Chapitre 7

Espaces vectoriels normés et propriétés topologiques

En début d’année, nous avons travaillé sur la notion d’espaces vectoriels normés.
Dans ce chapitre, il s’agit d’aller plus loin et d’étudier les applications définies sur un
espace vectoriel normé a valeurs dans un espace vectoriel normé.

Cela nous donnera l’occasion de définir les parties ouvertes ou fermées qui définissent
la topologie d’un tel espace. Si ces notions peuvent étre difficiles, on veillera a en
comprendre l'intérét dans ’étude des applications continues et les nombreux théorémes
qui leur sont associés.

1 Topologie d’un espace vectoriel normé et étude locale 2
[[1_Premieres dBANIEONS - - - -« « o o v oo e e e 2
[L.2__Limite et continuité d’une application| . . . . ... ... .. ... ... 5
[T.3~ Cas particulier des applications linéaires continues| . . . . . . . . . . . 7

2 uelques théoremes fondamentau 10
2.1 Parties compactes d’un espace vectoriel normél . . ... ... ... .. 10
~~~~~~~~~~~~~~~~~~ 11
2.3 arties connexes d’un espace vectoriel norme¢| . . . . . . .. ... ... 11

Programmes 2022

Pour aller plus loin

Ce n’est pas un chapitre long, mais plutét technique : on pourra alors retenir quelques théoremes fondamentaux et utiles
pour les exercices d’oraux, et on essaiera surtout de voir comment la dimenson finie nous permet encore de simplifier & chaque
fois I’étude de nos opérateurs linéaires.
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1 Topologie d’un espace vectoriel normé et étude locale

1.1 Premiéres définitions
On se place dans E un K-espace vectoriel muni d’une norme ||.||, c’est & dire une application définie sur E & valeurs dans Ry
telle que :

||| vérifie la condition de séparation

elle est homogene

elle vérifie I'inégalité triangulaire
De plus, on rappelle qu'on appelle boule ouverte centrée en a € E et de rayon r > 0 et boule fermée centrée en
a € I/ et de rayon r > 0 les sous-ensembles :

B(a,r)={xz € E, ||t —al <r} et Bf(a,r) ={x € E, ||x —a| <r}

Définition Soit U une partie non vide de E. On dit que U est un ouvert ou désigne une partie ouverte de E si U contient un
voisinage de chacun de ces points, c’est a dire :

VaeU, Ir >0, Bla,r) CU

Remarques

1. En fait, on va chercher ici a généraliser quelques résultats obtenus pour les fonctions d’une variable réelle a valeurs
réelles et prolonger correctement les notions de limite, continuité, continuité uniforme pour des applications définies
sur un espace vectoriel normé.

2. Par contre, la notion d’ouvert dépendra de I’espace vectoriel considéré : par exemple, dans R les intervalles ouverts de
la forme ]a, b[ sont évidemment des ouverts, mais dans C, ces mémes intervalles ne sont pas ouverts !

Propriété 1 (la boule ouverte désigne une partie ouverte).]

Soient a € E,r > 0 et considérons la boule B(a,r). Alors, B(a,r) désigne une partie ouverte de E.

» Les boules étant convezes, on peut faire un dessin et considérer pour tout x € B(a,r) la boule B(z, 3(r—|lz—al)) C B(a,r).

{Propriété 2 (opérations sur les parties ouvertes).]

Par convention, () et E sont des parties ouvertes. De plus,

1. toute réunion quelconque de parties ouvertes est toujours ouverte.

2. une intersection finie de parties ouvertes est ouverte.

» Pour ces deux points, on veillera a construire une boule ouverte incluse encore dans la partie considérée.
Remarque Attention, I'intersection quelconque de parties ouvertes n’est pas nécessairement ouverte. On peut considérer :

ﬂ ] —1/n,1/n[= {0} qui n’est pas ouverte dans R
neN*

Définition Soit F' une partie non vide de E. On dit que F' est un fermé ou désigne une partie fermée de FE si son complémentaire
CF dans F est ouvert.

Remarque Attention, ce n’est pas parce qu’une partie n’est pas fermée qu’elle est ouverte... par exemple, dans R, I'intervalle
[0,1] n’est ni ouvert, ni fermé.

Propriété 3 (la boule fermée désigne une partie fermée).]

Soient a € E,r > 0 et considérons la boule Bf(a,r). Alors, By(a,r) désigne une partie fermée de E.

> Les boules étant convezes, on peut faire un dessin et considérer pour tout x & By(a,r) la boule ouverte B(z, 1 (|la — z| —
c
r)) C* By(a,r).
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{Propriété 4 (opérations sur les parties fermées).]

Par convention, () et E sont des parties fermées. De plus,

1. toute intersection quelconque de parties fermées est toujours fermée.

2. une réunion finie de parties fermées est fermée.

» C’est immédiat : on passe au complémentaire dans E et on retrouve les propriétés sur les parties ouvertes de E.
Remarque Attention, la réunion quelconque de parties fermées n’est pas nécessairement fermée. On peut considérer :

U [-1+1/n,1—1/n] =] —1,1] qui n’est pas fermée dans R
neN*

Propriété 5 (caractérisation séquentielle des fermés).]

Soit F' une partie non vide de E. Alors, F' est une partie fermée si et seulement si pour toute suite (z,) € F™ convergente
de limite x, alors x € F.

» On procéde par double implication. Pour le sens direct, on peut raisonner par l'absurde et supposer que © € ©F ouvert
dans E. Pour le sens réciproque, on raisonne encore par l’absurde.

Remarques

1. Cette propriété est tres pratique : ainsi, par passage a la limite dans les inégalités, on retrouve facilement que toute
boule fermée ou sphere sont fermées dans F.

2. Si des normes sont équivalentes, alors la caractérisation séquentielle est donc indépendante du choix de la norme et
ainsi, on pourra retenir que ces notions toplogiques ne dépendront pas du choix de la norme lorsque celles-ci sont
équivalentes. Ce sera évidemment le cas des espaces vectoriels de dimension finie.

D’ailleurs, dans ce cas particulier, on aura aussi un autre résultat fort utile :

Propriété 6 (des sous-espaces vectoriels en dimension ﬁnie).]

On suppose que E est de dimension finie, et on note F' un sous-espace vectoriel de E. Alors, F' est une partie fermée de E.

» On construit une base de F' qu’on compléte en une base de E, puis en revenant a la caractérisation séquentielle et en
utilisant la norme infinie, on montre que ¢ € F'.

Remarque En particulier, £ étant lui-méme un sous-espace vectoriel de F, on retiendra que tout espace vectoriel de dimen-
sion finie est fermée. Par exemple, on retiendra que My, (R) est fermé, mais aussi S, (R), An(R)... sont fermés.

Définition Soit A une partie non vide de E et considérons a € E.

o
e On dit que a est un point intérieur 4 A qu’on note a € A s’il existe » > 0 tel que :

B(a,r) C A

e On dit que a est un point adhérent a2 A qu’on note a € A si pour tout r > 0,
B(a,r)NA#0
c’est & dire que toute boule ouverte centrée en a rencontre nécessairement A.

e On dit que a est un point a la frontiére de A si a est un point adhérent & A, mais sans étre a I'intérieur de A, et ainsi la
frontiére de A n’est rien d’autre que :

Fr(A)=A— A
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Propriété 7 (caractérisation séquentielle des points adhc’rcnts).]

Soit A une partie non vide de F et considérons a € E. Alors, a € A si et seulement sil existe (a,,) € A" telle que ay, —+> a.
n—-+oo

» On procéde encore par double implication. Pour le sens direct, il suffit de prendre r = 1/n pour construire une telle suite
de points de A convergente. Pour le sens réciproque, il suffit on traduit la convergence avec € = r/2 > 0, ou r désigne le
rayon de la boule considérée.

{Propriété 8 (interprétation topologique de I'intérieur et de adhérence d’une partic).]

Soit A une partie non vide de E.
1. L’ensemble des points intérieurs a A est le plus grand ouvert de F inclus dans A : il est appelé intérieur de A et il

sera encore noté A.

2. L’ensemble des points adhérents & A est le plus petit fermé de I contenant A : il est appelé adhérence de A et il sera
encore noté A.

» A chaque fois, il suffit de procéder en trois temps : par exemple, on vérifie que c’est un ouvert, inclus dans A et le plus
grand parmi ces derniers au sens de l’inclusion.

o J—
Remarque On en déduit immédiatement : A est ouvert < A = A. De méme, A est fermé < A = A.

Exemple 1 On se place dans E un K-espace vectoriel muni de la norme |.||.

1. Notons F' un sous-espace vectoriel de E. Montrer que F' est encore un sous-espace vectoriel de F.

2. Soit H un hyperplan de E. Etablir alors que H = H ou H = E.

Définition Soit A une partie non vide de E. On dit alors que A est dense dans E si I'une de ces assertions équivalentes est
vérifiée :

1. A=E
2. pour tout x € E, x € A, c’est a dire que toute boule ouverte centrée en x rencontre nécessairement A.

3. pour tout z € E, il existe une suite (a,) € A" telle que a, — z.
n——+oo

Encore une fois, on retiendra ce dernier point : il s’agit de la caractérisation séquentielle de la densité qui nous a déja permis
de mettre en avant quelques parties denses :

e dans R, Q et R — Q sont denses dans R :

par exemple, pour tout nombre réel z, il existe (gn) € Q" telle que g, —> .

e dans CM([a,b],R) muni de la norme infinie, £([a, b], K) est dense dans CM({a, b], K) :

pour toute fonction f continue par morceaux sur [a,b], il existe (¢n) € E([a,b],K)N telle que ¢n ‘%? f. Cest le
théoréme d’approximation uniforme par des fonctions en escalier.

e dans C%([a, b],R) muni de la norme infinie, R[X] est dense dans C°([a, b],R) :
pour toute fonction f continue sur [a,b], il existe (P,) € R[X]Y telle que P, (HLE f. Cest le théoréeme de
Stone-Weiertrass qui livre ce résultat d’approximation uniforme par des fonctions polynémes.

Mais il y en a d’autres qu’il faudra aussi connaitre, car elles sont utiles pour les oraux.

Exemple 2 On se place dans M, (K) qu’on munit de la norme ||.||c définie par : ||Al|cc = maxi<; j<n |a@ij|-

1. Soit A € M, (K). On consideére la suite (A,) définie pour tout p € N* par A, = A — %.In.
Justifier qu'il existe un rang po a partir duquel A, € GL, (K).

2. En déduire que GL,(K) = M, (K).
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Remarques

1. Encore une fois, si deux normes sont équivalentes, alors la densité ne dépendra du choix de la norme. Par exemple, les
normes étant toutes équivalentes en dimension finie, on pourra donc retenir qu’on a toujours :

GL(K) = Mn(K)

et cela, peu importe la norme utilisée dans M, (K).

2. Pour finir, on peut aussi considérer une partie A de E et définir des ouverts et fermés relatifs & A : on parle de
topologie induite, et naivement les ouverts de A peuvent étre vus comme des ouverts de E interceptés avec A, et les
fermés de A peuvent étre vus comme des fermés de E interceptés avec A.

1.2 Limite et continuité d’une application

Définition Soient (E, ||.||g) et (F, ||.||r) deux K-espaces vectoriels normés, et notons A une partie de E et f: A — F.

e On dit que f a une limite en un point a adhérent a A s’il existe £ € F', appelé limite de f en a suivant A si :

Ve>0,da>0,Vz €A, [[z—a|llg <a=|f(z)—L|r<e

e On dit que f est continue en un point a € A si :

Ve >0, Ja >0, Ve € A, ||z —a|leg <a=|f(z)— fla)]lr <€

Remarques

1. On retrouve ici les définitions de limite et continuité telles qu’elles vous ont été présentées I’an dernier. D’ailleurs, on
peut aussi interpréter la définition d’une limite en termes de voisinages :

YV eV, 3U eV(a), fUNA) CV

2. On peut encore montrer que cette limite est unique et elle est notée limgy—4 f(x).

3. D’ailleurs, si f possede une limite finie en un point adhérent a, on dit encore que f est prolongeable par continuité
et on pose f(a) = limgy—q f(2).

Corollaire 9 (relation immédiate).]

Soient (E, ||.||z) et (F,||.||r) deux K-espaces vectoriels normés, et notons A une partie de E et f : A — F. Alors, on a
immédiatement :
f est continue en a & f(z) — f(a)

r—ra

{Corollaire 10 (caractérisation séquentielle de la limite ou de la continuité).]

Soient (E, ||.||g) et (F, ||.]|r) deux K-espaces vectoriels normés, et notons A une partie de E, £ € F et f: A — F. Alors, on
a les équivalences suivantes :

1. f(x) — £ < pour toute suite (z,) € A" telle que zn, — a, f(zn) = L.
r—a n——+oo

2. f(z) — f(a) & pour toute suite (z,) € A" telle que =, — a, f(zn) — f(a).

T—a n—-+oo

» Le deuxieme point étant un cas particulier du premier, on se contente de démontrer la premiére équivalence par double
implication : on raisonnera par l’absurde pour le sens réciproque.

Remarques

1. En fait, ces deux caractérisations sont fondamentales.

e La premiere est trés utile pour justifier justement qu’une application n’a pas de limite en un point donné : il
suffit d’exhiber deux suites qui tendent vers a, mais dont les suites images par f n’ont pas le méme comportement
asymptotique.

e La seconde sera tres utile pour étudier des fonctions & parametre, notamment les intégrales & parametre car en
discrétisant ainsi le probleme, on peut se ramener au théoreme de convergence dominée.

www.cpgemp-troyes.fr 5


http://www.cpgemp-troyes.fr/

Chapitre 7
MP - Lycée Chrestien de Troyes Espaces vectoriels normés et propriétés topologiques

2. On en déduit que pour toute fonction prolongeable par continuité, si a est un point adhérent & A, alors f(a) est adhérent

a f(A).

3. Enfin, cette caractérisation séquentielle nous permet de retrouver toutes les opérations usuelles sur les limites qui avaient
été étudiées pour les suites a valeurs dans un espace vectoriel normé :

{Propriété 11 (opérations sur les limites).}

Soient (E, ||.||£) et (F,||.]|r) deux K-espaces vectoriels normés, et notons A une partie de E, ¢1,{2 € F et f,g: A— F. On
a encore :

L si f(z) — £, alors || f(z)]| — [|4]].
Et en particulier, cela nous donne que pour toute fonction f continue sur A, || f||# est continue sur A.
2. si f(z) — b1 et g(x) —> Lo, alors A.f(z) + g(x) — Alq + Lo.
r—a r—a r—ra
Et en particulier, cela nous donne que pour toutes fonctions f, g continues sur A, A.f + g est continue sur A.

3. si f(z) — €1 et g(x) — {2, et en supposant que fg ait un sens et que la norme ||.||7 est une norme d’algebre, alors
r—a r—a

f(@)g(z) — lilo.
Et en particulier, cela nous donne que pour toutes fonctions f, g continues sur A, fg est continue sur A.

{Propriété 12 (cas particulier de la composition).]

Soient (E, ||.||g), (F,|.|lF) et (G, ||.]l¢) trois K-espaces vectoriels normés, et notons A une partie de E, B une partie de F' et
f:tA— F,g: B— G. On a encore :

flz) —beB
r—a Z
oX) e T9°I@ 3
X—b

En particulier, cela nous donne que pour toutes fonctions f, g continues, et sous réserve d’existence, go f est continue sur A.

{Propriété 13 (caractérisation ensembliste des applications continues).]

Soient (E,|.||) et (F,||.||r) deux K-espaces vectoriels normés, et f : E —» F. Les assertions suivantes sont équivalentes :

1. f est continue sur F.
2. I'image réciproque de tout fermé de F' par f est un fermé de FE.

3. limage réciproque de tout ouvert de F' par f est un ouvert de F.

» On procéde par cycle. Seule la derniere implication peut étre difficile : on pourra revenir a la définition en e.

Remarques

1. Ce résultat est trés pratique notamment pour les fonctions a valeurs réelles ou complexes... puisqu’il sera treés facile
d’identifier une partie ouverte ou fermée. Par exemple,

M € GL,(K) & det(M) # 0 < det(M) € K* et ainsi, GL, (K) = det™ ' (K*)

Le déterminant étant une application continue (nous le verrons plus tard), on en déduit que GL,,(K) est nécessairement
une partie ouverte de M, (K), en tant qu’image réciproque d’un ouvert par une application continue.

2. Et quand celui-ci peut étre appliqué a ’identité, il nous permet de relier les ouverts et les fermés d’un espace a l'autre.
Ce sera la une astuce a avoir en téte quand on travaillera sur un espace vectoriel muni de normes distinctes.

Propriété 14 (cas d’égalité d’applications continues sur une partie dense).]

Soient (E, ||.||£) et (F,||.||r) deux K-espaces vectoriels normés, et considérons f, g deux aplications continues sur F a valeurs
dans F. Si de plus, f et g coincident sur une partie A dense dans E, alors pour tout z € E, f(z) = g(x).
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» C’est immédiat : en considérant x € E, celui-ci peut-étre vu comme un point adhérent a A et on conclut a l'aide de la
caractérisation séquentielle de la continuité.

Exemple 3 Soit n > 2. Les questions suivantes sont indépendantes.

1. Justifier rapidement que GL,,(K) est dense dans M, (K). Fixons B € M, (C), montrer alors que pour tout A € M,,(C), les
polynomes caractéristiques xap et xBa sont égaux.

2. On note D, (C) '’ensemble des matrices de M., (C) diagonalisables sur C, et on rappelle que D, (C) = M, (C). Montrer alors
que pour tout A € My, (C), xa(A) = On.

Définition Soient (E, ||.||g) et (F,|.||r) deux K-espaces vectoriels normés, et f: E — F. On dit aussi que :

e f est lipschitzienne s’il existe k > 0 telle que pour tout (z,9) € E?, ||f(z) — fW)|lr < kllz — y| 5.
e f est uniformément continue si :

Ve>03a>0,V(xy €E le—ylp <a=|f(@) - fWlr<e

{Corollaire 15 (immédiat) ]

Soient (E, ||.||g) et (F,||.]|r) deux K-espaces vectoriels normés, et f: E — F. Alors, on a :

f est lipschitzienne = f est uniformément continue = f est continue

» Cela va assez vite, il suffit a chaque fois de fizer le bon parameétre.

1.3 Cas particulier des applications linéaires continues

{Théoréme 16 (caractérisation de la continuité pour les applications linéaires).]

Soient (E,|.|g) et (F,|.||r) deux K-espaces vectoriels normés, et f € L(E,F). Alors, les assertions suivantes sont
équivalentes:

1. f est lipschitzienne sur E.

2. f est continue sur E.

3. f est continue en 0.

4. f est bornée sur la boule unité fermée : Ik > 0, Vz € B¢ (0g, 1), ||f(2)|lr < k.

5. il existe k > 0 tel que pour tout = € E, || f(2)||r < k|lz|&.

» On procéde la encore par cycle, et on n’hésitera pas a normaliser les vecteurs pour rentrer dans la boule unité.

{Propriété 17 (norme subordonnée d’une application linéaire continue).]

Soient (E, ||.||g) et (F,||.]|r) deux K-espaces vectoriels normés, et f € L(E, F) qu’on suppose continue sur E. Alors, les réels
My, My et M3 définis par :

My =sup{ L o 2 05}, s —supl7@Ilr, llolle <1 . M = sup{lF @), lle = 1)

existent et on a M; = My = Ms.

Ce réel sera aussi noté ||| f]|| et il désigne la norme de f subordonnée aux normes |.|g et |.|| .

» L’existence est immédiat a ’aide des axiomes d’existence sur R. Pour les égalités, on travaille simplement par antisymétrie.

Remarque Pour une application linéaire f : E — F qu’on suppose continue sur E, on a donc toujours :
Ve e B, ||f(@)llr <[lIfIIlIz]e

et la norme subordonnée peut aussi étre vue comme le plus petit entier k > 0 réalisant I'inégalité ||f(z)||r < k||z||E et ceci
pour tout z € E.
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Exemple 4 Les questions suivantes sont indépendantes.

1. Soit f € L(FE) qu’on suppose continue sur F et notons A une valeur propre de f. Montrer que nécessairement :
AL < 1I1LAI

2. On se place dans E = C°([a,b],R) et on définit ¢ : E — R par :

b
6(f) = / F(t) dt

(a) On munit E de la norme ||.||; et R de la valeur absolue.
Justifier que ¢ est continue sur E et établir que sa norme subordonnée est |||¢]||1 = 1.

(b) On munit E de la norme ||.||2 et R de la valeur absolue.
Justifier que ¢ est continue sur E et établir que sa norme subordonnée est |||d|||2 = Vb — a.

(c) On munit E de la norme ||.||o et R de la valeur absolue.
Justifier que ¢ est continue sur E et établir que sa norme subordonnée est |||¢|||cc = b — a.

Propriété 18 (la norme subordonnée est une norme sur L.(F, F))]

Soient (E, ||.||g) et (F,||.||r) deux K-espaces vectoriels normés. Alors, ’ensemble des applications linéaires continues de E
dans F est un K-espace vectoriel noté L.(E, F') et Papplication ||[.]|| : f — ||| f]|| est une norme sur L.(E, F).

» Les propriétés sur les fonctions continues nous permettent d’affirmer que L.(E, F)est bien un K-espace vectoriel. Reste a
montrer que Uapplication |||.||| est une norme : on revient simplement a la définition.

{Propriété 19 (composition d’applications linéaires continues).]

Soient (E, ||.||g), (F,|.]|F) et (G, |.]|c) trois K-espaces vectoriels normés et considérons f € L.(E, F) et g € L.(F,G). Alors,
on a immédiatement :

L gof e Le(E,G) et |llgo fIIl < [glllNIFNN-

2. Et en particulier, L.(FE), ensemble des endormophismes continus sur E, est une K-algébre pour laquelle |||.||| désigne
une norme d’algebre.

» La continuité est immédiate. On revient alors a la définition de la norme triple pour obtenir la majoration.

Remarque On pourra retenir par exemple que |||idg||| = 1 et que pour tout k& € N et pour tout f € L.(E), |[|F*| < I £]]|*F.

Théoréme 20 (cas particulier des applications linéaires en dimension ﬁnie).]

Soient (E,|.||r) et (F,||.||r) deux K-espaces vectoriels normés. Si de plus, E est de dimension finie n > 1, alors toute
application linéaire f € L(E, F) est nécessairement continue.

» On revient & la caractérisation pour les applications linéaires, puis on cherche d contréler || f(z)||r & laide de la norme
infinie avant de conclure par équivalence des normes en dimension finie.

Remarques

1. On fera par exemple tres attention a ’oral : si on vous donne un exercice mettant en jeu des suites de matrices, on
peut toujours travailler par opérations sur les suites vectorielles dans une algébre normée... mais on peut aussi prendre
I’habitude de reconnnaitre des applications linéaires en dimension finie.

C’est d’ailleurs ce que nous avions évoqué pour le calcul de I’exponentielle d’une matrice diagonalisable :
N
k=0 & (0)

(0)

=Dy

p k
VpGNZ%:P P ' =¢(D,) , avec ¢ : X —s PXP !
k=0

A1
e 0)
¢ étant linéaire en dimension finie, elle est continue et par passage & la limite, il vient : ¢(D,) — P < . ) P~
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2. Encore une fois, en dimension finie, on peut identifier une matrice A € M, (K) et ’endomorphisme caniniquement
associé ug : X € Mp1(K) — AX. Dans ce cas, ua est continue par linéarité et on pourra aussi noter :

[AX]

Alll = ua = sup )
AN = [[lwalll {HXH

X #0}

{Théor‘eme 21 (caractérisation de la continuité pour les applications bilinéaires).}

Soient (E1, ||.][1), (E2, ||.]|2) et (F, ||.||r) des K-espaces vectoriels normés, et considérons l'espace vectoriel produit E = E; X E
muni de la norme N, définie par :
Noo (1, x2) = max([|z1]|1, [|z2[|2)

Alors, pour toute application bilinéaire f : E1 x Es — F', les assertions suivantes sont équivalentes :

1. f est continue sur E.
2. f est continue en 0g = (0p,,0g,).
3. f est bornée sur la boule unité fermée : 3k > 0, Va € By (0g, 1), ||f(z1,z2)||Fr < k.

4. il existe k > 0 tel que pour tout (z1,z2) € E, || f(z1,z2)||r < k|lz1|1- .. ||z2]|2-

» On procéde par cycle. Seul le dernier point sera délicat : on reviendra d la définition de la continuité en un point a = (a1, a2)
fizé dans E.

{Théoréme 22 (caractérisation de la continuité pour les applications n-linéaires).}

Soient (E1, ||.|1),---, (Ep,|.llp) et (F,|.||r) des K-espaces vectoriels normés, et considérons I’espace vectoriel produit E =
FEq x ... x E, muni de la norme N, définie par :

Noo(-Tl, s axp) = maX(Hxl”l: B H"EPHP)
Alors, on admet que pour toute application p-linéaire f : F1 X ... x E, — F, on peut généraliser le résultat précédent et

les assertions suivantes sont encore équivalentes :

1. f est continue sur E.
2. f est continue en Og = (Og,,...,08,).
3. f est bornée sur la boule unité fermée : 3k > 0, Va € By (0g, 1), ||f(z1,...,zp)||lFr < k.

4. il existe k > 0 tel que pour tout (z1,...,2p) € E, ||f(z1,...,2p)||lFr < kllz11 .- ||zpllp-

{Théor‘eme 23 (cas particulier des applications p-linéaires en dimension ﬁnie).]

Soient (E1, ||.]|1),---, (Ep,|.|lp) et (F,|.||r) des K-espaces vectoriels normés, et considérons I’espace vectoriel produit E =
E1 x ... x Ep muni de la norme N, définie par :

Noo(l'h S 71',17) = maX(Hxl”l: co00g prHp)
Si de plus, les espaces vectoriels Ei, ..., E, sont de dimension finie n; > 1, alors toute application p-linéaire f € L(E, F) est

nécessairement continue.

» On revient a la caractérisation pour les applications linéaires, puis on cherche a contréler ||f(z1,...,zp)||F & Uaide de la
norme infinie sur chacun des sous-espaces avant de conclure par équivalence des normes en dimension finie.

Remarque On peut alors montrer par linéarité que de nombreuses applications sont continues sur M, (K) : les applications
produit A — XA, A — AM et (A, M) — AM, sont continues et donc par opérations sur ces fonctions, que toute
expression polynomiale en une matrice donnée est continue.

D’ailleurs, on justifiera de la méme fagon, que le déterminant, le produit scalaire ou la trace désignent des applications
continues sur M, (K).
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2 Quelques théorémes fondamentaux

2.1 Parties compactes d’un espace vectoriel normé

Définition Soit (E, ||.||) un K-espace vectoriel normé et considérons K une partie non vide de E.
On dit que la partie K est compacte si toute suite (z,) d’éléments de K posséde au moins une valeur d’adhérence dans K, c’est
a dire que de toute suite (z,) € K N on peut extraire une sous-suite convergente dans K.

Remarques

1. On fera attention car il s’agit de vérifier deux choses : d’une part, que de toute suite d’éléments K, on peut extraire
une sous-suite convergente et que d’autre part, la limite reste bien dans K. On parle parfois de la ”propriété de
Bolzano-Weiertrass”.

2. En particulier, la notion de convergence étant indépendante par des normes équivalentes, la compacité ne dépendra pas
directement du choix de la norme équivalente retenue.

Propriété 24 (une partie compacte est fermée et bornée) ]

Soit (E, ||.||) un K-espace vectoriel normé et notons K une partie non vide de E. Si de plus, K est compacte, alors elle est
fermee et bornée.

» Le premier point est évident en se ramenant a la caractérisation séquentielle des fermés. Pour le scond point, on pourra
raisonner par l’absurde.

Corollaire 25 (fermé d’une partie compacte) ]
Soit (E,|.||) un K-espace vectoriel normé et notons K une partie compacte de E. Si F' est une partie fermée de K, alors F’
est aussi une partie compacte.

» C’est immédiat puisque F C K, donc toute suite d’éléments de F vérifie la propriété de Bolzano- Weiertrass.

Corollaire 26 (suite d’éléments d’une partie compacte).]
Soit (E,]|.]) un K-espace vectoriel normé et notons K une partie compacte de E. Alors, toute suite (z,) € K" converge si

et 5eulement si elle admet une unique valeur d’adhérence.

» Le sens direct est immédiat si on connait la relation entre une suite convergente et ses suites extraites. Pour le sens
réciproque, on est ramené au critére de convergence des suites bornées vu en début d’année : on peut d mouveau le prouver
en raisonnant par l’absurde et en supposant que wn, +— L.

Soit (E, ||.]]) un K-espace vectoriel normé et considérons K une partie non vide de E. Si de plus, E est de dimenison finie
n > 1, alors les parties compactes sont exactement les parties fermées et bornées.

FTheoreme 27 (cas particulier des parties compactes en dimension ﬁnie).]

» Le sens direct a été prouvé plus tét. Pour le sens réciproque, on n’hésitera pas d réinvestir le théoréme de Bolzano-
Weiertrass qui a été vu en début d’année.

Remarques

1. On retrouve ici le cas de la droite réelle et par exemple, les segments de la forme [a, b] sont des parties compactes de
R, mais ce ne sont pas les seules puisque la réunion finie de deux segments disjoints sera aussi compacte, en tant que
partie fermée et bornée.

2. En dimension finie, toute les boules fermées de la forme By (a,r) sont nécessairement compactes car elles sont fermées
et aussi bornées :
Ve € By(a,r), |zl < llz = all + [la]| <7+ [la]
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Exemple 5 Les questions suivantes sont indépendantes.

1. On se place dans R[X]| muni de la norme infinie :
|Plow = max fax]

(a) Justifier rapidement que la boule unitée fermée est bien une partie fermée et bornée.

(b) En utilisant la suite des monémes (X™), montrer que By(Og[x], 1) n’est pas compacte.
2. On considére une suite (u,) € K" qu’on suppose bornée, et on note A I’ensemble des valeurs d’adhérence de la suite (uy).
(a) Justifier que A est non vide.

(b) Etablir que A = Npen{un,n > p}, puis en déduire qu’il s’agit d’une partie compacte de K.

2.2 Applications continues sur un compact

{Théoréme 28 (image continue d’un compact et théoréme des bornes atteintes).]

Soient (E, ||.||&), (F,||.]|r) deux K-espaces vectoriels normés et considérons f : E — F une application continue.

1. Si K est une partie compacte de E, alors f(K) est compacte dans F.

2. Et dans le cas particulier ot F = R, alors f(K) est fermée et bornée dans R. 1l existe (a,b) € K> tel que :

{minf(K) = f(a)

max f(K) = f(b) et ainsi, pour tout € K, f(a) < f(z) < f(b)

» Pour le premier point, on revient a la définition d’une partie compacte. Pour le soncd point, on pourra justifier ’existence
des bornes, avant de montrer qu’elles sont réellement atteintes.

Remarque Ce théoréme est fondamental, car c’est lui qui nous permet a partir du théoreme de Bolzano-Weiertrass dans
(E, ||I-llss) de justifier que toutes les normes sont équivalentes en dimension finie.

On aborde ici un exemple d’application du théoréeme des bornes atteintes... il est tres classique et il faudra étre capable de le
refaire, d’autant que ce résultat amorce une des preuves du théoréeme de D’Alembert-Gauss !

Exemple 6 Soient (E, ||.||g), (F,|-]|r) deux K-espaces vectoriels normés. On suppose que E est de dimension finie n > 1 et on
considere f : E — F qu’on suppose continue sur E et telle que :

If@)r

Izl z—+o0

Montrer que || f||7 posséde un minimum absolu sur E.

{Théoréme 29 (de Heine).]

Soient (E,|.||g), (F, |.]|r) deux K-espaces vectoriels normés et considérons f : E — F une application continue. Si K est
une partie compacte de F, alors f est uniformément continue sur K de sorte que :

Ve>0,3a>0,V(z,y) €A [lz—yle <a=|f@) - fy)llr <e

» On raisonne par labsurde et avec o = 1/n, on construit des suites (un) et (vy) de K~ qu’on utilisera pour obtenir une
contradiction.

2.3 Parties connexes d’un espace vectoriel normé

Définition Soit (E, ||.||) un K-espace vectoriel normé et considérons C' une partie non vide de E.
On dit que la partie C' est connexe par arcs si pour tout couple (z,y) € C? il existe une application continue ~ : [0,1] — C|
telle que :

¥(0)=zety(1) =y

On dit aussi que 7 représente un arc reliant les vecteurs z et y.

Remarques

1. Autrement dit, une telle partie est toujours d’un seul tenant puisqu’on peut passer d’un point & un autre par un chemin
continu a valeurs dans C.
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2. De la méme fagon,

e une partie C' convexe est nécessairement connexe par arcs. En effet, si (z,y) € C’27 alors en posant (t) =
tz 4+ (1 — t)y, on construit un chemin continu & valeurs dans C' tel que v(1) = z et v(0) = y.

e les intervalles de R représentent exactement les parties connexes par arcs de R.

3. Par contre, on essaiera quand méme de distinguer les notions de partie convexe et de partie connexe par arcs.

Propriété 30 (image continue d’une partie connexe par arcs).]

Soient (E, ||.||g), (F,|.]|r) deux K-espaces vectoriels normés et considérons f : E — F une application continue. Si de plus
C' est une partie connexe par arcs de F, alors f(C) est encore connexe par arcs.

» C’est immédiat : si (z,y) € f(C), alors en notant (¢,t') des antécédents par f, il existe un arc reliant t et t' de sorte que
fory relie x et y.

Corollaire 31 (théoreme général des valeurs intermédiaires).}

Soit (E, ||.]|g) et considérons f: E — R une application continue. Si de plus C' est une partie connexe par arcs de E, alors
f(C) est un intervalle.

» C’est immédiat : d’aprés la propriété précédente, f(C) est connexe par arcs dans R, c’est donc un intervalle car par
définition, ce sont les parties de R constituées d’un seul tenant.
Remarques

1. Si E =R, on retrouve évidemment le théoréme des valeurs intermédiaires : si f est une fonction continue et non
constante, alors I'image d’un intervalle par f est encore un intervalle.

2. La connexité est une notion tres délicate. Par exemple, on pourra voir que GL,,(C) est connexe par arcs en utilisant la
surjectivité de ’exponentielle de matrices... Mais attention, le résultat n’est pas vraie sur R.

3. Parfois, on préfere démontrer que la partie A est étoilée, c’est a dire qu’il existe a € A tel que pour tout x € A,
[a;2] .= {(1—t)a+tz, t€[0,1]} C A

En effet, en considérant (x,y) € A%, on peut alors construire un chemin continu inclus dans A joignant z et y de la
forme :

a+(1-2t)(zx—a), sit<1/2

a+(2t—1)(y—a)sit>1/2

Vtel[0,1],y(t) = {
et ainsi, A est nécessairement connexe par arcs.

Exemple 7 Les questions suivantes sont indépendantes.

1. Montrer que D Iensemble des matrices de M, (R) diagonalisables sur R est connexe par arcs. On pourra montrer que D est
une partie étoilée.

2. Justifier que GL,,(R) n’est pas connexe par arcs.
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