
Cas particulier des séries entières

Chapitre 9
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forme simple, et dont les propriétés sont très nombreuses.
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Pour aller plus loin
Les séries entières reviennent souvent aux écrits, d’autant qu’elles permettent de développer certaines fonctions usuelles sur
un domaine précis. C’est très pratique pour faire apparâıtre des sommes, mais on retiendra surtout leur utilisation dans la
recherche des solutions d’une équation différentielle.
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1 Premières définitions et convergence d’une série entière

1.1 Lemme d’Abel et définition du rayon de convergence

Définition On appelle série entière toute série de fonctions de la forme
∑
fn où pour tout n ∈ N, fn est définie sur C par :

fn : z 7−→ anz
n

En particulier, on pourra distinguer :

• les séries entières réelles d’une variable réelle de la forme
∑
anx

n, avec (an) ∈ RN et x ∈ R

• les séries entières complexes d’une variable complexe de la forme
∑
anz

n, avec (an) ∈ CN et z ∈ C

De plus, la suite (an) désigne la suite des coefficients de la série entière et sous réserve d’existence, on appelle encore somme
de la série la limite simple de cette série de fonctions.

Remarque Encore une fois, la convergence de ces séries de fonctions dépendra souvent du paramètre x ou z... il faudra
donc être vigilant sur l’étude du domaine de convergence simple de ces séries.

On rappelle notamment :

1. La série géométrique
∑
zn converge si et seulement si |z| < 1 et on a :

∀z ∈ C, |z| < 1,

+∞∑
k=0

zk =
1

1− z

2. La série exponentielle
∑ zn

n!
converge pour tout z ∈ C et on a :

∀z ∈ C,
+∞∑
k=0

zk

k!
= ez

Propriété 1 (deux exemples fondamentaux à valeurs dans C).

Soit
∑
anz

n une série entière d’une variable complexe, avec (an) ∈ CN. On suppose de plus qu’il existe z0 ∈ C∗ tel que
(anz

n
0 ) est bornée. Alors, pour tout z ∈ C tel que |z| < |z0|, la série

∑
anz

n converge absolument.

Théorème 2 (lemme d’Abel).

I On se ramène à une comparaison avec le terme général d’une série géométrique convergente.

Remarque Ce lemme d’Abel est assez puissant, car la connaissance du terme général en un seul point impose la convergence
de la série de fonction sur une grande partie du plan complexe :
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Définition Soit
∑
anz

n une série entière d’une variable complexe, avec (an) ∈ CN. Alors d’après le lemme d’Abel,

I = {r ∈ R+, (anr
n) est bornée}

est un intervalle, et il est non vide car il contient au moins 0. Dans ce cas, on appelle rayon de convergence de la série la borne
supérieure de I dans R, c’est à dire :

• si I est majorée, le rayon de convergence est R = sup{r ∈ R+, (anr
n) est bornée}.

• si I est non majorée, le rayon de convergence est R = +∞.

De façon abusive, ou pourra écrire que :
R = sup

R
{r ∈ R+, (anr

n) est bornée}

Soit
∑
anz

n une série entière d’une variable complexe et notons R son rayon de convergence. Alors, sous réserve que ces
inégalités aient un sens, on a :

1. pour tout z ∈ C tel que |z| < R, la série
∑
anz

n converge absolument.

2. pour tout z ∈ C tel que |z| > R, la suite (anz
n) est non bornée et donc, la série diverge grossièrement.

Propriété 3 (conséquences de la définition).

I Il suffit de revenir à la définition du rayon de convergence qui découle du lemme d’Abel...

Remarques

1. Dans le cas particulier où R = 0, alors on déduit du second point que la série entière diverge grossièrement pour |z| > 0:
elle ne converge donc que pour z = 0 et il vient :

+∞∑
k=0

ak0k = a0

Heureusement, ces cas sont rares mais il y en a quelques uns...

2. Dans le cas particulier où R = +∞, alors on déduit du premier point que la série entière converge absolument partout,
c’est à dire pour tout z ∈ C.

3. Pour finir, cette première propriété nous permet de représenter la boule ouverte B(0, R), appelée aussi disque ouvert
de convergence simple, c’est le disque sur lequel la somme de la série entière est bien définie. On pourra retenir que
R désigne alors un point de rupture dans le comportement de la série entière :

Bien entendu, il faudra être vigilant sur le cercle d’équation |z| = R, car on ne pourra pas rien dire a priori. C’est pour
cela, qu’on prendra l’habitude de faire une étude spécifique pour la convergence sur le bord. Et en particulier, on fera
très attention :

• si par exemple, en un point z0, la série
∑
anz

n
0 converge absolument, alors |z0| ≤ R

• si par exemple, en un point z0, la série
∑
anz

n
0 diverge grossièrement, alors |z0| ≥ R
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Dans le cas des séries entières d’une variable réelle, on parlera plutôt d’intervalle ouvert de convergence.

Exemple 1 Les questions suivantes sont indépendantes.

1. Déterminer le rayon de convergence des séries entières définies par :∑
zn ,

∑
n≥1

zn

n2
,
∑
n≥1

zn

n

puis, préciser la nature de la série sur le bord du disque ouvert de convergence.

2. On considère la série entière réelle définie par : ∑
n≥2

xn

n2 − 1

(a) Montrer que son rayon de convergence est R = 1. On note alors f(x) sa somme pour tout x ∈]− 1, 1[.

(b) La somme est-elle définie au bord de l’intervalle ?

(c) Etablir que pour tout x ∈]− 1, 1[, on a :

f(x) =

0, si x = 0
1

2
((

1

x
ln(1− x) + 1 +

x

2
)− x ln(1− x)), sinon

Remarque On pourra retenir que la règle de D’Alembert est très efficace pour déterminer le rayon de convergence, car
lorsque celle-ci peut être utilisée, elle nous fournit naturellement ce point de rupture entre la convergence absolue et la
divergence grossière. Mais ce n’est pas la seule méthode... on retiendra les propriétés suivantes, tout aussi utiles.

Soient
∑
anz

n et
∑
bnz

n deux séries entières d’une variable complexe et dont on note Ra et Rb les rayons de convergence.

1. Si pour tout n ∈ N, |an| ≤ |bn|, alors on a Ra ≥ Rb.

2. Si |an| ∼ |bn|, alors Ra = Rb.

Propriété 4 (comparaison des rayons de convergence).

I Pour le premier point, on montre simplement que B(0, Rb) ⊂ Bf (0, Ra) de sorte que Rb ≤ Ra. Pour le second point, il
suffit de se ramener à un encadrement de |an| à partir d’un certain rang et de conclure grâce au premier point.

Remarque Ces propriétés sont très pratiques, car elles offrent une alternative au critère de D’Alembert... et on veillera bien
à ce que les comparaisons soient faites en module ou avec des termes positifs !

Exemple 2 On considère la suite (an) définie par :

a0 = a1 = 1 et pour tout n ∈ N∗, an+1 = an +
2

n+ 1
an−1

1. Montrer que pour tout n ∈ N∗, 1 ≤ an ≤ n2.

2. Préciser alors le rayon de convergence R de la série entière
∑
anx

n.

Soit
∑
anz

n une série entière d’une variable complexe et notons R son rayon de convergence. Alors,

1. R désigne aussi la borne supérieure dans R de {r ∈ R+, anr
n −→ 0}.

2. R désigne aussi la borne supérieure dans R de {r ∈ R+,
∑
anr

n converge}.

3. R désigne aussi la borne supérieure dans R de {r ∈ R+,
∑
|anrn| converge}.

Propriété 5 (autres interprétations du rayon de convergence).

I Tous ces ensembles contenant au moins 0, on peut noter R0, R1, R2 les bornes supérieures de ces ensembles dans R et
montrer que R ≥ R0 ≥ R1 ≥ R2 puis que R = R2, et ainsi on aura bien les égalités attendues.
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Soit
∑
anz

n une série entière d’une variable complexe et de rayon de convergence R > 0. Alors,

1. pour tout r < R, la série entière
∑
anz

n converge normalement, et donc uniformément sur la boule fermée Bf (0, r).

2. plus généralement, elle converge normalement, et donc uniformément sur tout compact K ⊂ B(0, R).

Théorème 6 (de convergence normale d’une série entière).

I Pour le premier point, c’est immédiat car il suffit de majorer le terme général |anzn|. Pour le second point, on pourra
appliquer le théorème des bornes atteintes à la fonction z 7→ |z|, avant de majorer le terme général.

Remarque On fera attention à ne pas étendre ce théorème... sans hypothèse supplémentaire, on ne peut pas garantir la
convergence normale ou uniforme sur tout le disque de convergence. On peut par exemple considérer la série géométrique∑
zn de rayon R = 1 et pour laquelle on a sur B(0, 1) :

‖zn‖∞ = 1 ⇒
∑
‖zn‖∞ est divergente sur B(0, 1)

1.2 Opérations algébriques sur les séries entières

Soient
∑
anz

n et
∑
bnz

n deux séries entières d’une variable complexe et dont on note Ra et Rb les rayons de convergence.
En notant R le rayon de convergence de la série

∑
(an + bn)zn, on a :

∀z ∈ C, |z| < min(Ra, Rb),
∑

(an + bn)zn converge absolument et

+∞∑
n=0

(an + bn)zn =

+∞∑
n=0

anz
n +

+∞∑
n=0

bnz
n

En particulier, R ≥ min(Ra, Rb).

Propriété 7 (somme de deux séries entières).

I C’est immédiat : avec |z| < min(Ra, Rb), on travaille par linéarité des sommes convergentes.

Soient
∑
anz

n et
∑
bnz

n deux séries entières d’une variable complexe et dont on note Ra et Rb les rayons de convergence.
On pose pour tout n ∈ N, cn =

∑n
k=0 akbn−k et en notant R le rayon de convergence de la série

∑
cnz

n, on a :

∀z ∈ C, |z| < min(Ra, Rb),
∑

cnz
n converge absolument et

+∞∑
n=0

cnz
n = (

+∞∑
n=0

anz
n).(

+∞∑
n=0

bnz
n)

En particulier, R ≥ min(Ra, Rb).

Propriété 8 (produit de Cauchy de deux séries entières).

I C’est immédiat : on reconnâıt le produit de deux séries absolument convergentes et ce résultat découle alors du produit de
Cauchy vu en début d’année.

Remarques

1. Attention, cela ne donne pas exactement le rayon de convergence. Il existe des cas particuliers où le rayon de convergence
R > min(Ra, Rb), par exemple si on définit la série entière

∑
anz

n avec a0 = 1, a1 = −1 et an = 0 pour tout n ≥ 2, il
vient : {

∀z ∈ C,
∑
anz

n converge puisque
∑+∞
n=0 anz

n = 1− z et donc, Ra = +∞∑
zn a pour rayon de convergence Rb = 1

et le produit de Cauchy nous donne (1 − z)(
∑+∞
n=0 z

n) = 1. Cette série constante égale à 1 est de rayon R = +∞ >
min(Ra, Rb).

2. On essaiera de retenir qu’on peut alors obtenir des développements en série entière par opérations sur ces développements
en série entière. Cela peut nous donner un moyen de justifier qu’une fonction est DSE sur un intervalle !

Exemple 3 Etablir que pour tout z ∈ C, |z| < 1, on a :

1

(1− z)2 =

+∞∑
n=0

(n+ 1)zn
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2 Propriétés de la somme d’une série entière

2.1 Continuité et théorème d’Abel radial

Soit
∑
anz

n une série entière d’une variable complexe, de rayon de convergence R > 0 et on note f la somme de cette série
entière.

1. Alors, la somme de cette série entière est continue sur B(0, R).

2. Si de plus, la série
∑
anR

n converge absolument, alors la somme est définie sur Bf (0, R) et elle est même continue sur
Bf (0, R) et ainsi :

lim
z→R

f(z) =

+∞∑
k=0

akR
k

Propriété 9 (continuité de la somme sur le disque ouvert de convergence).

I C’est immédiat : il suffit de vérifier les hypothèses du théorème de continuité pour les séries de fonctions. Pour le second
point, on pourra exhiber une domination globale.

Soit
∑
anx

n une série entière d’une variable réelle, de rayon de convergence R > 0 et on note f la somme de cette série
entière. On suppose de plus que la série

∑
anR

n converge.
Alors, on admet que la série entière de varaiable t,

∑
anR

ntn converge uniformément sur [0, 1] et ainsi, la somme est continue
sur ce segment. En particulier,

lim
x→R

f(x) =

+∞∑
k=0

akR
k

Théorème 10 (d’Abel radial pour les séries entières d’une variable réelle).

Remarques

1. On fera très attention à distinguer les propriété 9 et théorème 10 : la première découle immédiatement du théorème
de continuité pour les séries de fonctions alors que dans le théorème d’Abel radial, l’hypothèse de convergence est plus
faible, ce qui rend la démonstration plus fine.

2. Ce résultat peut même être étendu aux séries entières d’une variable complexe, mais sa démonstration est admise.
Par contre, on retiendra surtout qu’il permet de prolonger certaines égalités sur le bord de l’intervalle ouvert de
convergence.
Par exemple, on peut facilement établir que :

∀x ∈]− 1, 1[, arctan(x) =

+∞∑
k=0

(−1)k
x2k+1

2k + 1

or en x = 1, la série étant convergente, on en déduit que la formule est vraie en 1 et on obtient :
π

4
=
∑+∞
k=0(−1)k

1

2k + 1
.

2.2 Intégration et dérivation d’une série entière

Soit
∑
anz

n une série entière d’une variable complexe et de rayon de convergence R > 0. Alors,

1. la série entière dérivée
∑
nanz

n−1 a le même rayon de convergence.

2. la série entière primitive
∑ an

n+ 1
zn+1 a le même rayon de convergence.

Propriété 11 (rayon de convergence des séries dérivée et primitive).

I Le second point découlera du premier... En notant R et R′ les rayons de convergence de la série entière et de sa série
dérivée, on établit que B(0, R′) ⊂ Bf (0, R) puis que B(0, R) ⊂ Bf (0, R′) de sorte que R = R′.
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Soit
∑
anx

n une série entière d’une variable réelle et de rayon de convergence R > 0 et on note f la somme de cette série
entière.

1. f est intégrable sur tout segment inclus dans ] − R,R[ et on peut intégrer terme à terme de sorte que pour tout
x ∈]−R,R[, ∫ x

0

f(t) dt =

+∞∑
k=0

ak
k + 1

xk+1

2. f est dérivable sur ]−R,R[ et on peut dériver terme à terme de sorte que pour tout x ∈]−R,R[,

f ′(x) =

+∞∑
k=1

kakx
k−1

Et plus généralement, f est de classe C∞ et pour tout x ∈]−R,R[ et pour tout p ∈ N∗,

f (p)(x) =

+∞∑
k=p

k(k − 1) . . . (k − p+ 1)akx
k−p

Théorème 12 (d’intégration et de dérivation pour les séries entières).

I A chaque fois, il suffit de vérifier les hypothèses des théorèmes associés pour les séries de fonctions... on utilisera
évidemment le résultat précédent car on conserve le même rayon de convergence.

Soit
∑
anx

n une série entière d’une variable réelle et de rayon de convergence R > 0 et on note f la somme de cette série
entière. On a pour tout n ∈ N,

an =
f (n)(0)

n!

Et ainsi, les coefficients du développement en série entière sont uniques.

Corollaire 13 (unicité des coefficients du développement en série entière).

I On utilise la formule de dérivation sur B(0, R) et on évalue en x = 0.

Exemple 4 On pose pour tout x ∈ R,

f(x) = ex
2
∫ +∞

x

e−t
2

dt

1. Justifier que f est développable en série entière sur R, puis établir que f est solution d’une équation différentielle linéaire.

2. En notant f(x) =
∑+∞
n=0 anx

n, déterminer les coefficients de son développement en série entière.

3 Fonctions développables en série entière

3.1 Définition et développements usuels

Définition On considère f une fonction définie au voisinage de 0 à valeurs dans K. On dit que f est développable en série
entière en 0 s’il existe un nombre réel R > 0 tel que :

∀z ∈ B(0, R), f(z) =

+∞∑
n=0

anz
n avec (an) ∈ KN

Remarques

1. Lorsqu’on travaille avec des fonctions à valeurs dans R, f(x) =
∑+∞
n=0 anx

n sur un intervalle de la forme ]−R,R[.
La fonction est donc de classe C∞ sur ]− R,R[ et on a encore unicité des coefficients du développement sur ]− R,R[
de sorte que :

an =
f (n)(0)

n!
D’ailleurs, c’est pour cela que certains peuvent confondre, à tort, avec les développements limités.

2. Attention, si f est développable en série entière, alors elle est de classe C∞ mais la réciproque est fausse et il existe des
fonctions de classe C∞ qui ne sont pas développables en série entière en 0. On pourra de nouveau étudier la fonction :

f : x 7−→

{
e−1/x2 , si x 6= 0

0, sinon
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3. Nous avons déjà vu quelques conditions suffisantes pour qu’une fonction soit développable en série entière :

convergence du reste intégral dans la formule de Taylor, dérivées uniformément bornées sur un intervalle centré en 0,
résultat d’opérations sur les séries entières, théorème de Bernstein...

mais ce n’est pas toujours simple de justifier qu’une fonction de classe C∞ est bien DSE. On essaiera donc de retenir
quelques exemples de référence qu’on obtient par la formule de Taylor avec reste intégral, les relations avec la fonction
exp ou les théorèmes d’intégration/dérivation pour les séries entières :

On rappelle que :

∀x ∈ R, ex =

+∞∑
k=0

xk

k!

∀x ∈ R, ch(x) =

+∞∑
k=0

x2k

(2k)!

∀x ∈ R, sh(x) =

+∞∑
k=0

x2k+1

(2k + 1)!

∀x ∈ R, cos(x) =

+∞∑
k=0

(−1)k
x2k

(2k)!

∀x ∈ R, sin(x) =

+∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

De plus, on a :

• ∀x ∈]− 1, 1[,
1

1 + x
=

+∞∑
k=0

(−1)kxk

• ∀x ∈]− 1, 1[,
1

1− x =

+∞∑
k=0

xk

Et par théorème d’intégration pour les séries entières, on a enfin :

• ∀x ∈]− 1, 1[, ln(1 + x) =

+∞∑
k=1

(−1)k−1 x
k

k
et ∀x ∈]− 1, 1[, ln(1− x) = −

+∞∑
k=1

xk

k

• ∀x ∈]− 1, 1[, arctan(x) =

+∞∑
k=0

(−1)k
x2k+1

2k + 1

Corollaire 14 (développements en série entière usuels).

3.2 Recherche d’un développement en série entière à l’aide d’un problème de Cauchy

Pour finir, et comme pour l’exercice précédent, on reviendra souvent à un problème de Cauchy pour déterminer la forme d’un
développement en série entière.

Exemple 5 Soit α ∈ R\N. On considère le problème de Cauchy défini par :{
(1 + x)y′(x)− αy(x) = 0

y(0) = 1

1. Montrer que la fonction f : x 7−→ (1 + x)α est solution du problème de Cauchy sur ]− 1, 1[.

2. Par analyse-synthèse, montrer qu’il existe une unique série entière
∑
anx

n de rayon de convergence R > 0 et dont la somme
est solution du problème de Cauchy sur ]−R,R[.

3. En déduire que pour tout x ∈]− 1, 1[,

(1 + x)α = 1 +

+∞∑
k=1

α(α− 1) . . . (α− k + 1)
xk

k!

4. Retrouver alors le développement en série entière de arcsin sur ]− 1, 1[.

www.cpgemp-troyes.fr 8/9

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 9

Cas particulier des séries entières

Remarques

1. Dans le cas particulier où α ∈ N, alors (1 + x)α désigne une fonction polynôme... elle est évidemment développable en
série entière sur R et la suite (an) qui définit la série entière est à support presque nulle. Et dans ce cas, le rayon de
convergence est évidemment infini.

2. On pourra parfois écrire de manière abusive que pour tout x ∈]− 1, 1[, (1 + x)α =
∑+∞
k=0

(
α
k

)
xk : on peut alors voir une

forme généralisée du binôme de Newton.

3. La recherche de solutions d’une équation différentielle linéaire sous la forme d’un DSE est même une vraie stratégie
pour la résolution des équations différentielles...
En effet, le théorème de Cauchy-Lipschitz linéaire nous permet en outre de justifier la structure affine des solutions
d’une telle équation sur un intervalle où l’équation peut s’écrire sous forme résolue :

S = S0 + fp

Pour les expliciter, on commencera souvent par déterminer des solutions du système fondamental de solutions sous la
forme de fonctions DSE et ceci en procédant par analyse-synthèse.
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