Chapitre 8

Suites et séries de fonctions

Ce chapitre est fondamental, car il prolonge naturellement l’étude des suites et
séries en ajoutant simplement un paramétre : il s’agira donc de bien comprendre les
différents modes de convergence et toutes les propriétés qui peuvent étre conservées par
passage a la limite. Ce sera la occasion de mettre en avant le théoréme de conver-
gence dominée, admis au programme, et qui nous permettra d’échanger les symboles
ou d’étudier des intégrales a paramétre.

[L_Suites et séries de fonctions| 2
1.1 uelques definitions et premiers exemples| . . . . . . . ... ... 2
1.2 Propriétés de la limite d’une suite de fonctions| . . . . . . . ... ... 4
[T.3~ Cas particulier des séries de fonctions| . . . . . . . . . . oo v v .. 6

2 Les théoremes de convergence de Lebesgue) 9
2.1 e théoreme de convergence dominée et le théoreme d’intégration terme

‘ atermel . ... 9
2.2 Application a I’étude des intégrales a parametrel. . . . . . . .. .. .. 10

3 uelques exemples d’application au programme| 13
BI Etudedelafonction Il . . . . o o v v vt v et e e 13
3.2 'Iransformée de Laplace et résolution d’un probleme de Cauchy| . . . . 13
3.3 ransformée de Fourier delaloinormalel. . . . . . . . . .. .. .. .. 14

Programmes 2022

Pour aller plus loin

Si ce chapitre est fondamental en analyse, c’est aussi parce qu’il nous offre de beaux sujets de concours et de belles applications
sur le plan des mathématiques : du cas particulier des séries entiéres aux transformées usuelles (transformée de Laplace,
transformée de Fourier...), beaucoup de ces résultats dépendent directement des théorémes obtenus sur les suites et séries de
fonctions.



Chapitre 8
MP - Lycée Chrestien de Troyes Suites et séries de fonctions
1 Suites et séries de fonctions
Dans toute cette partie, X désigne une partie d'un K-espace vectoriel normé et F' un K-espace vectoriel normé de dimension

finie dont on notera |.|| une norme sur F. Et s’il n’y a pas d’indication contraire, toutes les fonctions seront définies sur X
a valeurs dans F'.

1.1 Quelques définitions et premiers exemples

Définition Soit X un ensemble. On appelle suite de fonctions (f,) définies sur X toute suite telle que pour tout n € N,
fn: X — F. On dit alors qu’une telle suite (f,) converge simplement sur X s’il existe une fonction f définie sur X telle
que:

VezeX, folx) — f(z), c’est a dire que pour tout = € X, ||fn(z) — f(z)]|] — O

n——+oo n—-+oo

Cette fonction limite f est aussi appelée la limite simple de la suite de fonctions (fr).

Remarque On fera attention : il s’agit bien de la limite de f,(z) & z fixé dans X, et il ne sera donc pas rare d’obtenir des
limites simples définies par morceaux en fonction des valeurs prises par x. C’est pour cette raison que dans les théorémes
de convergence donnés au programme, la classe des fonctions étudiées est aussi celle des fonctions continues par morceaux.

Dans les cas des suites de fonctions & valeurs réelles, on peut facilement illustrer la convergence simple en Python : pour cela, on
pourra prendre soin de représenter des fonctions f, pour des valeurs de n bien choisies.

Exemple 1
1. On considére la suite de fonctions (f,) définies sur [0, 1] par :
VneN, f.(z)=a"

En fonction des valeurs de z, déterminer la limite de fn(z) quand n — 400 puis définir f la limite simple de la suite (fn).
On peut en effet illustrer la convergence simple de la suite des monémes sur [0, 1] et ainsi, on retiendra :

0.8 H

0.6

0.4 -

02f /

2. On consideére la suite de fonctions (g, ) définies sur [0, 1] par :

VneN, gn(z) =

n*z(l1 —nz),si0 <z <1/n
0,siz>1/n

En fonction des valeurs de z, déterminer la limite de g, (x) quand n — +oco puis définir g la limite simple de la suite (gx)-
On peut en effet illustrer la convergence simple de la suite des pics mobiles sur [0, 1] et ainsi, on retiendra :

www.cpgemp-troyes.fr 2


http://www.cpgemp-troyes.fr/

Chapitre 8
MP - Lycée Chrestien de Troyes Suites et séries de fonctions

{Propriété 1 (de la norme infinie sur l'espace des fonctions bornées).]

Soit X un ensemble. On note B(X, F) l'espace des fonctions bornées sur X et & valeurs dans F, et pour toute fonction
f € B(X, F), on pose :
I flloo = sup || f ()]l
rzeX

Alors,

1. la norme infinie ||.||oo définit encore une norme sur B(X, F).

2. muni de la norme |||/, (B(X, F),+,.) est un K-espace vectoriel normé.

» On revient a la définition d’une norme. Pour le second point, on pourra vérifier qu’il s’agit d’un sev de F(X, F).

Remarque La norme infinie ||.||« sera aussi appelée la norme uniforme, car elle nous permet de définir la notion de conver-
gence uniforme sur un ensemble donné.

Définition Soient X un ensemble et (f,) une suite de fonctions définies sur X. On dit alors qu’une telle suite (f,) converge
uniformément sur X s’il existe une fonction f telle que :

1o = Flloo = 0

Cette fonction limite f est aussi appelée la limite uniforme de la suite de fonctions (fn).

{Propriété 2 (la convergence uniforme entraine la convergence simple).]

Soient X un ensemble et (f,) une suite de fonctions définies sur X. On suppose de plus que (f,) converge uniformément sur
X vers une fonction f.
Alors, (fn) converge simplement vers f.

» Il suffit de majorer la différence ||fn(z) — f(x)| @ z fizé dans X avant de passer & la limite quand n — +o0.
Remarque Cette derniere propriété nous permet d’affirmer que limite uniforme et limite simple coincident. On procedera
alors de la fagon suivante pour étudier la convergence d’une suite de fonctions :
1. on commence par déterminer la limite simple éventuelle, a = fixé dans X ;
2. puis, on vérifie si (f,) converge uniformément vers cette limite soit :
e en étudiant l'application = — fn(x) — f(z) pour en obtenir la norme infinie sur le domaine d’étude. Ce sera
souvent le cas pour les fonctions a valeurs réelles.

e en cherchant & majorer la différence || fn(z) — f(z)|| par une suite () de limite nulle et indépendante de x.
Dans ce cas, il vient :

Vo e X, |fa(@) = (@) San =0 fu = Sl < an =0

[ee]

et par encadrement, la convergence est uniforme.

La convergence simple dépend évidemment du point = en lequel on étudie le comportement asymptotique. Pour la convergence
uniforme, on fera attention... celle-ci ne dépend plus de x, mais elle est quand méme liée indirectement au domaine de travail et
ainsi, on notera parfois :

e <5, f pour dire que (f,) converge simplement vers f

fn LELN f pour dire que (f,) converge uniformément vers f
cuU,x , . . A
fn == f pour préciser que (f) converge uniformément vers f sur X

nT

Exemple 2 Soit n € N*, on définit f, sur R par fn(x) = Tr e
n2x

1. Etudier la convergence simple de la suite de fonctions (f»).

2. (a) Soit n € N*, étudier la fonction f, sur R.

(b) Etudier alors la convergence uniforme de la suite (f,) sur R.

3. Montrer que la suite converge uniformément sur | — co, —a] U [a, +-o0[, a > 0.
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1.2 Propriétés de la limite d’une suite de fonctions

{Propriété 3 (de la limite simple dans le cas particulier des fonctions & valeurs réelles).]

Soient I un intervalle de R et (f,) une suite de fonctions définies sur I et & valeurs réelles. On suppose de plus que (fy)
converge simplement sur I vers une fonction f. Alors :

1. si pour tout n € N, f, est croissante (resp. décroissante), alors f est aussi croissante (resp. décroissante) ;

2. si pour tout n € N, f,, est convexe (resp. concave), alors f est aussi convexe (resp. concave).

» On traduit les propriétés des fonctions fn avant de passer a la limite quand n — 4o00.

Remarque Malheureusement, le passage a la limite simple ne nous permet pas de conserver la régularité : on pourra revenir
a la suite des monémes tous continus sur [0, 1], mais dont la limite simple est définie sur [0, 1] par :

0, six<l1 . .
frx— {1 . . et donc, qui n’est pas continue sur [0, 1].
, stz =

Ainsi, on veillera a aller chercher des modes de convergence plus forts pour pouvoir invoquer les propriétés suivantes.

{Propriété 4 (continuité de la limite uniforme d’une suite de fonctions).]

Soient X un ensemble et (f,) une suite de fonctions définies sur X. On suppose de plus que :
e pour tout n € N, f, est continue sur X,
e (fn) converge uniformément sur X vers une fonction f.

Alors, f est encore continue sur X.

» Fizons a € X. On se raméne & la définition de la limite en montrant que f(x) — f(a) quand v — a.

Remarques En fait, la continuité en un point est une propriété locale. On peut alors adapter la preuve précédente
et ne travailler qu’autour du point a fixé. Ainsi, on se contentera le plus souvent d’avoir la convergence uniforme sur tout
compact K inclus dans X, et on retiendra le théoréme suivant, plus utile dans la pratique :

{Propriété 5 (continuité de la limite uniforme d’une suite de fonctions avec des hypotheses locales).]

Soient X un ensemble et (f,) une suite de fonctions définies sur X. On suppose de plus que :
e pour tout n € N, f, est continue sur X,
e (fn) converge uniformément sur tout compact K C X vers une fonction f.

Alors, f est encore continue sur X.

{Théoréme 6 (de la double limite).]

Soient X un ensemble et (f,) une suite de fonctions définies sur X, a un point adhérent & X. On suppose de plus que :

e pour tout n € N, fn(x) — A,

r—ra
e (fn) converge uniformément sur X vers une fonction f.

Alors, on admet que (\,) posséde une limite finie \ et ainsi, f(z) — A de sorte que :
r—ra

;1331 flz) = RHIEOO An, Clest a dire que : ;13}1 flz) = ngrfoo :lli;r}z fn(z)

Remarque Ce théoréme généralise le théoréme de continuité aux points a € X... et il sera trés utile pour connaitre la limite
en un point adhérent de la limite uniforme d’une suite de fonctions. Malheureusement, il est admis car la preuve repose
sur les espaces complets : des espaces sur lesquels toute suite de Cauchy est connvergente... c’est évidemment le cas ici
puisque F' est un espace vectoriel de dimension finie.
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{Théor‘eme 7 (d’intégration de la limite uniforme d’une suite de fonctions définies sur un segment).]

Soit (fn) une suite de fonctions définies sur un segment [a, b] inclus dans R. On suppose de plus que :

e pour tout n € N, f,, est continue sur [a, b,

e (fn) converge uniformément sur [a, b] vers une fonction f.

b b
Alors, / fn(t) dt tend vers / f(t) dt quand n — 400 de sorte que :

lim /: Fult) dt = /abf(t) dt

n—-+oo

» On note I, = f: fn(t) dt et on majore la différence || I, — f: f(t) dt|| grace aux propriétés de lintégrale.

Remarque Il s’agit 1a d’un théoreme fondamental nous permettant de passer a la limite sous le signe intégral, mais at-
tention aux limites de ce résultat : celui-ci suppose une convergence assez forte et il n’est valable que sur un segment... il ne
pourra donc pas étre utilisé avec des intégrales généralisées et on préferera souvent faire appel au théoréme de convergence
dominée.

Exemple 3 On considére la suite de fonctions (f,) définies sur [0, 1] par :
VneN, fo(z) =z(1+ vne ")
1. Montrer que (f,) converge uniformément sur [0, 1] vers une limite f qu’on déterminera.

2. En déduire la limite quand n — 400 de :

1
Iy = / (1 + vne "") dx
0

{Corollaire 8 (dérivation de la limite d’une suite de fonctions définies sur un intervalle).]

Soient I un intervalle de R et (f,) une suite de fonctions définies sur un intervalle I inclus dans R. On suppose de plus que :

o pour tout n € N, f,, est de classe C* sur I,
e (fn) converge simplement sur I vers une fonction f,

e (f;,) converge uniformément sur tout segment [a,b] C I vers une fonction g.

Alors, f est encore de classe C! sur I et on a f' = g.

» Fizons a € I, alors fn(x) = fn(a) + f; fn(t) dt. On peut alors appliquer le théoréme d’intégration des suites de fonctions
définies sur un segment.

Remarques

1. On peut aussi retenir que la dérivée de la limite n’est rien d’autre que la limite de la dérivée... et c’est la encore une
fagon d’échanger les symboles.

2. Avec ces hypothéses, on récupére méme la convergence uniforme sur tout segment [a,b] de la suite (f,) vers
f. En effet, on a pour tout x € [a,b] C I :

fa(@) = f(2) = fnla) — f(a) +/x @) = f @) dt = 0<[[fn = flloo < llfnla) = fl@)l + (0= a)llfn — f'llc — 0

Cette conséquence nous permet en outre de généraliser ce résultat aux suites de fonctions de classe C* :
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3

{Corollaire 9 (critére C* pour la limite d’une suite de fonctions définies sur un intervalle).J

Soient I un intervalle de R et (f,) une suite de fonctions définies sur un intervalle I inclus dans R, k € N*. On suppose de
plus que :

e pour tout n € N, f,, est de classe C* sur I,

e (fn) converge simplement sur I vers une fonction f, et que pour tout j € [1,k — 1], ( fT(Lj )) converge simplement sur I,

o ( f,(Lk)) converge uniformément sur tout segment [a,b] C I vers une fonction gy.

Alors, f est encore de classe CF sur I et on a f*) = gj.

1.3 Cas particulier des séries de fonctions

Définition Soient X un ensemble et (f,) une suite de fonctions définies sur X. On appelle série de fonctions toute série de la
forme Y f telle que pour tout n € N, f, : X — F.

On note encore pour tout n € N et pour tout = € X, Sy (x) = 1 _, fr(2).

Alors, on dit que :

e la série Y f, converge simplement sur X s’il existe une fonction S telle que (S,) converge simplement sur X vers S,
c’est a dire :

VaeX, Su(z)= ka(x) — S(z) , c’est a dire que pour tout z € X, ||Sp(z) — S(z)|] — 0
k=0

n——+oo n—-+oo

e la série Y f, converge uniformément sur I s’il existe une fonction S telle que (S,) converge uniformément sur X vers
S, c’est a dire :
[Sn = Sllec — 0 & [[Rnflc — 0
n— oo n—+oo

Définition Soient X un ensemble et (f,,) une suite de fonctions définies sur X. On dit que la série Y f,, converge normalement
sur X si la série numérique Y || fnlloo €st convergente.

{Théoréme 10 (lien entre les différents modes de convergence).}

Soient X un ensemble et (f,) une suite de fonctions définies sur X. On suppose de plus que la série Y f,, est normalement
convergente, alors il existe une fonction S telle que (S,) converge uniformément sur X vers S.

Autrement dit, la convergence normale entraine la converge uniforme, qui entraine la convergence simple.

» On montre d’abord que la série converge absolument pour justifier ’existence de la limite simple, puis on cherche a encadrer
le reste partiel pour prouver la convergence uniforme.

Remarques

1. Il s’agit d’un théoreme fort pratique car il donne la convergence uniforme d’une série de fonctions sans étre obligé d’en
déterminer sa limite. D’ailleurs, la série Y || fnl|co €st une série & valeurs positives, et cela nous permettra de retrouver
tous les criteres d’étude des séries numériques.

2. L’étude d’une série de fonctions se raméne donc a 1’étude de la suite de fonctions (S,) : on peut alors réécrire tous les
résultats vus précédemment.

{Propriété 11 (continuité de la limite uniforme d’une série de fonctions).]

Soient X un ensemble et (f,) une suite de fonctions définies sur X. On suppose de plus que :
e pour tout n € N, f, est continue sur X,
® > fn converge uniformément sur X vers une fonction S.

Alors, S est encore continue sur X.
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{Propriété 12 (continuité de la limite uniforme d’une série de fonctions avec des hypotheses locales).]

Soient X un ensemble et (f,) une suite de fonctions définies sur X. On suppose de plus que :
e pour tout n € N, f, est continue sur X,
e > fn converge uniformément sur tout compact K C X vers une fonction S.

Alors, S est encore continue sur X.

{Théor‘eme 13 (de la double limite).]

Soient X un ensemble et (f,) une suite de fonctions définies sur X, a un point adhérent & X. On suppose de plus que :

e pour tout n € N, fn(x) — An,
r—a

e Y fn converge uniformément sur X vers une fonction S.

Alors, on admet que > A\, posséde une limite finie A = 3> A, et ainsi, S(z) — A de sorte que :
Tr—a

T—a T—a
k=0

+oo Ri=OS)
lim S(z) = Z Ak, C’est a dire que : lim S(z) = Zilg}l ()
k=0

On retrouve ici la fonction zéta de Riemann, et on essaiera de retenir ces questions classiques...

Exemple 4 On considére la fonction ¢ définie sur |1, +oo[ par :

et pour tout k£ > 1, on note fr : z — 1/k".

1. Montrer que ¢ est continue sur |1, +oo[, puis préciser ses variations sur |1, +oo].

2. Soit a > 1. Etablir que Y fx converge uniformément sur [a, +oo[. En déduire que : limg— o0 ¢(z) = 1.

- . P 1 1
3. En utilisant une comparaison série-intégrale, montrer que pour tout z > 1, p—] <{(z) < o + 1.
x T —

4. En déduire un équivalent de ¢(z) quand x — 1, puis construire sa courbe représentative sur |1, +oo[.

{Théoréme 14 (d’intégration terme & terme pour une série de fonctions définies sur un segment).]

Soit (fn) une suite de fonctions définies sur un segment [a, b] inclus dans R. On suppose de plus que :

e pour tout n € N, f,, est continue sur [a, ],

e > fn converge uniformément sur [a,b] vers une fonction S.

b b
Alors, / Sn(t) dt tend vers / S(t) dt quand n — 400 de sorte que :

T o b +oo
kZ:O/ fk(t)dt:/a S Fult) dt

k=0

Remarque Il s’agit 1& d’un théoréme fondamental nous permettant d’échanger les symboles > et f7 mais attention aux
limites de ce résultat : celui-ci suppose une convergence assez forte et il n’est valable que sur un segment... il ne pourra donc
pas étre utilisé avec des intégrales généralisées et on préferera souvent faire appel au théoréme de convergence dominée
appliqué aux sommes partielles ou au théoréme d’intégration terme a terme de Lebesgue.
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x'fL
Exemple 5 Montrer que la série de fonctions ) 2 converge uniformément sur le segment [0, 1]. En déduire que :
n!
1 +oo 400

" 1
2 TP T 2 WD

Anon) n=0

{Corollaire 15 (dérivation de la limite d’une série de fonctions définies sur un intervalle).]

Soient I un intervalle de R et (f,,) une suite de fonctions définies sur un intervalle I inclus dans R. On suppose de plus que :

e pour tout n € N, f,, est de classe C* sur I,
e > fn converge simplement sur I vers une fonction S,

e > f, converge uniformément sur tout segment [a,b] C I vers une fonction 7.

Alors, S est encore de classe C! sur I et on a S’ =T de sorte que :

+oo +oo
(Z fn)l = Z ffm
n=0 n=0

Remarques

1. Encore une fois, on retrouve ici un résultat qui nous permet 1’échange... la dérivée de la somme n’est rien d’autre que
la somme des dérivées.

2. Avec ces hypotheses, on rappelle qu’on récupére méme la convergence uniforme sur tout segment [a, b] de la série > fn
vers S. Cette conséquence nous permet en outre de généraliser ce résultat aux séries de fonctions de classe C* :

\

{Corollaire 16 (critére C* pour la limite d’'une série de fonctions définies sur un intervalle).J

Soient I un intervalle de R et (f,) une suite de fonctions définies sur un intervalle I inclus dans R, k € N*. On suppose de
plus que :

e pour tout n € N, f,, est de classe C* sur I,

e > fn converge simplement sur I vers une fonction S, et que pour tout j € [1, k—1], la série > féj ) converge simplement

sur I,

o 3 £ converge uniformément sur tout segment [a,b] C I vers une fonction Tk.

Alors, S est encore de classe C* sur I et on a S*) = T}, de sorte que :

= (k) = (k)
7;) 7;)

Exemple 6 On considére encore la fonction ¢ définie sur |1, +oo] par :

et pour tout £ > 1, on note fr : x — 1/k%.
1. Montrer que ¢ est de classe C* sur |1, +o0].

2. En déduire que ¢ est convexe sur |1, 00|, puis retrouver I'allure de sa courbe représentative.
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2 Les théorémes de convergence de Lebesgue

Dans tout cette partie, on ne considérera que des fonctions d’une variable réelle définies sur un intervalle I & valeurs dans
K = R ou C, et on supposera qu’elles sont a chaque fois continues par morceaux sur I, c’est a dire continue par morceaux
sur tout segment inclus dans I.

2.1 Le théoreme de convergence dominée et le théoréme d’intégration terme a terme

Conformément au programme, on admet les deux théoréemes suivants :

{Théoréme 17 (de convergence dominée).]

Soient I un intervalle de R et (f,) une suite de fonctions continues par morceaux sur I. On suppose de plus que :

e (fn) converge simplement sur I vers une fonction f continue par morceaux sur I,
e il existe une fonction ¢ : I — R4 continue par morceaux et intégrable sur I telle que :

VneN, |fn] <¢ (indépendante de n)

Alors, f est intégrable sur I et /fn(t) dt tend vers /f(t) dt quand n — +oco de sorte que :
I I

TLETOO/Ifn(t) dt:/jf(t) dt

Remarques

1. 1l s’agit d’abord d’un résultat d’intégrabilité, car il nous donne un moyen de justifier I’existence de l'intégrale fI f@t) dt
avant de la calculer.

2. Il n’est pas nécessaire de vérifier I'intégrabilité des fonctions f, : elle est assurée par I’hypothése de domination.
D’ailleurs, on veillera a ce que la fonction ¢, majorante et parfois définie par morceaux, soit bien indépendante du
parameétre donné.

3. Pour finir, ce théoreme est d’abord un résultat asymptotique : on pourra donc se contenter d’une domination des
modules a partir d’un certain rang.

Exemple 7 On considére 'intégrale de Gauss définie par :

I:/e_t2 dt
R

et on définit la suite de fonctions (f,) définies sur R par :
2
fn(t) — (1 - g)n’ pour t € [_\/ﬁr \/m
0, sinon

Montrer que t — et est intégrable sur R, puis a l’aide de la suite de fonctions (f»), retrouver la valeur de I.

Remarque En fait, le théoreme de convergence dominée peut aussi étre utilisé dans le cadre des séries de fonctions.

11 suffit de vérifier les hypotheses pour la suite des sommes partielles (Sy), et ainsi on pourra échanger les symboles > et [
puisque dans ce cas, on a [, S, — [, S, qui peut aussi s’écrire :

n +o0 +oo 400
Fuolt) dt — Folt) dt = Fult) dt = () dt
D frew = [nwd e 3 [rwas [35

C’est trés pratique, mais il faut pouvoir dominer les sommes partielles.

Exemple 8

1. Montrer que la série n~ " est convergente.
n>1

2. Montrer que ¢ — ¢t~ * est prolongeable par continuité sur [0, 1], et en déduire I’égalité :

Zn*":/lt*t dt
0

n=1
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{Théoréme 18 (d’intégration terme & terme de Lebesgue).]

e > fn converge simplement sur I vers une fonction S continue par morceaux sur I,

e pour tout n € N, f,, est intégrable sur I et la série E/ | fn(t)] dt est convergente.
I

Alors, S est intégrable sur I et /Sn (t) dt tend vers /S(t) dt quand n — +oo de sorte que :
I 1

+o0 +oo
ey de= [ fule) de
3 mea=f 2

Soient I un intervalle de R et (f,) une suite de fonctions continues par morceaux sur I. On suppose de plus que :

Exemple 9 On considére 'intégrale définie pour tout p € N* par :

+oo +P
Iy = dt
P /0 e =1

1
et on rappelle que pour tout z > 1, on note ((z) = Z:j ek Montrer que pour tout p € N*,
I, = p!C(p +1)

Remarque Finalement, pour intégrer terme a terme une série de fonctions intégrables sur un intervalle, et échanger les

symboles > et f7 on pourra procéder de cinq fagons :

e soit on est dans le cas particulier d’un segment [a, b], et dans ce cas, il suffit d’établir la convergence uniforme de la

série de fonctions.

e soit on établit la convergence simple de la série de fonctions et on prouve que pour tout n € N, |S,,| < ¢, avec ¢ continue
par morceaux et intégrable sur I. On conclut alors par le théoréme de convergence dominée appliqué a la suite (Sr).

e soit on établit la convergence simple de la série de fonctions et on prouve que la série Y [} |fx(t)| dt est convergente.

On conclut alors a 'aide du théoréeme précédent.

mais on pourra aussi dans certains cas particuliers faire ces échanges, c¢’est notamment le cas lorsque :

e on reconnait une série entiére en la variable d’intégration (c’est important !) et sur un un segment [a, b] inclus dans le
domaine de convergence. Il suffit alors d’invoquer la convergence uniforme sur [a,b] avant d’échanger les symboles.

e on reconnait une série de fonctions alternées : on a pour n fixé, f I S = f I Sy + f I R, et on peut établir que le reste
intégral est négligeable par majoration du reste partiel. Il suffit alors de transformer la premiere intégrale par linéarité

avant de passer a la limite.

2.2 Application a I’étude des intégrales a parametre

Dans toute cette partie, on considére F un K-espace vectoriel normé de dimenson finie dont on notera ||.|| une norme sur E.

Définition Soient I un intervalle de R, X une partie de E. On appelle intégrale & parameétre toute intégrale de la forme :

F(x) = /If(m,t) dt

ol f désigne une application de X x I & valeurs dans K = R ou C et telle que f(z,.) : t — f(z,t) soit continue par morceaux|

sur I pour tout = € X.

Remarques

1. La premiere difficulté de ces intégrales réside dans leur définition, et il s’agira d’abord de déterminer pour quelles valeurs

du parametre x l'intégrale est convergente.

2. Au programme du concours, le paramétre peut donc étre vectoriel... Si la plupart du temps, on travaille avec un

parameétre réel, on pourra si besoin étendre les résultats établis aux intégrales de la forme :

/f(:cl,...,mn,t) dt avec (x1,...,2,) € R"
I
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{Théor‘eme 19 (de continuité des intégrales & paramétre).}

Soient I un intervalle de R, X une partie de F et f : X x I — K telle que f(x,.) soit continue par morceaux sur I pour
tout £ € X. On suppose de plus que :

e la fonction f(.,t) : x — f(z,t) est continue sur X pour tout t € I,
e il existe une fonction ¢ : I — R continue par morceaux et intégrable sur I telle que :

V(x,t) € X x I, |f(z,t)| < ¢(t) (indépendante de x)

Alors, la fonction F : x — /f(x,t) dt est continue sur X.
I

» Fizonsa € X et (zp) € XN telle que zn, — a. On se raméne & la caractérisation séquentielle de la limite en montrant que
F(xzn) — F(a) a laide du théoréme de convergence dominée.

Remarques

1. La majoration par ¢ nous donne aussi I'intégrabilité de f(z,.) sur I, et ceci pour tout € X... On veillera donc a ce
que la majoration soit encore indépendante du parameétre donné méme si la plupart du temps, l'intégrabilité aura
déja été étudiée.

2. La continuité en un point étant une propriété locale, on peut encore affaiblir les hypothéses de domination et se contenter
de vérifier la domination sur tout compact K inclus dans X. Ainsi on préferera retenir le théoréme avec des hypotheses
locales :

{Théor‘eme 20 (de continuité des intégrales & parametre avec des hypotheses locales).]

Soient I un intervalle de R, X une partie de E et f : X x I — K telle que f(z,.) soit continue par morceaux sur I pour
tout x € X. On suppose de plus que :

e la fonction f(.,t) : x — f(z,t) est continue sur X pour tout t € I,
e pour tout compact K C X, il existe une fonction ¢ : I — Ry continue par morceaux et intégrable sur I telle que :

V(z,t) € K x I, |f(z,t)| < ¢(t) (indépendante de x)

Alors, la fonction F : x — /f(x, t) dt est continue sur X.
I

Remarque Pour les fonctions d’une variable réelle, on pourra méme affiner le choix du compact K sur lequel on travaillera.
Et ainsi, pour le reste du chapitre, on pourra prendre ’habitude suivante :

e si f est définie sur un intervalle centré en 0, on cherchera plutot a obtenir une majoration sur un intervalle de la forme
[—a,a] C X,

e sinon, on pourra travailler sur un intervalle de la forme [a,b] C X.

“+oo tfz

dt.
1+t

Exemple 10 On considére la fonction f : z — /
1

1. Préciser le domaine de définition de f.

2. Etudier la continuité de f, puis déterminer un équivalent de f(x) quand  — 0,z > 0.
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{Théoréme 21 (de dérivation des intégrales & parametre réel).]

Soient I et X deux intervalles de R et f: X x I — K telle que f(z,.) soit continue par morceaux et intégrable sur I pour
tout x € X. On suppose de plus que :

e la fonction f(.,t) : & — f(z,t) est de classe C* sur X pour tout t € I, avec :

0 .
t— a—f(x, t) est continue par morceaux sur I pour tout z € X
B

7] .
T —> a—f(m, t) est continue sur X pour tout t € T
T

e il existe une fonction ¢ : I — R4 continue par morceaux et intégrable sur I telle que :

YV (z,t) € X x I, |?(az,t)\ < ¢(t) (indépendante de x)
)
Alors, la fonction F':  — /f(x,t) dt est de classe C' sur X et sa dérivée est donnée par : F'(z) = ?(m,t) dt.
I 107

> Fizons a € X et (x,) € X" telle que £, — a. On se raméne d& la caractérisation séquentielle de la limite en montrant que
le tauz d’accroissement (F(xzn) — F(a))/(zn — a) tend bien vers la dérivée souhaitée.

Remarques

1. L’intégrabilité de f(x,.) sur I n’est pas immédiate ici et il faudra la vérifier avec soin... mais encore une fois, elle est
souvent étudiée pour 'existence de l'intégrale, et avant méme de s’intéresser a sa régularité.

2. On prouve en fait la dérivabilité de F. Le caractére C'* découle simplement du théoréme de continuité des intégrales &
parameétre appliqué a la dérivée partielle de f par rapport & x.

3. La dérivabilité en un point étant une propriété locale, on peut encore affaiblir les hypothéses de domination et se
contenter de vérifier la domination sur tout compact K inclus dans X. Ainsi on préférera retenir le théoreme avec des
hypotheses locales :

{Théoréme 22 (de dérivation des intégrales & parametre réel avec des hypotheses locales).}

Soient I et X deux intervalles de R et f: X x I — K telle que f(z,.) soit continue par morceaux et intégrable sur I pour
tout x € X. On suppose de plus que :

e la fonction f(.,t): x — f(x,t) est de classe C' sur X pour tout ¢ € I, avec :

0 .
t— a—f(m, t) est continue par morceaux sur I pour tout z € X
x

10} .
T — 8—f(x,t) est continue sur X pour tout t € T
T

e pour tout compact K C X, il existe une fonction ¢ : I — R continue par morceaux et intégrable sur I telle que :

vV (z,t) € K x I, \%(m, t)] < ¢(t) (indépendante de z)
. 1 e s , / 6f
Alors, la fonction F: x — [ f(xz,t) dt est de classe C" sur X et sa dérivée est donnée par : F'(x) = a—(m,t) dt.
I ECEL
z ) 1 efx2(1+t2)
Exemple 11 On pose pour tout z € RT, f(z) = / e " dt et g(z) = / BT dt.
0 0

1. Montrer que ces fonctions sont de classe C* sur Ry, puis justifier que pour tout = € Ry, g(z) + f2(z) = Z;

“+oo
2. En déduire la valeur de 'intégrale / e_t2 dt.
0
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\

{Corollaire 23 (critere C* des intégrales & parameétre réel avec des hypotheses locales).J

Soient I et X deux intervalles de R et f: X x I — K telle que f(z,.) soit continue par morceaux et intégrable sur I pour
tout £ € X. On note k € N* et on suppose de plus que :

e la fonction f(.,t) : z — f(z,t) est de classe C* sur X pour tout ¢ € I, avec pour tout j € [1,k] :

o .
t—> —f(x, t) est continue par morceaux sur I pour tout x € X

oxI

J

T —> %(aj,t) est continue sur X pour tout t € I
x

e pour tout compact K C X, il existe des fonctions ¢1,...,¢, : I —> R4 continues par morceaux et intégrables sur 1
telles que pour tout j € [1,k] :
of
Vi(z,t) € K x I, |55 (x,1)] < 6;(t)
. k B o i (k) o f
Alors, la fonction F': x — [ f(x,t) dt est encore de classe C* sur X et sa dérivée k-ieme est : F'%(z) = W(m,t) dt.
I I @45

3 Quelques exemples d’application au programme

3.1 Etude de la fonction I'

Exemple 12 On appelle fonction gamma la fonction définie sur R} par :

oo
I(z) = / t" et dt
0

1. Montrer que T est de classe C* sur R%.

2. Etablir que I" est méme de classe C*° sur R, et préciser I’expression de sa dérivée n-ieme pour tout n € N*.
3. Montrer qu’il existe un unique c €]1, 2[ tel que I''(c) = 0, puis justifier que I" est convexe.

4. Soit z € R}. Calculer I'(x + 1), puis en déduire un équivalent de I'(z) quand = — 0,z > 0.

5. Montrer que pour tout n € N, I'(n + 1) = n!, puis en déduire la limite de I'(z) quand & — +oo0.

6. Calculer enfin I'(1/2), puis construire sa courbe représentative sur R .

3.2 Transformée de Laplace et résolution d’un probléme de Cauchy

Exemple 13 On note E le R-espace vectoriel des fonctions continues et bornées sur R4 a valeurs dans R, et pour tout f € F,
on définit sa transformée de Laplace par :

+oo
L(f) : p €0, +00] — / FB)e " dt

1. Justifier que pour tout p > 0, V'intégrale L(f)(p) est bien définie, puis établir que £ est une application linéaire de E dans
F(R},R).

t
2. On pose g : t € [0, +oo[ —> / f(uw)e™™ du. Prouver que g € E, puis montrer que £ est injective.
0

3. Calculer les transformées de Laplace des fonctions :
fiteERy+— 1, g:teERL —>sin(at), a €R, h:t € Ry — cos(at), a € R

"

4. On suppose de plus que f est de classe C? sur R;. Déterminer pour tout p € R, les expressions de L(f")(p) et L(f")(p)
en fonction de p et L(f)(p).

5. En déduire 'unique solution du probleme de Cauchy :

y” +y = sin(2t)
y(0) =2,4/(0) =1
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3.3 Transformée de Fourier de la loi normale

Exemple 14 Soit f une fonction de classe C* sur R telle que ¢ — tf(t) et f’ sont intégrables sur R.

1. Justifier que f est intégrable sur R. A I’aide du théoréme fondamental de ’analyse, établir que f(x) posséde nécessairement
une limite nulle quand z — +oo.

2. On appelle alors transformée de Fourier de f l'intégrale définie pour tout € R par :
Fr(x) = / et dt
R

(a) Vérifier que cette intégrale est bien convergente.
(b) Montrer que Fy est de classe ' sur R et donner I’expression de sa dérivée sous forme intégrale.

(c) Montrer que pour tout € R, on a la relation :

Fp(x) = —iaFy(a)

3. On considere la fonction g : t — e~t*/2 et on rappelle que /g(t) dt = V2.
R

Justifier que g satisfait les hypotheses précédentes et montrer que pour tout z € R, Fy(x) = v/ dme =712,
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