorielles dont on notera e; et ez les vecteurs générateurs.

3. Montrer que :

E = Ker(f)® Ef(—1) @ E¢(2)

Exercice 4 (condition nécessaire et suffisante de la décomposition en dimension finie). CCINP 64 | |
Soit f € L(F) ou E désigne un K-espace vectoriel de dimension finie n > 1.

1. Démontrer que E = Im(f) @ Ker(f) = Im(f) = Im(f?).
2. (a) Etablir que : Im(f) = Im(f?) & Ker(f) = Ker(f?).

(b) Démontrer alors que :
Im(f) = Im(f*) = E = Im(f) & Ker(f)

Exercice 5 (étude d’un endomorphisme sur M2 (R)). CCINP 60 [ ]
On note A = (; i) et f 'endomorphisme de M2(R) tel que f: M — AM.

1. Déterminer Ker(f). L’endomorphisme f est-il surjectif ?
2. Déterminer une base de Im(f).

3. A t-on M3(R) = Ker(f) @ Im(f) ?

Exercice 6 (suites des noyaux et des images itérés). [ ]
Soient E un K-espace vectoriel de dimension finie n > 1 et f un endomorphisme de E.
Pour tout p € N, on pose I, = Im(f?) et N, = Ker(f?).

1. Montrer que (Ip)p>0 est décroissante au sens de l'inclusion, tandis que (Np)p>o0 est croissante.
2. Montrer qu'il existe po € N tel que pour tout p > po, I = I, et Np = Np,.

3. Montrer que Ip, et N, sont supplémentaires dans E.

Exercice 7 (application de la caractérisation des isomorphismes en dimension finie). [ ]
Soit n € N. On appelle polynémes de Bernstein de degré n les polynomes réels définis par:

Bokr = () X"(1—-X)""" avec k € {0,...,n}
1. Montrer que la famille (B k)o<k<n est une base de R, [X].

2. Pour P € R,[X], on pose B(P) = 3"7_, P(£)B, k.
(a) Montrer que B est un endomorphisme de R, [X].

(b) Déterminer le noyau de B. Que peut-on en déduire ?
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Correction des exercices

Exercice 1
1. A chaque fois, on se rameéne & la caractérisation des sev de E = C*°(R, C). Par exemple, on vérifie pour I’ensemble G :
e GCFE
e si on note fo : « — 0 la fonction nulle, alors pour tout p € [0,n], fép) (0) =0 et donc fo € G.
e soient A € C, f,g € G, alors par linéarité de 'opérateur dérivée, on a pour tout p € [0,n] :
Af +9) P 0) = AfP(0) + ¢ (0) =A0+0=0
et ainsi, A\f + g € G

D’apres la caractérisation des sev, G est un sev de E. De la méme fagon, on montrerait trivialement que F' est encore
un sev de F.

De plus, on rappelle que par exemple que pour deux sev :

E=F+G(1)

EZF@G@{FQG_{OE}(Q)

On va alors démontrer chacune de ces assertions.
(2) Soit f € FNG, alors f peut s’écrire f(z) = > 7_, axz®. Or f appartient & G et donc, pour tout p € [0,n],
f ) (0) = 0, mais par opérations sur les polynémes, on a :

P (2) = f: ark(k —1)...(k—p+ 1)a* " = P (0) = a,p!
k=p

et ainsi, si f € G, alors pour tout p, a, = 0.
On en déduit que f est nécessairement nulle, c’est & dire FNG C {Og} et donc, 'inclusion réciproque étant immédiate
:FNG = {OE}

(1) Reste & montrer que E = F + G. Pour cela, considérons f € E, et on cherche d’abord (g,h) € G x F tel
que f =g+ h.

On peut procéder par analyse/synthese.

ANALYSE Si une telle décomposition existe, on a par dérivation :

FP(0) = g (0) + 1P (0) = 0+ P (0) car g € G
mais h étant une fonction polynéme, elles s’écrit encore h(z) =Y, _, arz”, et ainsi I’égalité précédente donne :
f(p)(o) =app! & ap = f(p)(o)/P!

Finalement, sous réserve d’existence, on trouve donc :

et par suite, on a alors g(z) = f(z) — h(z) = f(z) — > 1, R
SYNTHESE Pour f fixée dans E, on pose : '

(k)
) = iy T et

(k)
o) = £(2) — o) = £(a) ~ Sy T D

et on vérifie que ce couple convient (c’est immédiat).
En particulier, on a par analyse-syntheése que E C F + G, mais U'inclusion réciproque étant immédiate, on peut conclure
que £F = F + G.

D’ot, (1) et (2) sont vraies et par caractérisation, il vient E = F & G.

2. En particulier, on peut remarquer que la projection de f sur F' est la fonction polynéme h définie par :
- (k) a
W) = 31005
k=0

qui n’est rien d’autre que le n-iéme polynéme de Taylor de f en O.
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Remarque Bien entendu, on pouvait aussi se contenter de ne faire que TANALYSE-SYNTHESE et conclure par définition
de la décomposition en somme directe.

Exercice 2
On remarque par exemple que Fy désigne les polyndémes qui s’annulent en toutes les valeurs, sauf éventuellement ag. Ainsi,
comme les sacalaires a; sont distincts,

PeFys Pla)=...=Plan) =0 (X —a1)... (X —an)|P

c’est & dire que dans R, [X], un tel polynéme s’écrit :

P(X) = Xo. [[(X = as) avec Ao € R

=1

et ainsi, Fo = Vect([],_,(X — a;)) et il s’agit bien d’un sev de R, [X].

De la méme facon, avec les autres sev puisqu’on a pour tout j € [0,n], F; = Vect(]],.;(X — a:)).
Reste & montrer la décomposition en somme directe. Pour cela, on rappelle qu’en dimension finie, on a la caractérisation :

décomposition unique du zéro (1)

E=aj_F & {dim(E) =" dim(F}) (2)

(2) Les sous-espaces F}; sont des droites vectorielles, et donc on a immédiatement :
> dim(Fy) =n + 1 = dim(Rn[X])
3=0

(1) Considérons une décomposition de la forme :

0=P+Pi+...+ P, avecP]- EFj (*)
En particulier, la forme des sous-espaces nous permettent de réécrire :

(1) 0=X. [[(X —a) + M. [[(X —as) + ..+ M (X = @)

i#£0 i£1 i#n

et en évaluant an X = a; pour j fixé, on obtient :
0=0+...+X.JJ(a; —a)+...+0
i#]
#0

et donc, \; = 0 = P; = 0 pour j quelconque.
Ainsi, les composantes sont toutes nulles, ce qui assure la décomposition unique du zéro et (1) est vraie.

Finalement, (1) et (2) sont vraies et par caractérisation, il vient R, [X] = ®}_oF}.

Remarque On pourra retenir que ’exercice est plus facile si on voit les sous-espaces F; comme des Vect... c’est pour
cela qu’on préfere souvent se ramener a un Vect, plutét que d’utiliser la caractérisation des sev a l’aide des trois points
inclusion/présence du zéro/stabilité par combinaison linéaire.

Exercice 3

1. On va déterminer le noyau de f. Pour cela, considérons (z,y,z) € R®, alors :

0=0
(2,y,2) € Ker(f) & f(z,y,2) =0ps & {2z =2
y = —2x

Avec ce paramétrage en x, on en déduit que Ker(f) = {(z, —2z,z), © € R} = Vect((1,—2,1)), et par caractérisation
a l'aide du noyau, f n’est pas injective et donc, f n’est pas bijective.

2. Les espaces Ey(—1) et Ef(2) sont des sev en tant que noyau d’applications linéaires, de plus :

20 +y+2=0
o (z,y,2) € Ker(f+id) < (f+id)(z,y,2) =0gps © Sz +y—2=0 c’est & dire en paramétrant en z, puis en
2c+y+2=0

combinant les lignes:
20 +y+2=0 20 +y = —=z r=—-2z
<~ -
z+y—2=0 r+y==z Yy =3z

D’ott, Ker(f +id) = {(—22,32,2), z € R} = Vect((-2,3,1)).
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e et de la méme fagon, on peut montrer que Ker(—2id) = Vect((1,0,1)).

3. Précédemment, on a réussi a identifier chacun des sous-espaces vectoriels. Pour démontrer qu’on a une telle décomposition
de D’espace, on va préférer justifier que les vecteurs ep = (1,—2,1), e1 = (—=2,3,1) et e2 = (1,0,1) désignent une base
de R3. En effet, si c’est une base, on aura une décomposition unique de tout vecteur de R® et par définition, la
décomposition en somme directe des sous-espaces sous-jacents.

Par exemple, on peut revenir a l'algorithme du rang et échelonner la matrice de ces vecteurs par opérations sur les

colonnes :
1 -2 1 1 0 0
rg(l-2 3 0])=rg(|-2 -1 2])=3
1 1 1 1 3 0

Le rang étant maximal, ces vecteurs représentent une base de R? et on a immédiatement R® = Ker(f)®E;(—1)®Ef(2).

Remarque Cet exercice est fondamental pour plusieurs raisons. D’abord, parce qu’il cache la réduction d’'un endomorphisme
en dimension finie, au coeur du programme de spé. Puis, de fagon plus triviale, il vous permet de retravailler les systémes
linéaires : vous étes souvent maladroits et préférez échelonner des tableaux de coefficients de fagon algorithmique sans
comprendre... vous étes en MP maintenant et la rédaction et les idées sont importantes pour les écrits. Ainsi, je voudrais
vraiment que :

1. vous sachiez gérer ces systémes : pivot de Gauss, combinaison des lignes, choix des parametres, conclusion

2. vous échelonniez pour de vraies raisons : calcul d’un rang ou d’un déterminant.

Exercice 4

1. On suppose que E = Ker(f) @ Im(f), et on doit montrer I'égalié de deux ensembles I'm(f) = Im(f?). On procede
tout simplement par double inclusion :

e on a immédiatement Im(f?) C I'm(f)

e réciproquement, si z € I'm(f), alors il existe t € E tel que x = f(t) mais par hypothese sur E, t = ¢t1 + f(t2) ou
(t1, f(t2)) € Ker(f) x Im(f) et ainsi :

@ = f(t) =05+ fo f(t2) = f*(t2)
ainsi, Im(f) C Im(f?)
D’ot I’égalité Im(f) = Im(f?).

2. (a) On procede ici par double implication :

e on suppose que Im(f) = Im( fz), alors en dimension finie, on récupeére grace a la formule du rang :
dim(Ker(f)) = dim(E) —rg(f) = dim(E) — rg(f2) = dim(Ker(fQ))

or on a toujours 'inclusion Ker(f) C Ker(f?), et ainsi :

{Kerm C Ker(f?) = Ker(f) = Ker(f?)

dim(Ker(f)) = dim(Ker(f?))

e réciproquement si on suppose que Ker(f) = Ker(f?), alors la formule du rang donne encore rg(f) = rg(f?)

et donc :
Im(f?) Cc Im
nICInl) S () = ()
dim(Im(f)) = dim(Im(f<))
Finalement, on a bien I’équivalence cherchée.

(b) On suppose que Im(f) = Im(f?), et on cherche & démontrer la décomposition : E = Ker(f) ®Im(f), c’est & dire
a l’aide de la caractérisation en dimension finie, il suffit de montrer que :

{Ker(f) N Im(f) = {0} (1)
dim(E) = dim(Ker(f)) + dim(Im(f)) (2)

(2) est immédiat puisqu’on reconnait ici la formule du rang.

(1) Considérons x € Ker(f) N Im(f), alors
f(z)=0petIte€E, z= f(t)

dans ce cas, il vient f3(t) = Op et donc, t € Ker(f?) = Ker(f) et ceci grace & la question précédente.
Par conséquent, f(¢t) = Og et  est nul. On en déduit que Ker(f) NIm(f) C {0g} et inclusion réciproque étant
immédiate, (1) est vraie.

D'ou, (1) 4+ (2) = E = Ker(f) ® Im(f).

www.cpgemp-troyes.fr 4


http://www.cpgemp-troyes.fr/

Chapitre 0
MP - Lycée Chrestien de Troyes Espaces vectoriels et cas particulier de la dimension finie

Exercice 5

1. Soit M € M2(R), on a :

MeKer(f)cm‘(M):O@AM:O@(l 2) x (“ b>:o

2 4 c d
a+2c=0
2a+4c=0 a=—2c
= =
b+2d=0 b= —-2d
2b+4d=0

Autrement dit, on a deux parametres de sorte que :

Ker(f) = {(_620 _§d> ,c,de R} = Vect((_12 8) : (8 _12))

En particulier, f n’est pas injective. Comme f désigne un endomorphisme en dimension finie, f n’est pas non plus
surjective : on a par exemple rg(f) = dim(M2(R)) — dim(Ker(f)) =4—2=2.

2. Etant donné les calculs de la quetsion précédente, on a directement pour M quelconque :
_(a+2c b+2d\ 1 0 0 1 2 0 0 2
J(M) = <2a+4c 2b+4d> = (2 0> “’(0 2) +°<4 o) +d(o 4)

o 1 0 0 1 2 0 0 2 1 0 0 1
et ainsi, Im(f) = Vect( (2 O) , (O 2) , (4 0) , (O 4>) = Vect( (2 0) , (0 2))
3. Sion se ramene a la caractérisation d’une telle décomposition en dimension finie, on a toujours par la formule du rang:

dim(Ker(f)) + rg(f) = dim(Mz(R))

Reste & montrer que Ker(f) N Im(f) = {0}.
Pour cela, on considere M € Ker(f) N Im(f), alors en utilisant les bases de chacun de ces sous-espaces, il existe des

scalaires a, b, c,d € R tels que :
-2 0 0 -2
M = b

10 0 1
M= d

—2a —2b c d a=2c
( >_<26 2d>:> d =a=0,b=0=M=0

c’est a dire qu’il vient :

Do, Ker(f) NIm(f) C {0} et ainsi, I'inclusion réciproque étant immédiate, Ker(f) N Im(f) = {0}.

Ker(f)nIm(f) = {0}

dim(Ker()) + rg(f) = dim(Ma(®)) 28 = Ker(7) & Im(7).

Finalement, on a bien par caractérisation, {

Exercice 6

1. Soit p € N, on souhaite en fait montrer que : Ip41 C I et Np C Npt1.

e Soit x € I,41, alors il existe t € E, x = fPT(t) et donc, © = fP(f(t)), c’est & dire x € I,.
Ainsi, Ip41 C Ip et la suite des images itérées est décroissante au sens de I'inclusion.

o Soit 2 € N, alors fP(2) = O et donc, en composant par f : fP*(z) = 0, cest & dire © € Npi1.
Ainsi, N, C Np41 et la suite des noyaux itérés est croissante au sens de 'inclusion.

2. La suite des images itérées étant décroissante, on a par passage aux dimensions :
dim(Ip41) < dim(Ip)

En particulier, la suite des dimensions (dim(Ip)) est une suite décroissante et minorée par 0 : elle est donc convergente,
et comme il s’agit d’une suite d’entiers, elle est stationnaire, c’est a dire :

3po €N, Vp > po, dim(Ip) = dim(Ip,)

Mais alors on a pour tout p > po :
dim(Ip) = dim(Ip,)
I, C I, d’apres 1.
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Pour aller plus loin, on a également par la formule du rang et pour tout p > po :
dim(Np) = dim(E) — dim(Ip) = dim(E) — dim(Ip,) = dim(Np,)
Mais alors on a pour tout p > po :

dim(Np) = dim(N,
() = dim(Npo)
Np, C N, d’apres 1.
Autrement dit, la suite des images et des noyaux sont méme stationnaires au sens de 'inclusion.

3. Encore une fois, on va invoquer la caractérisation d’une telle décomposition en dimension finie, c’est a dire qu’on montre

Npo N 1Ip, = {OE} (2)

(1) est immédiat : c’est la formule du rang appliqué & f°.
De plus, si x € Ny, N Ip,, alors :

{dim(Npo) + dim(Ip,) = dim(E) (1)

fPo(z) = 0 et il existe t € E tel que x = fFO(¢)

et donc, f2Po (t) = Og. En particulier, cela signifie que ¢ € Nap,, mais la suite des noyaux étant stationnaire au rang
Ppo, on a t € Nap, = Ny,.

Do, z = fPo(t) = 0g.

Finalement, Ny, N I,, C {Og} et donc, Np, N I,, = {0}

On en déduit par caractérisation que E = Ny, @ I, .

Exercice 7

1. On a par définition de la famille de ces polynoémes :

B = (g) X1 = X)", Bny = <T>X1(1 — X)""Y, Bpa = (’;) X2(1-X)"%

En particulier, on remarque que Card(Bn,x) = n + 1 = dim(R,[X]), et ainsi pour justifier qu’il s’agit d’une base, il
suffit de montrer que cette famille est libre.
Considérons alors Ao, ..., A, € R tels que :

n
E )\an,k =0 (*)
k=0
Par récurrence finie sur k € [0,n], on va montrer que les scalaires sont nuls :

e En évaluant en X = 0, on a immédiatement : Ag.1 =0 = Ao = 0.
e Soit k € [0,n — 1] tel que Ao = ... = X\t =0, alors :

%) € Neg1Brka1 + oo A Bam = 0 € Aips XA —x) P M xra—-x) =0
n

n
k+1
En simplifiant par X**!, puis en faisant tendre X — 0, on a : Agp1 = 0. Ce qui livre Phérédité de la récurrence.

Par le principe de récurrence finie, on en déduit que les scalaires sont nuls et la famille des polynéomes de Berstein
constitue une famille de n + 1 vecteurs libres : c’est donc une base de R, [X].

2. (a) On a imméditament que pour tout P € R,[X], B(P) € R,[X]. De plus, pour tout A € R et tout (P, Q) € R,[X]?,

BOP+Q) = S (P +Q)(b/m)Buse = A S P(k/n)Bu + 3 Q(h/n) Bu = NB(P) + B(Q)
k=0 k=0 k=0
Autrement dit, B est linéaire et B € L(R,[X]).
(b) Soit P € R,[X], alors :

P e Ker(B) < B(P) =0 Y P(k/n)Bnx =0
k=0
mais la famille des polynémes de Berstein étant une base, ils sont linéairement indépendants et on en déduit que
pour tout k € [0,n], P(k/n) = 0.
Dans ce cas, P possede n + 1 racines distinctes, plus que son degré : c’est donc le polynéme nul et P = 0.
Finalement, Ker(B) = {0}, et ainsi B est injective.

Pour finir, comme B désigne un endomorphisme en dimension finie avec dim(R,[X]) = dim(R,[X]), elle est
donc aussi bijective par caractérisation des isomorphismes en dimension finie : on peut méme conclure qu’il s’agit
d’un automorphisme de R, [X].

Remarque On fera attention : les polynomes de Bernstein ne sont pas échelonnés en degré, et il faut donc prouver la liberté
autrement... D’ailleurs, cette famille de polynémes est importante car vous l'avez certainement vu en MPSI, elle permet,
pour une fonction f continue sur un segment, de construire une suite de polynémes qui approche f uniformément.
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