
MP - Lycée Chrestien de Troyes
Chapitre 0

Espaces vectoriels et cas particulier de la dimension finie

Exercice 1 (décomposition en somme directe sur un espace de fonctions). [ ]
Soit n ∈ N∗. On note E l’ensemble des applications de R dans C qui sont de classe C∞ et on définit F l’ensemble des applications
polynomiales de R dans C de degré inférieur ou égal à n, G l’ensemble tel que :

G = {f ∈ E, ∀p ∈ J0, nK, f (p)(0) = 0}

1. Justifier rapidement que F et G désignent des sous-espaces vectoriels de E, puis montrer que E = F ⊕G.

2. Préciser alors ce qu’est la projection sur F parallèlement à G.

Exercice 2 (décomposition en somme directe de n sous-espaces vectoriels). [ ]
Soient n ∈ N∗ et a0, . . . , an des réels deux à deux distincts. Pour tout i ∈ J0, nK, on note :

Fi = {P ∈ Rn[X], ∀ j ∈ J0, nK− {i}, P (aj) = 0}

Montrer que F0, . . . Fn désignent des sous-espaces vectoriels de Rn[X] et qu’ils vérifient :

F0 ⊕ . . .⊕ Fn = Rn[X]

Exercice 3 (décomposition en somme directe et endomorphisme diagonalisable). [ ]
On donne f ∈ L(R3) définie par f(x, y, z) = (x+ y + z, x− z, 2x+ y).

1. L’application f est-elle bijective ?

2. On note Ef (−1) = Ker(f + id) et Ef (2) = Ker(f − 2id).
Montrer que les sous-espaces Ef (−1) et Ef (2) sont des droites vectorielles dont on notera e1 et e2 les vecteurs générateurs.

3. Montrer que :
E = Ker(f)⊕ Ef (−1)⊕ Ef (2)

Exercice 4 (condition nécessaire et suffisante de la décomposition en dimension finie). CCINP 64 [ ]
Soit f ∈ L(E) où E désigne un K-espace vectoriel de dimension finie n ≥ 1.

1. Démontrer que E = Im(f)⊕Ker(f)⇒ Im(f) = Im(f2).

2. (a) Etablir que : Im(f) = Im(f2)⇔ Ker(f) = Ker(f2).

(b) Démontrer alors que :
Im(f) = Im(f2)⇒ E = Im(f)⊕Ker(f)

Exercice 5 (étude d’un endomorphisme sur M2(R)). CCINP 60 [ ]

On note A =

(
1 2
2 4

)
et f l’endomorphisme de M2(R) tel que f : M 7−→ AM .

1. Déterminer Ker(f). L’endomorphisme f est-il surjectif ?

2. Déterminer une base de Im(f).

3. A t-on M2(R) = Ker(f)⊕ Im(f) ?

Exercice 6 (suites des noyaux et des images itérés). [ ]
Soient E un K-espace vectoriel de dimension finie n > 1 et f un endomorphisme de E.
Pour tout p ∈ N, on pose Ip = Im(fp) et Np = Ker(fp).

1. Montrer que (Ip)p>0 est décroissante au sens de l’inclusion, tandis que (Np)p>0 est croissante.

2. Montrer qu’il existe p0 ∈ N tel que pour tout p > p0, Ip = Ip0 et Np = Np0 .

3. Montrer que Ip0 et Np0 sont supplémentaires dans E.

Exercice 7 (application de la caractérisation des isomorphismes en dimension finie). [ ]
Soit n ∈ N. On appelle polynômes de Bernstein de degré n les polynômes réels définis par:

Bn,k = (nk )Xk(1−X)n−k avec k ∈ {0, . . . , n}

1. Montrer que la famille (Bn,k)0≤k≤n est une base de Rn[X].

2. Pour P ∈ Rn[X], on pose B(P ) =
∑n

k=0 P ( k
n

)Bn,k.

(a) Montrer que B est un endomorphisme de Rn[X].

(b) Déterminer le noyau de B. Que peut-on en déduire ?
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Correction des exercices

Exercice 1

1. A chaque fois, on se ramène à la caractérisation des sev de E = C∞(R,C). Par exemple, on vérifie pour l’ensemble G :

• G ⊂ E
• si on note f0 : x 7−→ 0 la fonction nulle, alors pour tout p ∈ J0, nK, f (p)

0 (0) = 0 et donc f0 ∈ G.

• soient λ ∈ C, f, g ∈ G, alors par linéarité de l’opérateur dérivée, on a pour tout p ∈ J0, nK :

(λf + g)(p)(0) = λf (p)(0) + g(p)(0) = λ.0 + 0 = 0

et ainsi, λf + g ∈ G

D’après la caractérisation des sev, G est un sev de E. De la même façon, on montrerait trivialement que F est encore
un sev de E.

De plus, on rappelle que par exemple que pour deux sev :

E = F ⊕G⇔

{
E = F +G (1)

F ∩G = {0E} (2)

On va alors démontrer chacune de ces assertions.
(2) Soit f ∈ F ∩ G, alors f peut s’écrire f(x) =

∑n
k=0 akx

k. Or f appartient à G et donc, pour tout p ∈ J0, nK,
f (p)(0) = 0, mais par opérations sur les polynômes, on a :

f (p)(x) =

n∑
k=p

akk(k − 1) . . . (k − p+ 1)xk−p ⇒ f (p)(0) = app!

et ainsi, si f ∈ G, alors pour tout p, ap = 0.
On en déduit que f est nécessairement nulle, c’est à dire F ∩G ⊂ {0E} et donc, l’inclusion réciproque étant immédiate
: F ∩G = {0E}.

(1) Reste à montrer que E = F + G. Pour cela, considérons f ∈ E, et on cherche d’abord (g, h) ∈ G × F tel
que f = g + h.
On peut procéder par analyse/synthèse.
ANALYSE Si une telle décomposition existe, on a par dérivation :

f (p)(0) = g(p)(0) + h(p)(0) = 0 + h(p)(0) car g ∈ G

mais h étant une fonction polynôme, elles s’écrit encore h(x) =
∑n

k=0 akx
k, et ainsi l’égalité précédente donne :

f (p)(0) = app!⇔ ap = f (p)(0)/p!

Finalement, sous réserve d’existence, on trouve donc :

h(x) =

n∑
k=0

f (k)(0)

k!
xk

et par suite, on a alors g(x) = f(x)− h(x) = f(x)−
∑n

k=0

f (k)(0)

k!
xk.

SYNTHESE Pour f fixée dans E, on pose :
h(x) =

∑n
k=0

f (k)(0)

k!
xk

g(x) = f(x)− h(x) = f(x)−
∑n

k=0

f (k)(0)

k!
xk

et on vérifie que ce couple convient (c’est immédiat).
En particulier, on a par analyse-synthèse que E ⊂ F +G, mais l’inclusion réciproque étant immédiate, on peut conclure
que E = F +G.

D’où, (1) et (2) sont vraies et par caractérisation, il vient E = F ⊕G.

2. En particulier, on peut remarquer que la projection de f sur F est la fonction polynôme h définie par :

h(x) =

n∑
k=0

f (k)(0)
xk

k!

qui n’est rien d’autre que le n-ième polynôme de Taylor de f en 0.
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Remarque Bien entendu, on pouvait aussi se contenter de ne faire que l’ANALYSE-SYNTHESE et conclure par définition
de la décomposition en somme directe.

Exercice 2
On remarque par exemple que F0 désigne les polynômes qui s’annulent en toutes les valeurs, sauf éventuellement a0. Ainsi,
comme les sacalaires ai sont distincts,

P ∈ F0 ⇔ P (a1) = . . . = P (an) = 0⇔ (X − a1) . . . (X − an)|P

c’est à dire que dans Rn[X], un tel polynôme s’écrit :

P (X) = λ0.

n∏
i=1

(X − ai) avec λ0 ∈ R

et ainsi, F0 = V ect(
∏n

i=1(X − ai)) et il s’agit bien d’un sev de Rn[X].
De la même façon, avec les autres sev puisqu’on a pour tout j ∈ J0, nK, Fj = V ect(

∏
i6=j(X − ai)).

Reste à montrer la décomposition en somme directe. Pour cela, on rappelle qu’en dimension finie, on a la caractérisation :

E = ⊕n
j=0Fj ⇔

{
décomposition unique du zéro (1)

dim(E) =
∑n

j=0 dim(Fj) (2)

(2) Les sous-espaces Fj sont des droites vectorielles, et donc on a immédiatement :

n∑
j=0

dim(Fj) = n+ 1 = dim(Rn[X])

(1) Considérons une décomposition de la forme :

0 = P0 + P1 + . . .+ Pn avec Pj ∈ Fj (∗)

En particulier, la forme des sous-espaces nous permettent de réécrire :

(∗)⇔ 0 = λ0.
∏
i 6=0

(X − ai) + λ1.
∏
i 6=1

(X − ai) + . . .+ λn.
∏
i 6=n

(X − ai)

et en évaluant an X = aj pour j fixé, on obtient :

0 = 0 + . . .+ λj .
∏
i6=j

(aj − ai)

6=0

+ . . .+ 0

et donc, λj = 0⇒ Pj = 0 pour j quelconque.
Ainsi, les composantes sont toutes nulles, ce qui assure la décomposition unique du zéro et (1) est vraie.

Finalement, (1) et (2) sont vraies et par caractérisation, il vient Rn[X] = ⊕n
j=0Fj .

Remarque On pourra retenir que l’exercice est plus facile si on voit les sous-espaces Fj comme des V ect... c’est pour
cela qu’on préfère souvent se ramèner à un V ect, plutôt que d’utiliser la caractérisation des sev à l’aide des trois points
inclusion/présence du zéro/stabilité par combinaison linéaire.

Exercice 3

1. On va déterminer le noyau de f . Pour cela, considérons (x, y, z) ∈ R3, alors :

(x, y, z) ∈ Ker(f)⇔ f(x, y, z) = 0R3 ⇔


0 = 0

z = x

y = −2x

Avec ce paramétrage en x, on en déduit que Ker(f) = {(x,−2x, x), x ∈ R} = V ect((1,−2, 1)), et par caractérisation
à l’aide du noyau, f n’est pas injective et donc, f n’est pas bijective.

2. Les espaces Ef (−1) et Ef (2) sont des sev en tant que noyau d’applications linéaires, de plus :

• (x, y, z) ∈ Ker(f + id) ⇔ (f + id)(x, y, z) = 0R3 ⇔


2x+ y + z = 0

x+ y − z = 0

2x+ y + z = 0

c’est à dire en paramétrant en z, puis en

combinant les lignes: {
2x+ y + z = 0

x+ y − z = 0
⇔

{
2x+ y = −z
x+ y = z

⇔

{
x = −2z

y = 3z

D’où, Ker(f + id) = {(−2z, 3z, z), z ∈ R} = V ect((−2, 3, 1)).
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• et de la même façon, on peut montrer que Ker(−2id) = V ect((1, 0, 1)).

3. Précédemment, on a réussi à identifier chacun des sous-espaces vectoriels. Pour démontrer qu’on a une telle décomposition
de l’espace, on va préférer justifier que les vecteurs e0 = (1,−2, 1), e1 = (−2, 3, 1) et e2 = (1, 0, 1) désignent une base
de R3. En effet, si c’est une base, on aura une décomposition unique de tout vecteur de R3 et par définition, la
décomposition en somme directe des sous-espaces sous-jacents.
Par exemple, on peut revenir à l’algorithme du rang et échelonner la matrice de ces vecteurs par opérations sur les
colonnes :

rg(

 1 −2 1
−2 3 0
1 1 1

) = rg(

 1 0 0
−2 −1 2
1 3 0

) = 3

Le rang étant maximal, ces vecteurs représentent une base de R3 et on a immédiatement R3 = Ker(f)⊕Ef (−1)⊕Ef (2).

Remarque Cet exercice est fondamental pour plusieurs raisons. D’abord, parce qu’il cache la réduction d’un endomorphisme
en dimension finie, au coeur du programme de spé. Puis, de façon plus triviale, il vous permet de retravailler les systèmes
linéaires : vous êtes souvent maladroits et préférez échelonner des tableaux de coefficients de façon algorithmique sans
comprendre... vous êtes en MP maintenant et la rédaction et les idées sont importantes pour les écrits. Ainsi, je voudrais
vraiment que :

1. vous sachiez gérer ces systèmes : pivot de Gauss, combinaison des lignes, choix des paramètres, conclusion

2. vous échelonniez pour de vraies raisons : calcul d’un rang ou d’un déterminant.

Exercice 4

1. On suppose que E = Ker(f) ⊕ Im(f), et on doit montrer l’égalié de deux ensembles Im(f) = Im(f2). On procède
tout simplement par double inclusion :

• on a immédiatement Im(f2) ⊂ Im(f)

• réciproquement, si x ∈ Im(f), alors il existe t ∈ E tel que x = f(t) mais par hypothèse sur E, t = t1 + f(t2) où
(t1, f(t2)) ∈ Ker(f)× Im(f) et ainsi :

x = f(t) = 0E + f ◦ f(t2) = f2(t2)

ainsi, Im(f) ⊂ Im(f2)

D’où l’égalité Im(f) = Im(f2).

2. (a) On procède ici par double implication :

• on suppose que Im(f) = Im(f2), alors en dimension finie, on récupère grâce à la formule du rang :

dim(Ker(f)) = dim(E)− rg(f) = dim(E)− rg(f2) = dim(Ker(f2))

or on a toujours l’inclusion Ker(f) ⊂ Ker(f2), et ainsi :{
Ker(f) ⊂ Ker(f2)

dim(Ker(f)) = dim(Ker(f2))
⇒ Ker(f) = Ker(f2)

• réciproquement si on suppose que Ker(f) = Ker(f2), alors la formule du rang donne encore rg(f) = rg(f2)
et donc : {

Im(f2) ⊂ Im(f)

dim(Im(f)) = dim(Im(f2))
⇒ Im(f) = Im(f2)

Finalement, on a bien l’équivalence cherchée.

(b) On suppose que Im(f) = Im(f2), et on cherche à démontrer la décomposition : E = Ker(f)⊕ Im(f), c’est à dire
à l’aide de la caractérisation en dimension finie, il suffit de montrer que :{

Ker(f) ∩ Im(f) = {0E} (1)

dim(E) = dim(Ker(f)) + dim(Im(f)) (2)

(2) est immédiat puisqu’on reconnâıt ici la formule du rang.

(1) Considérons x ∈ Ker(f) ∩ Im(f), alors

f(x) = 0E et ∃ t ∈ E, x = f(t)

dans ce cas, il vient f2(t) = 0E et donc, t ∈ Ker(f2) = Ker(f) et ceci grâce à la question précédente.
Par conséquent, f(t) = 0E et x est nul. On en déduit que Ker(f) ∩ Im(f) ⊂ {0E} et l’inclusion réciproque étant
immédiate, (1) est vraie.

D’où, (1) + (2)⇒ E = Ker(f)⊕ Im(f).
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Exercice 5

1. Soit M ∈M2(R), on a :

M ∈ Ker(f)⇔ f(M) = 0⇔ AM = 0⇔
(

1 2
2 4

)
×
(
a b
c d

)
= 0

⇔


a+ 2c = 0

2a+ 4c = 0

b+ 2d = 0

2b+ 4d = 0

⇔

{
a = −2c

b = −2d

Autrement dit, on a deux paramètres de sorte que :

Ker(f) = {
(
−2c −2d
c d

)
, c, d ∈ R} = V ect(

(
−2 0
1 0

)
,

(
0 −2
0 1

)
)

En particulier, f n’est pas injective. Comme f désigne un endomorphisme en dimension finie, f n’est pas non plus
surjective : on a par exemple rg(f) = dim(M2(R))− dim(Ker(f)) = 4− 2 = 2.

2. Etant donné les calculs de la quetsion précédente, on a directement pour M quelconque :

f(M) =

(
a+ 2c b+ 2d
2a+ 4c 2b+ 4d

)
= a

(
1 0
2 0

)
+ b

(
0 1
0 2

)
+ c

(
2 0
4 0

)
+ d

(
0 2
0 4

)

et ainsi, Im(f) = V ect(

(
1 0
2 0

)
,

(
0 1
0 2

)
,

(
2 0
4 0

)
,

(
0 2
0 4

)
) = V ect(

(
1 0
2 0

)
,

(
0 1
0 2

)
).

3. Si on se ramène à la caractérisation d’une telle décomposition en dimension finie, on a toujours par la formule du rang:

dim(Ker(f)) + rg(f) = dim(M2(R))

Reste à montrer que Ker(f) ∩ Im(f) = {0}.
Pour cela, on considère M ∈ Ker(f) ∩ Im(f), alors en utilisant les bases de chacun de ces sous-espaces, il existe des
scalaires a, b, c, d ∈ R tels que : 

M = a

(
−2 0

1 0

)
+ b

(
0 −2

0 1

)

M = c

(
1 0

2 0

)
+ d

(
0 1

0 2

)
c’est à dire qu’il vient :

(
−2a −2b
a b

)
=

(
c d
2c 2d

)
⇒


−2a = c

a = 2c

−2b = d

b = 2d

⇒ a = 0, b = 0⇒M = 0

D’où, Ker(f) ∩ Im(f) ⊂ {0} et ainsi, l’inclusion réciproque étant immédiate, Ker(f) ∩ Im(f) = {0}.

Finalement, on a bien par caractérisation,

{
Ker(f) ∩ Im(f) = {0}
dim(Ker(f)) + rg(f) = dim(M2(R))

⇒M2(R) = Ker(f)⊕ Im(f).

Exercice 6

1. Soit p ∈ N, on souhaite en fait montrer que : Ip+1 ⊂ Ip et Np ⊂ Np+1.

• Soit x ∈ Ip+1, alors il existe t ∈ E, x = fp+1(t) et donc, x = fp(f(t)), c’est à dire x ∈ Ip.
Ainsi, Ip+1 ⊂ Ip et la suite des images itérées est décroissante au sens de l’inclusion.

• Soit x ∈ Np, alors fp(x) = 0E et donc, en composant par f : fp+1(x) = 0E , c’est à dire x ∈ Np+1.
Ainsi, Np ⊂ Np+1 et la suite des noyaux itérés est croissante au sens de l’inclusion.

2. La suite des images itérées étant décroissante, on a par passage aux dimensions :

dim(Ip+1) ≤ dim(Ip)

En particulier, la suite des dimensions (dim(Ip)) est une suite décroissante et minorée par 0 : elle est donc convergente,
et comme il s’agit d’une suite d’entiers, elle est stationnaire, c’est à dire :

∃p0 ∈ N, ∀p ≥ p0, dim(Ip) = dim(Ip0)

Mais alors on a pour tout p ≥ p0 : {
dim(Ip) = dim(Ip0)

Ip ⊂ Ip0 d’après 1.
⇒ Ip = Ip0
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Pour aller plus loin, on a également par la formule du rang et pour tout p ≥ p0 :

dim(Np) = dim(E)− dim(Ip) = dim(E)− dim(Ip0) = dim(Np0)

Mais alors on a pour tout p ≥ p0 : {
dim(Np) = dim(Np0)

Np0 ⊂ Np d’après 1.
⇒ Np = Np0

Autrement dit, la suite des images et des noyaux sont même stationnaires au sens de l’inclusion.

3. Encore une fois, on va invoquer la caractérisation d’une telle décomposition en dimension finie, c’est à dire qu’on montre
: {

dim(Np0) + dim(Ip0) = dim(E) (1)

Np0 ∩ Ip0 = {0E} (2)

(1) est immédiat : c’est la formule du rang appliqué à fp0 .
De plus, si x ∈ Np0 ∩ Ip0 , alors :

fp0(x) = 0 et il existe t ∈ E tel que x = fp0(t)

et donc, f2p0(t) = 0E . En particulier, cela signifie que t ∈ N2p0 , mais la suite des noyaux étant stationnaire au rang
p0, on a t ∈ N2p0 = Np0 .
D’où, x = fp0(t) = 0E .
Finalement, Np0 ∩ Ip0 ⊂ {0E} et donc, Np0 ∩ Ip0 = {0E}.

On en déduit par caractérisation que E = Np0 ⊕ Ip0 .

Exercice 7

1. On a par définition de la famille de ces polynômes :

Bn,0 =

(
n

0

)
X0(1−X)n, Bn,1 =

(
n

1

)
X1(1−X)n−1, Bn,2 =

(
n

2

)
X2(1−X)n−2 . . .

En particulier, on remarque que Card(Bn,k) = n + 1 = dim(Rn[X]), et ainsi pour justifier qu’il s’agit d’une base, il
suffit de montrer que cette famille est libre.
Considérons alors λ0, . . . , λn ∈ R tels que :

n∑
k=0

λkBn,k = 0 (∗)

Par récurrence finie sur k ∈ J0, nK, on va montrer que les scalaires sont nuls :

• En évaluant en X = 0, on a immédiatement : λ0.1 = 0⇒ λ0 = 0.

• Soit k ∈ J0, n− 1K tel que λ0 = . . . = λk = 0, alors :

(∗)⇔ λk+1Bn,k+1 + . . .+ λnBn,n = 0⇔ λk+1

(
n

k + 1

)
Xk+1(1−X)n−k−1 + . . .+ λn

(
n

n

)
Xn(1−X)0 = 0

En simplifiant par Xk+1, puis en faisant tendre X −→ 0, on a : λk+1 = 0. Ce qui livre l’hérédité de la récurrence.

Par le principe de récurrence finie, on en déduit que les scalaires sont nuls et la famille des polynômes de Berstein
constitue une famille de n+ 1 vecteurs libres : c’est donc une base de Rn[X].

2. (a) On a imméditament que pour tout P ∈ Rn[X], B(P ) ∈ Rn[X]. De plus, pour tout λ ∈ R et tout (P,Q) ∈ Rn[X]2,

B(λP +Q) =

n∑
k=0

(λP +Q)(k/n)Bn,k = λ

n∑
k=0

P (k/n)Bn,k +

n∑
k=0

Q(k/n)Bn,k = λB(P ) +B(Q)

Autrement dit, B est linéaire et B ∈ L(Rn[X]).

(b) Soit P ∈ Rn[X], alors :

P ∈ Ker(B)⇔ B(P ) = 0⇔
n∑

k=0

P (k/n)Bn,k = 0

mais la famille des polynômes de Berstein étant une base, ils sont linéairement indépendants et on en déduit que
pour tout k ∈ J0, nK, P (k/n) = 0.
Dans ce cas, P possède n+ 1 racines distinctes, plus que son degré : c’est donc le polynôme nul et P = 0.
Finalement, Ker(B) = {0}, et ainsi B est injective.

Pour finir, comme B désigne un endomorphisme en dimension finie avec dim(Rn[X]) = dim(Rn[X]), elle est
donc aussi bijective par caractérisation des isomorphismes en dimension finie : on peut même conclure qu’il s’agit
d’un automorphisme de Rn[X].

Remarque On fera attention : les polynômes de Bernstein ne sont pas échelonnés en degré, et il faut donc prouver la liberté
autrement... D’ailleurs, cette famille de polynômes est importante car vous l’avez certainement vu en MPSI, elle permet,
pour une fonction f continue sur un segment, de construire une suite de polynômes qui approche f uniformément.
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