
Suites et séries de fonctions

Chapitre 8

Ce chapitre est fondamental, car il prolonge naturellement l’étude des suites et
séries en ajoutant simplement un paramètre : il s’agira donc de bien comprendre les
différents modes de convergence et toutes les propriétés qui peuvent être conservées par
passage à la limite. Ce sera là l’occasion de mettre en avant le théorème de conver-
gence dominée, admis au programme, et qui nous permettra d’échanger les symboles
ou d’étudier des intégrales à paramètre.
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Pour aller plus loin
Si ce chapitre est fondamental en analyse, c’est aussi parce qu’il nous offre de beaux sujets de concours et de belles applications
sur le plan des mathématiques : du cas particulier des séries entières aux transformées usuelles (transformée de Laplace,
transformée de Fourier...), beaucoup de ces résultats dépendent directement des théorèmes obtenus sur les suites et séries de
fonctions.
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1 Suites et séries de fonctions

Dans toute cette partie, X désigne une partie d’un K-espace vectoriel normé et F un K-espace vectoriel normé de dimension
finie dont on notera ‖.‖ une norme sur F . Et s’il n’y a pas d’indication contraire, toutes les fonctions seront définies sur X
à valeurs dans F .

1.1 Quelques définitions et premiers exemples

Définition Soit X un ensemble. On appelle suite de fonctions (fn) définies sur X toute suite telle que pour tout n ∈ N,
fn : X −→ F . On dit alors qu’une telle suite (fn) converge simplement sur X s’il existe une fonction f définie sur X telle
que:

∀ x ∈ X, fn(x) −→
n→+∞

f(x) , c’est à dire que pour tout x ∈ X, ‖fn(x)− f(x)‖ −→
n→+∞

0

Cette fonction limite f est aussi appelée la limite simple de la suite de fonctions (fn).

Remarque On fera attention : il s’agit bien de la limite de fn(x) à x fixé dans X, et il ne sera donc pas rare d’obtenir des
limites simples définies par morceaux en fonction des valeurs prises par x. C’est pour cette raison que dans les théorèmes
de convergence donnés au programme, la classe des fonctions étudiées est aussi celle des fonctions continues par morceaux.

Dans les cas des suites de fonctions à valeurs réelles, on peut facilement illustrer la convergence simple en Python : pour cela, on
pourra prendre soin de représenter des fonctions fn pour des valeurs de n bien choisies.

Exemple 1

1. On considère la suite de fonctions (fn) définies sur [0, 1] par :

∀ n ∈ N∗, fn(x) = xn

En fonction des valeurs de x, déterminer la limite de fn(x) quand n→ +∞ puis définir f la limite simple de la suite (fn).
On peut en effet illustrer la convergence simple de la suite des monômes sur [0, 1] et ainsi, on retiendra :

2. On considère la suite de fonctions (gn) définies sur [0, 1] par :

∀ n ∈ N∗, gn(x) =

{
n2x(1− nx), si 0 ≤ x ≤ 1/n

0, si x > 1/n

En fonction des valeurs de x, déterminer la limite de gn(x) quand n→ +∞ puis définir g la limite simple de la suite (gn).
On peut en effet illustrer la convergence simple de la suite des pics mobiles sur [0, 1] et ainsi, on retiendra :
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Soit X un ensemble. On note B(X,F ) l’espace des fonctions bornées sur X et à valeurs dans F , et pour toute fonction
f ∈ B(X,F ), on pose :

‖f‖∞ = sup
x∈X
‖f(x)‖

Alors,

1. la norme infinie ‖.‖∞ définit encore une norme sur B(X,F ).

2. muni de la norme ‖.‖∞, (B(X,F ),+, .) est un K-espace vectoriel normé.

Propriété 1 (de la norme infinie sur l’espace des fonctions bornées).

I On revient à la définition d’une norme. Pour le second point, on pourra vérifier qu’il s’agit d’un sev de F(X,F ).

Remarque La norme infinie ‖.‖∞ sera aussi appelée la norme uniforme, car elle nous permet de définir la notion de conver-
gence uniforme sur un ensemble donné.

Définition Soient X un ensemble et (fn) une suite de fonctions définies sur X. On dit alors qu’une telle suite (fn) converge
uniformément sur X s’il existe une fonction f telle que :

‖fn − f‖∞ −→
n→+∞

0

Cette fonction limite f est aussi appelée la limite uniforme de la suite de fonctions (fn).

Soient X un ensemble et (fn) une suite de fonctions définies sur X. On suppose de plus que (fn) converge uniformément sur
X vers une fonction f .
Alors, (fn) converge simplement vers f .

Propriété 2 (la convergence uniforme entrâıne la convergence simple).

I Il suffit de majorer la différence ‖fn(x)− f(x)‖ à x fixé dans X avant de passer à la limite quand n→ +∞.

Remarque Cette dernière propriété nous permet d’affirmer que limite uniforme et limite simple cöıncident. On procèdera
alors de la façon suivante pour étudier la convergence d’une suite de fonctions :

1. on commence par déterminer la limite simple éventuelle, à x fixé dans X ;

2. puis, on vérifie si (fn) converge uniformément vers cette limite soit :

• en étudiant l’application x 7→ fn(x) − f(x) pour en obtenir la norme infinie sur le domaine d’étude. Ce sera
souvent le cas pour les fonctions à valeurs réelles.

• en cherchant à majorer la différence ‖fn(x)− f(x)‖ par une suite (αn) de limite nulle et indépendante de x.
Dans ce cas, il vient :

∀ x ∈ X, ‖fn(x)− f(x)‖ ≤ αn ⇒ 0 ≤ ‖fn − f‖∞ ≤ αn −→ 0
n→+∞

et par encadrement, la convergence est uniforme.

La convergence simple dépend évidemment du point x en lequel on étudie le comportement asymptotique. Pour la convergence
uniforme, on fera attention... celle-ci ne dépend plus de x, mais elle est quand même liée indirectement au domaine de travail et
ainsi, on notera parfois : 

fn
CS−→ f pour dire que (fn) converge simplement vers f

fn
CU−→ f pour dire que (fn) converge uniformément vers f

fn
CU,X−→ f pour préciser que (fn) converge uniformément vers f sur X

Exemple 2 Soit n ∈ N∗, on définit fn sur R par fn(x) =
nx

1 + n2x2
.

1. Etudier la convergence simple de la suite de fonctions (fn).

2. (a) Soit n ∈ N∗, étudier la fonction fn sur R.

(b) Etudier alors la convergence uniforme de la suite (fn) sur R.

3. Montrer que la suite converge uniformément sur ]−∞,−a] ∪ [a,+∞[, a > 0.
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1.2 Propriétés de la limite d’une suite de fonctions

Soient I un intervalle de R et (fn) une suite de fonctions définies sur I et à valeurs réelles. On suppose de plus que (fn)
converge simplement sur I vers une fonction f . Alors :

1. si pour tout n ∈ N, fn est croissante (resp. décroissante), alors f est aussi croissante (resp. décroissante) ;

2. si pour tout n ∈ N, fn est convexe (resp. concave), alors f est aussi convexe (resp. concave).

Propriété 3 (de la limite simple dans le cas particulier des fonctions à valeurs réelles).

I On traduit les propriétés des fonctions fn avant de passer à la limite quand n→ +∞.

Remarque Malheureusement, le passage à la limite simple ne nous permet pas de conserver la régularité : on pourra revenir
à la suite des monômes tous continus sur [0, 1], mais dont la limite simple est définie sur [0, 1] par :

f : x 7−→

{
0, si x < 1

1, si x = 1
et donc, qui n’est pas continue sur [0, 1].

Ainsi, on veillera à aller chercher des modes de convergence plus forts pour pouvoir invoquer les propriétés suivantes.

Soient X un ensemble et (fn) une suite de fonctions définies sur X. On suppose de plus que :

• pour tout n ∈ N, fn est continue sur X,

• (fn) converge uniformément sur X vers une fonction f .

Alors, f est encore continue sur X.

Propriété 4 (continuité de la limite uniforme d’une suite de fonctions).

I Fixons a ∈ X. On se ramène à la définition de la limite en montrant que f(x) −→ f(a) quand x→ a.

Remarques En fait, la continuité en un point est une propriété locale. On peut alors adapter la preuve précédente
et ne travailler qu’autour du point a fixé. Ainsi, on se contentera le plus souvent d’avoir la convergence uniforme sur tout
compact K inclus dans X, et on retiendra le théorème suivant, plus utile dans la pratique :

Soient X un ensemble et (fn) une suite de fonctions définies sur X. On suppose de plus que :

• pour tout n ∈ N, fn est continue sur X,

• (fn) converge uniformément sur tout compact K ⊂ X vers une fonction f .

Alors, f est encore continue sur X.

Propriété 5 (continuité de la limite uniforme d’une suite de fonctions avec des hypothèses locales).

Soient X un ensemble et (fn) une suite de fonctions définies sur X, a un point adhérent à X. On suppose de plus que :

• pour tout n ∈ N, fn(x) −→
x→a

λn,

• (fn) converge uniformément sur X vers une fonction f .

Alors, on admet que (λn) possède une limite finie λ et ainsi, f(x) −→
x→a

λ de sorte que :

lim
x→a

f(x) = lim
n→+∞

λn, c’est à dire que : lim
x→a

f(x) = lim
n→+∞

lim
x→a

fn(x)

Théorème 6 (de la double limite).

Remarque Ce théorème généralise le théorème de continuité aux points a ∈ X... et il sera très utile pour connâıtre la limite
en un point adhérent de la limite uniforme d’une suite de fonctions. Malheureusement, il est admis car la preuve repose
sur les espaces complets : des espaces sur lesquels toute suite de Cauchy est connvergente... c’est évidemment le cas ici
puisque F est un espace vectoriel de dimension finie.
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Soit (fn) une suite de fonctions définies sur un segment [a, b] inclus dans R. On suppose de plus que :

• pour tout n ∈ N, fn est continue sur [a, b],

• (fn) converge uniformément sur [a, b] vers une fonction f .

Alors,

∫ b

a

fn(t) dt tend vers

∫ b

a

f(t) dt quand n→ +∞ de sorte que :

lim
n→+∞

∫ b

a

fn(t) dt =

∫ b

a

f(t) dt

Théorème 7 (d’intégration de la limite uniforme d’une suite de fonctions définies sur un segment).

I On note In =
∫ b

a
fn(t) dt et on majore la différence ‖In −

∫ b

a
f(t) dt‖ grâce aux propriétés de l’intégrale.

Remarque Il s’agit là d’un théorème fondamental nous permettant de passer à la limite sous le signe intégral, mais at-
tention aux limites de ce résultat : celui-ci suppose une convergence assez forte et il n’est valable que sur un segment... il ne
pourra donc pas être utilisé avec des intégrales généralisées et on préfèrera souvent faire appel au théorème de convergence
dominée.

Exemple 3 On considère la suite de fonctions (fn) définies sur [0, 1] par :

∀ n ∈ N, fn(x) = x(1 +
√
ne−nx)

1. Montrer que (fn) converge uniformément sur [0, 1] vers une limite f qu’on déterminera.

2. En déduire la limite quand n→ +∞ de :

In =

∫ 1

0

x(1 +
√
ne−nx) dx

Soient I un intervalle de R et (fn) une suite de fonctions définies sur un intervalle I inclus dans R. On suppose de plus que :

• pour tout n ∈ N, fn est de classe C1 sur I,

• (fn) converge simplement sur I vers une fonction f ,

• (f ′n) converge uniformément sur tout segment [a, b] ⊂ I vers une fonction g.

Alors, f est encore de classe C1 sur I et on a f ′ = g.

Corollaire 8 (dérivation de la limite d’une suite de fonctions définies sur un intervalle).

I Fixons a ∈ I, alors fn(x) = fn(a) +
∫ x

a
f ′n(t) dt. On peut alors appliquer le théorème d’intégration des suites de fonctions

définies sur un segment.

Remarques

1. On peut aussi retenir que la dérivée de la limite n’est rien d’autre que la limite de la dérivée... et c’est là encore une
façon d’échanger les symboles.

2. Avec ces hypothèses, on récupère même la convergence uniforme sur tout segment [a, b] de la suite (fn) vers
f . En effet, on a pour tout x ∈ [a, b] ⊂ I :

fn(x)− f(x) = fn(a)− f(a) +

∫ x

a

f ′n(t)− f ′(t) dt⇒ 0 ≤ ‖fn − f‖∞ ≤ ‖fn(a)− f(a)‖+ (b− a)‖f ′n − f ′‖∞ −→ 0

Cette conséquence nous permet en outre de généraliser ce résultat aux suites de fonctions de classe Ck :
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Soient I un intervalle de R et (fn) une suite de fonctions définies sur un intervalle I inclus dans R, k ∈ N∗. On suppose de
plus que :

• pour tout n ∈ N, fn est de classe Ck sur I,

• (fn) converge simplement sur I vers une fonction f , et que pour tout j ∈ J1, k − 1K, (f
(j)
n ) converge simplement sur I,

• (f
(k)
n ) converge uniformément sur tout segment [a, b] ⊂ I vers une fonction gk.

Alors, f est encore de classe Ck sur I et on a f (k) = gk.

Corollaire 9 (critère Ck pour la limite d’une suite de fonctions définies sur un intervalle).

1.3 Cas particulier des séries de fonctions

Définition Soient X un ensemble et (fn) une suite de fonctions définies sur X. On appelle série de fonctions toute série de la
forme

∑
fn telle que pour tout n ∈ N, fn : X −→ F .

On note encore pour tout n ∈ N et pour tout x ∈ X, Sn(x) =
∑n

k=0 fk(x).
Alors, on dit que :

• la série
∑
fn converge simplement sur X s’il existe une fonction S telle que (Sn) converge simplement sur X vers S,

c’est à dire :

∀ x ∈ X, Sn(x) =

n∑
k=0

fk(x) −→
n→+∞

S(x) , c’est à dire que pour tout x ∈ X, ‖Sn(x)− S(x)‖ −→
n→+∞

0

• la série
∑
fn converge uniformément sur I s’il existe une fonction S telle que (Sn) converge uniformément sur X vers

S, c’est à dire :
‖Sn − S‖∞ −→

n→+∞
0 ⇔ ‖Rn‖∞ −→

n→+∞
0

Définition Soient X un ensemble et (fn) une suite de fonctions définies sur X. On dit que la série
∑
fn converge normalement

sur X si la série numérique
∑
‖fn‖∞ est convergente.

Soient X un ensemble et (fn) une suite de fonctions définies sur X. On suppose de plus que la série
∑
fn est normalement

convergente, alors il existe une fonction S telle que (Sn) converge uniformément sur X vers S.

Autrement dit, la convergence normale entrâıne la converge uniforme, qui entrâıne la convergence simple.

Théorème 10 (lien entre les différents modes de convergence).

I On montre d’abord que la série converge absolument pour justifier l’existence de la limite simple, puis on cherche à encadrer
le reste partiel pour prouver la convergence uniforme.

Remarques

1. Il s’agit d’un théorème fort pratique car il donne la convergence uniforme d’une série de fonctions sans être obligé d’en
déterminer sa limite. D’ailleurs, la série

∑
‖fn‖∞ est une série à valeurs positives, et cela nous permettra de retrouver

tous les critères d’étude des séries numériques.

2. L’étude d’une série de fonctions se ramène donc à l’étude de la suite de fonctions (Sn) : on peut alors réécrire tous les
résultats vus précédemment.

Soient X un ensemble et (fn) une suite de fonctions définies sur X. On suppose de plus que :

• pour tout n ∈ N, fn est continue sur X,

•
∑
fn converge uniformément sur X vers une fonction S.

Alors, S est encore continue sur X.

Propriété 11 (continuité de la limite uniforme d’une série de fonctions).
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Soient X un ensemble et (fn) une suite de fonctions définies sur X. On suppose de plus que :

• pour tout n ∈ N, fn est continue sur X,

•
∑
fn converge uniformément sur tout compact K ⊂ X vers une fonction S.

Alors, S est encore continue sur X.

Propriété 12 (continuité de la limite uniforme d’une série de fonctions avec des hypothèses locales).

Soient X un ensemble et (fn) une suite de fonctions définies sur X, a un point adhérent à X. On suppose de plus que :

• pour tout n ∈ N, fn(x) −→
x→a

λn,

•
∑
fn converge uniformément sur X vers une fonction S.

Alors, on admet que
∑
λn possède une limite finie λ =

∑+∞
k=0 λk et ainsi, S(x) −→

x→a
λ de sorte que :

lim
x→a

S(x) =

+∞∑
k=0

λk, c’est à dire que : lim
x→a

S(x) =

+∞∑
k=0

lim
x→a

fk(x)

Théorème 13 (de la double limite).

On retrouve ici la fonction zêta de Riemann, et on essaiera de retenir ces questions classiques...

Exemple 4 On considère la fonction ζ définie sur ]1,+∞[ par :

ζ(x) =

+∞∑
k=1

1

kx

et pour tout k ≥ 1, on note fk : x 7−→ 1/kx.

1. Montrer que ζ est continue sur ]1,+∞[, puis préciser ses variations sur ]1,+∞[.

2. Soit a > 1. Etablir que
∑
fk converge uniformément sur [a,+∞[. En déduire que : limx→+∞ ζ(x) = 1.

3. En utilisant une comparaison série-intégrale, montrer que pour tout x > 1,
1

x− 1
≤ ζ(x) ≤ 1

x− 1
+ 1.

4. En déduire un équivalent de ζ(x) quand x→ 1, puis construire sa courbe représentative sur ]1,+∞[.

Soit (fn) une suite de fonctions définies sur un segment [a, b] inclus dans R. On suppose de plus que :

• pour tout n ∈ N, fn est continue sur [a, b],

•
∑
fn converge uniformément sur [a, b] vers une fonction S.

Alors,

∫ b

a

Sn(t) dt tend vers

∫ b

a

S(t) dt quand n→ +∞ de sorte que :

+∞∑
k=0

∫ b

a

fk(t) dt =

∫ b

a

+∞∑
k=0

fk(t) dt

Théorème 14 (d’intégration terme à terme pour une série de fonctions définies sur un segment).

Remarque Il s’agit là d’un théorème fondamental nous permettant d’échanger les symboles
∑

et
∫

, mais attention aux
limites de ce résultat : celui-ci suppose une convergence assez forte et il n’est valable que sur un segment... il ne pourra donc
pas être utilisé avec des intégrales généralisées et on préfèrera souvent faire appel au théorème de convergence dominée
appliqué aux sommes partielles ou au théorème d’intégration terme à terme de Lebesgue.
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Exemple 5 Montrer que la série de fonctions
∑ xn

(n!)2
converge uniformément sur le segment [0, 1]. En déduire que :

∫ 1

0

+∞∑
n=0

xn

(n!)2
dx =

+∞∑
n=0

1

(n!)2(n+ 1)

Soient I un intervalle de R et (fn) une suite de fonctions définies sur un intervalle I inclus dans R. On suppose de plus que :

• pour tout n ∈ N, fn est de classe C1 sur I,

•
∑
fn converge simplement sur I vers une fonction S,

•
∑
f ′n converge uniformément sur tout segment [a, b] ⊂ I vers une fonction T .

Alors, S est encore de classe C1 sur I et on a S′ = T de sorte que :

(

+∞∑
n=0

fn)′ =

+∞∑
n=0

f ′n

Corollaire 15 (dérivation de la limite d’une série de fonctions définies sur un intervalle).

Remarques

1. Encore une fois, on retrouve ici un résultat qui nous permet l’échange... la dérivée de la somme n’est rien d’autre que
la somme des dérivées.

2. Avec ces hypothèses, on rappelle qu’on récupère même la convergence uniforme sur tout segment [a, b] de la série
∑
fn

vers S. Cette conséquence nous permet en outre de généraliser ce résultat aux séries de fonctions de classe Ck :

Soient I un intervalle de R et (fn) une suite de fonctions définies sur un intervalle I inclus dans R, k ∈ N∗. On suppose de
plus que :

• pour tout n ∈ N, fn est de classe Ck sur I,

•
∑
fn converge simplement sur I vers une fonction S, et que pour tout j ∈ J1, k−1K, la série

∑
f
(j)
n converge simplement

sur I,

•
∑
f
(k)
n converge uniformément sur tout segment [a, b] ⊂ I vers une fonction Tk.

Alors, S est encore de classe Ck sur I et on a S(k) = Tk de sorte que :

(

+∞∑
n=0

fn)(k) =

+∞∑
n=0

f (k)
n

Corollaire 16 (critère Ck pour la limite d’une série de fonctions définies sur un intervalle).

Exemple 6 On considère encore la fonction ζ définie sur ]1,+∞[ par :

ζ(x) =

+∞∑
k=1

1

kx

et pour tout k ≥ 1, on note fk : x 7−→ 1/kx.

1. Montrer que ζ est de classe C∞ sur ]1,+∞[.

2. En déduire que ζ est convexe sur ]1,+∞[, puis retrouver l’allure de sa courbe représentative.
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2 Les théorèmes de convergence de Lebesgue

Dans tout cette partie, on ne considèrera que des fonctions d’une variable réelle définies sur un intervalle I à valeurs dans
K = R ou C, et on supposera qu’elles sont à chaque fois continues par morceaux sur I, c’est à dire continue par morceaux
sur tout segment inclus dans I.

2.1 Le théorème de convergence dominée et le théorème d’intégration terme à terme

Conformément au programme, on admet les deux théorèmes suivants :

Soient I un intervalle de R et (fn) une suite de fonctions continues par morceaux sur I. On suppose de plus que :

• (fn) converge simplement sur I vers une fonction f continue par morceaux sur I,

• il existe une fonction φ : I −→ R+ continue par morceaux et intégrable sur I telle que :

∀ n ∈ N, |fn| ≤ φ (indépendante de n)

Alors, f est intégrable sur I et

∫
I

fn(t) dt tend vers

∫
I

f(t) dt quand n→ +∞ de sorte que :

lim
n→+∞

∫
I

fn(t) dt =

∫
I

f(t) dt

Théorème 17 (de convergence dominée).

Remarques

1. Il s’agit d’abord d’un résultat d’intégrabilité, car il nous donne un moyen de justifier l’existence de l’intégrale
∫
I
f(t) dt

avant de la calculer.

2. Il n’est pas nécessaire de vérifier l’intégrabilité des fonctions fn : elle est assurée par l’hypothèse de domination.
D’ailleurs, on veillera à ce que la fonction φ, majorante et parfois définie par morceaux, soit bien indépendante du
paramètre donné.

3. Pour finir, ce théorème est d’abord un résultat asymptotique : on pourra donc se contenter d’une domination des
modules à partir d’un certain rang.

Exemple 7 On considère l’intégrale de Gauss définie par :

I =

∫
R
e−t2 dt

et on définit la suite de fonctions (fn) définies sur R par :

fn(t) =

(1− t2

n
)n, pour t ∈ [−

√
n,
√
n]

0, sinon

Montrer que t 7−→ e−t2 est intégrable sur R, puis à l’aide de la suite de fonctions (fn), retrouver la valeur de I.

Remarque En fait, le théorème de convergence dominée peut aussi être utilisé dans le cadre des séries de fonctions.
Il suffit de vérifier les hypothèses pour la suite des sommes partielles (Sn), et ainsi on pourra échanger les symboles

∑
et

∫
puisque dans ce cas, on a

∫
I
Sn −→

∫
I
S, qui peut aussi s’écrire :

n∑
k=0

∫
I

fk(t) dt −→
∫
I

+∞∑
k=0

fk(t) dt ⇔
+∞∑
k=0

∫
I

fk(t) dt =

∫
I

+∞∑
k=0

fk(t) dt

C’est très pratique, mais il faut pouvoir dominer les sommes partielles.

Exemple 8

1. Montrer que la série
∑

n≥1 n
−n est convergente.

2. Montrer que t 7→ t−t est prolongeable par continuité sur [0, 1], et en déduire l’égalité :

+∞∑
n=1

n−n =

∫ 1

0

t−t dt
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Soient I un intervalle de R et (fn) une suite de fonctions continues par morceaux sur I. On suppose de plus que :

•
∑
fn converge simplement sur I vers une fonction S continue par morceaux sur I,

• pour tout n ∈ N, fn est intégrable sur I et la série
∑∫

I

|fn(t)| dt est convergente.

Alors, S est intégrable sur I et

∫
I

Sn(t) dt tend vers

∫
I

S(t) dt quand n→ +∞ de sorte que :

+∞∑
k=0

∫
I

fk(t) dt =

∫
I

+∞∑
k=0

fk(t) dt

Théorème 18 (d’intégration terme à terme de Lebesgue).

Exemple 9 On considère l’intégrale définie pour tout p ∈ N∗ par :

Ip =

∫ +∞

0

tp

et − 1
dt

et on rappelle que pour tout x > 1, on note ζ(x) =
∑+∞

k=1

1

kx
. Montrer que pour tout p ∈ N∗,

Ip = p!ζ(p+ 1)

Remarque Finalement, pour intégrer terme à terme une série de fonctions intégrables sur un intervalle, et échanger les
symboles

∑
et

∫
, on pourra procéder de cinq façons :

• soit on est dans le cas particulier d’un segment [a, b], et dans ce cas, il suffit d’établir la convergence uniforme de la
série de fonctions.

• soit on établit la convergence simple de la série de fonctions et on prouve que pour tout n ∈ N, |Sn| ≤ φ, avec φ continue
par morceaux et intégrable sur I. On conclut alors par le théorème de convergence dominée appliqué à la suite (Sn).

• soit on établit la convergence simple de la série de fonctions et on prouve que la série
∑∫

I
|fn(t)| dt est convergente.

On conclut alors à l’aide du théorème précédent.

mais on pourra aussi dans certains cas particuliers faire ces échanges, c’est notamment le cas lorsque :

• on reconnâıt une série entière en la variable d’intégration (c’est important !) et sur un un segment [a, b] inclus dans le
domaine de convergence. Il suffit alors d’invoquer la convergence uniforme sur [a, b] avant d’échanger les symboles.

• on reconnâıt une série de fonctions alternées : on a pour n fixé,
∫
I
S =

∫
I
Sn +

∫
I
Rn et on peut établir que le reste

intégral est négligeable par majoration du reste partiel. Il suffit alors de transformer la première intégrale par linéarité
avant de passer à la limite.

2.2 Application à l’étude des intégrales à paramètre

Dans toute cette partie, on considère E un K-espace vectoriel normé de dimenson finie dont on notera ‖.‖ une norme sur E.

Définition Soient I un intervalle de R, X une partie de E. On appelle intégrale à paramètre toute intégrale de la forme :

F (x) =

∫
I

f(x, t) dt

où f désigne une application de X × I à valeurs dans K = R ou C et telle que f(x, .) : t 7−→ f(x, t) soit continue par morceaux
sur I pour tout x ∈ X.

Remarques

1. La première difficulté de ces intégrales réside dans leur définition, et il s’agira d’abord de déterminer pour quelles valeurs
du paramètre x l’intégrale est convergente.

2. Au programme du concours, le paramètre peut donc être vectoriel... Si la plupart du temps, on travaille avec un
paramètre réel, on pourra si besoin étendre les résultats établis aux intégrales de la forme :∫

I

f(x1, . . . , xn, t) dt avec (x1, . . . , xn) ∈ Rn
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Soient I un intervalle de R, X une partie de E et f : X × I −→ K telle que f(x, .) soit continue par morceaux sur I pour
tout x ∈ X. On suppose de plus que :

• la fonction f(., t) : x 7−→ f(x, t) est continue sur X pour tout t ∈ I,

• il existe une fonction φ : I −→ R+ continue par morceaux et intégrable sur I telle que :

∀ (x, t) ∈ X × I, |f(x, t)| ≤ φ(t) (indépendante de x)

Alors, la fonction F : x 7−→
∫
I

f(x, t) dt est continue sur X.

Théorème 19 (de continuité des intégrales à paramètre).

I Fixons a ∈ X et (xn) ∈ XN telle que xn → a. On se ramène à la caractérisation séquentielle de la limite en montrant que
F (xn) −→ F (a) à l’aide du théorème de convergence dominée.

Remarques

1. La majoration par φ nous donne aussi l’intégrabilité de f(x, .) sur I, et ceci pour tout x ∈ X... On veillera donc à ce
que la majoration soit encore indépendante du paramètre donné même si la plupart du temps, l’intégrabilité aura
déjà été étudiée.

2. La continuité en un point étant une propriété locale, on peut encore affaiblir les hypothèses de domination et se contenter
de vérifier la domination sur tout compact K inclus dans X. Ainsi on préfèrera retenir le théorème avec des hypothèses
locales :

Soient I un intervalle de R, X une partie de E et f : X × I −→ K telle que f(x, .) soit continue par morceaux sur I pour
tout x ∈ X. On suppose de plus que :

• la fonction f(., t) : x 7−→ f(x, t) est continue sur X pour tout t ∈ I,

• pour tout compact K ⊂ X, il existe une fonction φ : I −→ R+ continue par morceaux et intégrable sur I telle que :

∀ (x, t) ∈ K × I, |f(x, t)| ≤ φ(t) (indépendante de x)

Alors, la fonction F : x 7−→
∫
I

f(x, t) dt est continue sur X.

Théorème 20 (de continuité des intégrales à paramètre avec des hypothèses locales).

Remarque Pour les fonctions d’une variable réelle, on pourra même affiner le choix du compact K sur lequel on travaillera.
Et ainsi, pour le reste du chapitre, on pourra prendre l’habitude suivante :

• si f est définie sur un intervalle centré en 0, on cherchera plutôt à obtenir une majoration sur un intervalle de la forme
[−a, a] ⊂ X,

• sinon, on pourra travailler sur un intervalle de la forme [a, b] ⊂ X.

Exemple 10 On considère la fonction f : x 7−→
∫ +∞

1

t−x

1 + t
dt.

1. Préciser le domaine de définition de f .

2. Etudier la continuité de f , puis déterminer un équivalent de f(x) quand x→ 0, x > 0.
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Soient I et X deux intervalles de R et f : X × I −→ K telle que f(x, .) soit continue par morceaux et intégrable sur I pour
tout x ∈ X. On suppose de plus que :

• la fonction f(., t) : x 7−→ f(x, t) est de classe C1 sur X pour tout t ∈ I, avec :
t 7−→ ∂f

∂x
(x, t) est continue par morceaux sur I pour tout x ∈ X

x 7−→ ∂f

∂x
(x, t) est continue sur X pour tout t ∈ I

• il existe une fonction φ : I −→ R+ continue par morceaux et intégrable sur I telle que :

∀ (x, t) ∈ X × I, |∂f
∂x

(x, t)| ≤ φ(t) (indépendante de x)

Alors, la fonction F : x 7−→
∫
I

f(x, t) dt est de classe C1 sur X et sa dérivée est donnée par : F ′(x) =

∫
I

∂f

∂x
(x, t) dt.

Théorème 21 (de dérivation des intégrales à paramètre réel).

I Fixons a ∈ X et (xn) ∈ XN telle que xn → a. On se ramène à la caractérisation séquentielle de la limite en montrant que
le taux d’accroissement (F (xn)− F (a))/(xn − a) tend bien vers la dérivée souhaitée.

Remarques

1. L’intégrabilité de f(x, .) sur I n’est pas immédiate ici et il faudra la vérifier avec soin... mais encore une fois, elle est
souvent étudiée pour l’existence de l’intégrale, et avant même de s’intéresser à sa régularité.

2. On prouve en fait la dérivabilité de F . Le caractère C1 découle simplement du théorème de continuité des intégrales à
paramètre appliqué à la dérivée partielle de f par rapport à x.

3. La dérivabilité en un point étant une propriété locale, on peut encore affaiblir les hypothèses de domination et se
contenter de vérifier la domination sur tout compact K inclus dans X. Ainsi on préfèrera retenir le théorème avec des
hypothèses locales :

Soient I et X deux intervalles de R et f : X × I −→ K telle que f(x, .) soit continue par morceaux et intégrable sur I pour
tout x ∈ X. On suppose de plus que :

• la fonction f(., t) : x 7−→ f(x, t) est de classe C1 sur X pour tout t ∈ I, avec :
t 7−→ ∂f

∂x
(x, t) est continue par morceaux sur I pour tout x ∈ X

x 7−→ ∂f

∂x
(x, t) est continue sur X pour tout t ∈ I

• pour tout compact K ⊂ X, il existe une fonction φ : I −→ R+ continue par morceaux et intégrable sur I telle que :

∀ (x, t) ∈ K × I, |∂f
∂x

(x, t)| ≤ φ(t) (indépendante de x)

Alors, la fonction F : x 7−→
∫
I

f(x, t) dt est de classe C1 sur X et sa dérivée est donnée par : F ′(x) =

∫
I

∂f

∂x
(x, t) dt.

Théorème 22 (de dérivation des intégrales à paramètre réel avec des hypothèses locales).

Exemple 11 On pose pour tout x ∈ R+, f(x) =

∫ x

0

e−t2 dt et g(x) =

∫ 1

0

e−x2(1+t2)

1 + t2
dt.

1. Montrer que ces fonctions sont de classe C1 sur R+, puis justifier que pour tout x ∈ R+, g(x) + f2(x) =
π

4
;

2. En déduire la valeur de l’intégrale

∫ +∞

0

e−t2 dt.
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Soient I et X deux intervalles de R et f : X × I −→ K telle que f(x, .) soit continue par morceaux et intégrable sur I pour
tout x ∈ X. On note k ∈ N∗ et on suppose de plus que :

• la fonction f(., t) : x 7−→ f(x, t) est de classe Ck sur X pour tout t ∈ I, avec pour tout j ∈ J1, kK :
t 7−→ ∂jf

∂xj
(x, t) est continue par morceaux sur I pour tout x ∈ X

x 7−→ ∂jf

∂xj
(x, t) est continue sur X pour tout t ∈ I

• pour tout compact K ⊂ X, il existe des fonctions φ1, . . . , φk : I −→ R+ continues par morceaux et intégrables sur I
telles que pour tout j ∈ J1, kK :

∀ (x, t) ∈ K × I, |∂
jf

∂xj
(x, t)| ≤ φj(t)

Alors, la fonction F : x 7−→
∫
I

f(x, t) dt est encore de classe Ck sur X et sa dérivée k-ième est : F (k)(x) =

∫
I

∂kf

∂xk
(x, t) dt.

Corollaire 23 (critère Ck des intégrales à paramètre réel avec des hypothèses locales).

3 Quelques exemples d’application au programme

3.1 Etude de la fonction Γ

Exemple 12 On appelle fonction gamma la fonction définie sur R∗+ par :

Γ(x) =

∫ +∞

0

tx−1e−t dt

1. Montrer que Γ est de classe C1 sur R∗+.

2. Etablir que Γ est même de classe C∞ sur R∗+, et préciser l’expression de sa dérivée n-ième pour tout n ∈ N∗.

3. Montrer qu’il existe un unique c ∈]1, 2[ tel que Γ′(c) = 0, puis justifier que Γ est convexe.

4. Soit x ∈ R∗+. Calculer Γ(x+ 1), puis en déduire un équivalent de Γ(x) quand x→ 0, x > 0.

5. Montrer que pour tout n ∈ N, Γ(n+ 1) = n!, puis en déduire la limite de Γ(x) quand x→ +∞.

6. Calculer enfin Γ(1/2), puis construire sa courbe représentative sur R∗+.

3.2 Transformée de Laplace et résolution d’un problème de Cauchy

Exemple 13 On note E le R-espace vectoriel des fonctions continues et bornées sur R+ à valeurs dans R, et pour tout f ∈ E,
on définit sa transformée de Laplace par :

L(f) : p ∈ ]0,+∞[ 7−→
∫ +∞

0

f(t)e−pt dt

1. Justifier que pour tout p > 0, l’intégrale L(f)(p) est bien définie, puis établir que L est une application linéaire de E dans
F(R∗+,R).

2. On pose g : t ∈ [0,+∞[ 7−→
∫ t

0

f(u)e−u du. Prouver que g ∈ E, puis montrer que L est injective.

3. Calculer les transformées de Laplace des fonctions :

f : t ∈ R+ 7−→ 1 , g : t ∈ R+ 7−→ sin(at), a ∈ R, h : t ∈ R+ 7−→ cos(at), a ∈ R

4. On suppose de plus que f est de classe C2 sur R+. Déterminer pour tout p ∈ R∗+, les expressions de L(f ′)(p) et L(f ′′)(p)
en fonction de p et L(f)(p).

5. En déduire l’unique solution du problème de Cauchy :{
y′′ + y = sin(2t)

y(0) = 2, y′(0) = 1
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3.3 Transformée de Fourier de la loi normale

Exemple 14 Soit f une fonction de classe C1 sur R telle que t 7−→ tf(t) et f ′ sont intégrables sur R.

1. Justifier que f est intégrable sur R. A l’aide du théorème fondamental de l’analyse, établir que f(x) possède nécessairement
une limite nulle quand x→ ±∞.

2. On appelle alors transformée de Fourier de f l’intégrale définie pour tout x ∈ R par :

Ff (x) =

∫
R
eixtf(t) dt

(a) Vérifier que cette intégrale est bien convergente.

(b) Montrer que Ff est de classe C1 sur R et donner l’expression de sa dérivée sous forme intégrale.

(c) Montrer que pour tout x ∈ R, on a la relation :

Ff ′(x) = −ixFf (x)

3. On considère la fonction g : t 7−→ e−t2/2 et on rappelle que

∫
R
g(t) dt =

√
2π.

Justifier que g satisfait les hypothèses précédentes et montrer que pour tout x ∈ R, Fg(x) =
√

2πe−x2/2.
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