Chapitre 9

Cas particulier des séries entiéres

Le chapitre précédent était essentiel car il a mis en lumiére les suites et séries de
fonctions, et leurs applications dans l’étude des intégrales a paramétre. Ici, nous
traiterons le cas particulier des séries entiéres : ce sont des séries de fonctions a la
forme simple, et dont les propriétés sont trés nombreuses.
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Pour aller plus loin

Les séries entieres reviennent souvent aux écrits, d’autant qu’elles permettent de développer certaines fonctions usuelles sur
un domaine précis. C’est trés pratique pour faire apparaitre des sommes, mais on retiendra surtout leur utilisation dans la
recherche des solutions d’une équation différentielle.
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1 Premiéres définitions et convergence d’une série entiere

1.1 Lemme d’Abel et définition du rayon de convergence

Définition On appelle série entiére toute série de fonctions de la forme 3 f,, oli pour tout n € N, f, est définie sur C par :
fn iz anz"
En particulier, on pourra distinguer :
e les séries entieres réelles d’une variable réelle de la forme 3 a,z", avec (a,) € RY et £ € R

e les séries entiéres complexes d’une variable complexe de la forme 3 a,,2", avec (a,) € CY et z € C

De plus, la suite (an) désigne la suite des coefficients de la série entiére et sous réserve d’existence, on appelle encore somme
de la série la limite simple de cette série de fonctions.

Remarque Encore une fois, la convergence de ces séries de fonctions dépendra souvent du parametre x ou z... il faudra
donc étre vigilant sur ’étude du domaine de convergence simple de ces séries.

{Propriété 1 (deux exemples fondamentaux & valeurs dans (C)]

On rappelle notamment :

1. La série géométrique > z™ converge si et seulement si |z] < 1 et on a :

—+ o0
1
Vz €C, |z] <1, sz: T
k=0

n

2q . z
2. La série exponentielle > — converge pour tout z € Cetona:
n!

+oo g

Z z
Vz e C, Zﬁze
k=0

Théoréme 2 (lemme d’Abel).]

Soit 3" a,z™ une série entiere d’une variable complexe, avec (a,) € CN. On suppose de plus qu’il existe zo € C* tel que
(anzg) est bornée. Alors, pour tout z € C tel que |z| < |z0], la série Y anz™ converge absolument.

» On se raméne a une comparaison avec le terme général d’une série géométrique convergente.

Remarque Ce lemme d’Abel est assez puissant, car la connaissance du terme général en un seul point impose la convergence
de la série de fonction sur une grande partie du plan complexe :
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Définition Soit > a,z" une série entiére d’une variable complexe, avec (a,) € CY. Alors d’aprés le lemme d’Abel,
I ={r eRy, (anr™) est bornée}

est un intervalle, et il est non vide car il contient au moins 0. Dans ce cas, on appelle rayon de convergence de la série la borne
supérieure de I dans R, c’est a dire :

e si I est majorée, le rayon de convergence est R = sup{r € Ry, (a,r") est bornée}.
e si [ est non majorée, le rayon de convergence est R = +oo.

De fagon abusive, ou pourra écrire que :
R =sup{r € Ry, (anr™) est bornée}
R

{Propriété 3 (conséquences de la déﬁnition).]

Soit Y anz™ une série entiere d’une variable complexe et notons R son rayon de convergence. Alors, sous réserve que ces
inégalités aient un sens, on a :

1. pour tout z € C tel que |z| < R, la série Y an2z™ converge absolument.

2. pour tout z € C tel que |z| > R, la suite (anz") est non bornée et donc, la série diverge grossiérement.

» Il suffit de revenir a la définition du rayon de convergence qui découle du lemme d’Abel...

Remarques

1. Dauns le cas particulier oi R = 0, alors on déduit du second point que la série entiere diverge grossiérement pour |z| > 0:
elle ne converge donc que pour z = 0 et il vient :

oo
2 : k
akO = aop
k=0
Heureusement, ces cas sont rares mais il yena quelques uns...

2. Dans le cas particulier o R = 400, alors on déduit du premier point que la série entiere converge absolument partout,
c’est a dire pour tout z € C.

3. Pour finir, cette premiére propriété nous permet de représenter la boule ouverte B(0, R), appelée aussi disque ouvert
de convergence simple, c’est le disque sur lequel la somme de la série entiére est bien définie. On pourra retenir que
R désigne alors un point de rupture dans le comportement de la série entiere :

Bien entendu, il faudra étre vigilant sur le cercle d’équation |z| = R, car on ne pourra pas rien dire a priori. C’est pour
cela, qu’on prendra I’habitude de faire une étude spécifique pour la convergence sur le bord. Et en particulier, on fera
tres attention :

e si par exemple, en un point 2o, la série > a,zj converge absolument, alors |z0] < R
) ) 0 ) =

e si par exemple, en un point zo, la série > a2y diverge grossierement, alors |zo| > R
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Dans le cas des séries entieres d’une variable réelle, on parlera plutét d’intervalle ouvert de convergence.

Exemple 1 Les questions suivantes sont indépendantes.
1. Déterminer le rayon de convergence des séries entiéres définies par :
DL DL DL
2 c c
) n2 ) n
n>1 n>1
puis, préciser la nature de la série sur le bord du disque ouvert de convergence.

2. On considere la série entiere réelle définie par :
n

> o1
n?—1
n>2
(a) Montrer que son rayon de convergence est R = 1. On note alors f(z) sa somme pour tout « €| — 1, 1].

(b) La somme est-elle définie au bord de 'intervalle ?

(c) Etablir que pour tout €] — 1,1[, on a :

z=0
In(l—z)+1+ g) —zIn(1l —z)), sinon

S

fx) = («

| = S

i
1
7
Remarque On pourra retenir que la regle de D’Alembert est tres efficace pour déterminer le rayon de convergence, car

lorsque celle-ci peut étre utilisée, elle nous fournit naturellement ce point de rupture entre la convergence absolue et la
divergence grossiere. Mais ce n’est pas la seule méthode... on retiendra les propriétés suivantes, tout aussi utiles.

{Propriété 4 (comparaison des rayons de convergence).}

Soient > anz™ et > bnz" deux séries entieres d’une variable complexe et dont on note R, et Rj les rayons de convergence.

1. Si pour tout n € N, |a,| < |bys|, alors on a Rq > Ry.

2. Si |an| ~ |bn|, alors Ro = Ry.

» Pour le premier point, on montre simplement que B(0, Ry) C Bf(0, Rq) de sorte que Ry < Ro. Pour le second point, il
suffit de se ramener & un encadrement de |a,| a partir d’un certain rang et de conclure grice au premier point.

Remarque Ces propriétés sont trés pratiques, car elles offrent une alternative au critere de D’Alembert... et on veillera bien
a ce que les comparaisons soient faites en module ou avec des termes positifs !

Exemple 2 On considere la suite (a,) définie par :

2
ao = a1 = 1 et pour tout n € N*, ani1 = an + ——an_1
n+1

1. Montrer que pour tout n € N*, 1 < a,, < n?.

2. Préciser alors le rayon de convergence R de la série entiere > anz™.

{Propriété 5 (autres interprétations du rayon de convergence).}

Soit Y an,z" une série entiere d’une variable complexe et notons R son rayon de convergence. Alors,

1. R désigne aussi la borne supérieure dans R de {r € R}, anr™ — 0}.
2. R désigne aussi la borne supérieure dans R de {r € Ry, > a,r" converge}.

3. R désigne aussi la borne supérieure dans R de {r € Ry, > |a,r"| converge}.

» Tous ces ensembles contenant au moins 0, on peut noter Ry, Ri, Rz les bornes supérieures de ces ensembles dans R et
montrer que R > Ro > R1 > Ra puis que R = Ra, et ainsi on aura bien les égalités attendues.
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{Théoréme 6 (de convergence normale d’une série entiére).]

Soit > an,z™ une série entiere d’une variable complexe et de rayon de convergence R > 0. Alors,

1. pour tout r < R, la série entiére Y a,z" converge normalement, et donc uniformément sur la boule fermée B¢ (0, ).

2. plus généralement, elle converge normalement, et donc uniformément sur tout compact K C B(0, R).

» Pour le premier point, c’est immédiat car il suffit de majorer le terme général |anz™|. Pour le second point, on pourra
appliquer le théoréme des bornes atteintes a la fonction z — |z|, avant de magorer le terme général.

Remarque On fera attention & ne pas étendre ce théoreéme... sans hypothése supplémentaire, on ne peut pas garantir la
convergence normale ou uniforme sur tout le disque de convergence. On peut par exemple considérer la série géométrique
> 2" de rayon R =1 et pour laquelle on a sur B(0,1) :

[2"|oc =1 = Z 2" ]| est divergente sur B(0,1)

1.2 Opérations algébriques sur les séries entieres

{Propriété 7 (somme de deux séries entiéres).]

Soient > anz™ et > bpz™ deux séries entieres d’une variable complexe et dont on note R, et Rp les rayons de convergence.
En notant R le rayon de convergence de la série Y (an + bn)z", on a :

+oo —+o0 +oo
Vz € C,|z| < min(Ra, Ry), Z(an + b,)2" converge absolument et Z(a” +by)2" = Z anz" + Z bn2"
n=0 n=0 n=0

En particulier, R > min(Rq, Rp).

» C’est immédiat : avec |z| < min(Rq, Rp), on travaille par linéarité des sommes convergentes.

{Propriété 8 (produit de Cauchy de deux séries entiéres).]

Soient > anz™ et Y bpz™ deux séries entieres d’une variable complexe et dont on note R, et Rp les rayons de convergence.
On pose pour tout n € N, ¢, = Y 1'_; arbn_k et en notant R le rayon de convergence de la série ) cn,2", on a :

+oo —+o0 —+o0
Vz € C,|z| < min(Ra, Ry), Z cnz" converge absolument et Z 2" = (Z anz").(z bn2")
n=0 n=0 n=0

En particulier, R > min(Rq, Rp).

» C’est immédiat : on reconnait le produit de deux séries absolument convergentes et ce résultat découle alors du produit de
Cauchy vu en début d’année.

Remarques

1. Attention, cela ne donne pas exactement le rayon de convergence. Il existe des cas particuliers ou le rayon de convergence
R > min(R,, Ry), par exemple si on définit la série entiére Y a,z" avec ap = 1,a1 = —1 et a,, = 0 pour tout n > 2, il
vient :

Vz € C, Y anz™ converge puisque Z::a anz" =1—z et donc, R, = +00
>~ 2" a pour rayon de convergence Ry = 1
—+oo

n=0

et le produit de Cauchy nous donne (1 — z)(>
min(Rq, Rp).

z™) = 1. Cette série constante égale & 1 est de rayon R = 400 >

2. On essaiera de retenir qu’on peut alors obtenir des développements en série entiere par opérations sur ces développements
en série entiere. Cela peut nous donner un moyen de justifier qu'une fonction est DSE sur un intervalle !

Exemple 3 Etablir que pour tout z € C,|z| < 1, on a :
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2 Propriétés de la somme d’une série entiére

2.1 Continuité et théoréme d’Abel radial

N

{Propriété 9 (continuité de la somme sur le disque ouvert de convergence)u

Soit > an,z™ une série entiere d’une variable complexe, de rayon de convergence R > 0 et on note f la somme de cette série
entiere.

1. Alors, la somme de cette série entiére est continue sur B(0, R).

2. Si de plus, la série > a, R" converge absolument, alors la somme est définie sur By (0, R) et elle est méme continue sur
Bs(0, R) et ainsi :

o0
: _ k
Ji, £2) = 2 R

» C’est immédiat : il suffit de vérifier les hypothéses du théoréme de continuité pour les séries de fonctions. Pour le second
point, on pourra exhiber une domination globale.

{Théor‘eme 10 (d’Abel radial pour les séries entiéres d’une variable réelle).}

Soit > anz™ une série entiere d’une variable réelle, de rayon de convergence R > 0 et on note f la somme de cette série
entiere. On suppose de plus que la série > a, R™ converge.

Alors, on admet que la série entiére de varaiable ¢, Y a, R"t" converge uniformément sur [0, 1] et ainsi, la somme est continue
sur ce segment. En particulier,

+oco
. _ k
Jim f@) = ) art

Remarques

1. On fera tres attention a distinguer les propriété 9 et théoreme 10 : la premiere découle immédiatement du théoreme
de continuité pour les séries de fonctions alors que dans le théoreme d’Abel radial, 'hypothese de convergence est plus
faible, ce qui rend la démonstration plus fine.

2. Ce résultat peut méme étre étendu aux séries entiéres d’une variable complexe, mais sa démonstration est admise.
Par contre, on retiendra surtout qu’il permet de prolonger certaines égalités sur le bord de l'intervalle ouvert de
convergence.

Par exemple, on peut facilement établir que :

+oo X m2k+1
Vz €] — 1,1], arct = —1)*
z €] [, arctan(zx) Z( ) 1
k=0
1
or en x = 1, la série étant convergente, on en déduit que la formule est vraie en 1 et on obtient : g = ;:E(—l)k TR

2.2 Intégration et dérivation d’une série entiere

{Propriété 11 (rayon de convergence des séries dérivée et primitive).]

Soit > a,z™ une série entiere d’une variable complexe et de rayon de convergence R > 0. Alors,
1. la série entiere dérivée 3" na,z""" a le méme rayon de convergence.

n__n+1

n—i—lz

2. la série entiére primitive Y a le méme rayon de convergence.

» Le second point découlera du premier... En notant R et R’ les rayons de convergence de la série entiére et de sa série
dérivée, on établit que B(0, R") C By (0, R) puis que B(0, R) C Bf(0, R') de sorte que R = R'.
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{Théoréme 12 (d’intégration et de dérivation pour les séries entiéres).]

Soit Y anz™ une série entiere d’une variable réelle et de rayon de convergence R > 0 et on note f la somme de cette série
entiere.

1. f est intégrable sur tout segment inclus dans | — R, R[ et on peut intégrer terme & terme de sorte que pour tout
x €] — R, R|,
x +oo ak
f(t) dt = !
[ roe=3%
2. f est dérivable sur | — R, R[ et on peut dériver terme & terme de sorte que pour tout = €] — R, R|,

—+oo
f(x) = Z kagz" !
k=1

Et plus généralement, f est de classe C*° et pour tout z €] — R, R] et pour tout p € N*,

+oo
P x) = Z k(k—1)...(k—p+1)azz"?
k=p
» A chaque fois, il suffit de vérifier les hypotheses des théorémes associés pour les séries de fonctions... on utilisera

évidemment le résultat précédent car on conserve le méme rayon de convergence.

{Corollaire 13 (unicité des coefficients du développement en série entiére).]

Soit Y anz™ une série entiére d’une variable réelle et de rayon de convergence R > 0 et on note f la somme de cette série
entiere. On a pour tout n € N,
AR

n!

an

Et ainsi, les coefficients du développement en série entiere sont uniques.

» On utilise la formule de dérivation sur B(0, R) et on évalue en x = 0.

Exemple 4 On pose pour tout z € R,
z2 too —t2
flx)=e / e " dt
1. Justifier que f est développable en série entiere sur R, puis établir que f est solution d’une équation différentielle linéaire.

2. En notant f(x) = Ii% anz"”, déterminer les coefficients de son développement en série entiere.

3 Fonctions développables en série entiére

3.1 Définition et développements usuels

Définition On considére f une fonction définie au voisinage de 0 a valeurs dans K. On dit que f est développable en série
entiére en 0 s’il existe un nombre réel R > 0 tel que :

—+o0
Vz € B(0,R), f(z) = Z anz" avec (an) € K"
n=0
Remarques
1. Lorsqu’on travaille avec des fonctions & valeurs dans R, f(z) = >, ana™ sur un intervalle de la forme | — R, RJ.

La fonction est donc de classe C°° sur | — R, R[ et on a encore unicité des coefficients du développement sur | — R, R]
de sorte que :
F(0)
n!
D’ailleurs, c’est pour cela que certains peuvent confondre, a tort, avec les développements limités.

an =

2. Attention, si f est développable en série entiere, alors elle est de classe C'° mais la réciproque est fausse et il existe des
fonctions de classe C°° qui ne sont pas développables en série entieére en 0. On pourra de nouveau étudier la fonction :

f-a:!—}{e_l/x2fsix7éo

0, sinon
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3. Nous avons déja vu quelques conditions suffisantes pour qu’une fonction soit développable en série entiére :

convergence du reste intégral dans la formule de Taylor, dérivées uniformément bornées sur un intervalle centré en 0,
résultat d’opérations sur les séries entieres, théoréme de Bernstein...

mais ce n’est pas toujours simple de justifier qu’une fonction de classe C*° est bien DSE. On essaiera donc de retenir
quelques exemples de référence qu’on obtient par la formule de Taylor avec reste intégral, les relations avec la fonction
exp ou les théorémes d’intégration/dérivation pour les séries entieres :

{Corollaire 14 (développements en série entiere usuels).w

P
On rappelle que :
+oo xk
Ve eR, e = Z o
k=0
too 22k
Vz € R, ch(z) = Z @R
k=0
too p2k+1
Vr € R, sh(x) = —_—
z €R, sh(z) kzzo(zwrn!
TED X 22k
Vz € R, cos(z) = Z(—l) 2R
k=0 ’
rES X 22kt
Vz € R, sin(z) = Z(—l) hED)
k=0 ’
De plus, on a :
1 =
Vz €] - 1,1 =Y (=1)*z”
Ve el -1l g =3 (D'
==
o Vze]—1,1], T :Zx
k=0
Et par théoreme d’intégration pour les séries entiéres, on a enfin :
FED zF too e
e Vz el —1,1[, In(1+z) = Z(_l)k*? etV €] - 1,1, m(1—z) =) -
k=1 k=1
too L2kt
o V€] —1,1], arctan(z) = kzzo(fl)k%: —

3.2 Recherche d’un développement en série entiére a 1’aide d’un probléeme de Cauchy

Pour finir, et comme pour I'exercice précédent, on reviendra souvent & un probléme de Cauchy pour déterminer la forme d’un
développement en série entiere.

Exemple 5 Soit « € R\N. On considere le probleme de Cauchy défini par :

{(1 +2)y/(z) — ay(z) =0
y(0) =1

1. Montrer que la fonction f: x — (1 + z)* est solution du probléeme de Cauchy sur | — 1,1][.

2. Par analyse-synthese, montrer qu'il existe une unique série entiere » . anz™ de rayon de convergence R > 0 et dont la somme
est solution du probléme de Cauchy sur | — R, R].

3. En déduire que pour tout = €] —1,1],

+oo k
a x
(1+zx) :1+Za(a71)...(afk+1)g
k=1
4. Retrouver alors le développement en série entiére de arcsin sur | — 1, 1].
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Remarques

1. Dans le cas particulier ou o € N, alors (1 + z)® désigne une fonction polynome... elle est évidemment développable en
série entiere sur R et la suite (an) qui définit la série entiere est & support presque nulle. Et dans ce cas, le rayon de
convergence est évidemment infini.

2. On pourra parfois écrire de maniére abusive que pour tout = €] —1,1[, (1+z)* = 3/ (¢
forme généralisée du bin6me de Newton.

)z* : on peut alors voir une

3. La recherche de solutions d’une équation différentielle linéaire sous la forme d’un DSE est méme une vraie stratégie
pour la résolution des équations différentielles...
En effet, le théoréme de Cauchy-Lipschitz linéaire nous permet en outre de justifier la structure affine des solutions
d’une telle équation sur un intervalle ou I’équation peut s’écrire sous forme résolue :

S = S0+ fy

Pour les expliciter, on commencera souvent par déterminer des solutions du systeme fondamental de solutions sous la
forme de fonctions DSE et ceci en procédant par analyse-synthese.
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