
Espaces vectoriels normés et propriétés topologiques

Chapitre 7

En début d’année, nous avons travaillé sur la notion d’espaces vectoriels normés.
Dans ce chapitre, il s’agit d’aller plus loin et d’étudier les applications définies sur un
espace vectoriel normé à valeurs dans un espace vectoriel normé.
Cela nous donnera l’occasion de définir les parties ouvertes ou fermées qui définissent
la topologie d’un tel espace. Si ces notions peuvent être difficiles, on veillera à en
comprendre l’intérêt dans l’étude des applications continues et les nombreux théorèmes
qui leur sont associés.
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1.2 Limite et continuité d’une application . . . . . . . . . . . . . . . . . . 5
1.3 Cas particulier des applications linéaires continues . . . . . . . . . . . 7
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Programmes 2022

Pour aller plus loin
Ce n’est pas un chapitre long, mais plutôt technique : on pourra alors retenir quelques théorèmes fondamentaux et utiles
pour les exercices d’oraux, et on essaiera surtout de voir comment la dimenson finie nous permet encore de simplifier à chaque
fois l’étude de nos opérateurs linéaires.
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1 Topologie d’un espace vectoriel normé et étude locale

1.1 Premières définitions

On se place dans E un K-espace vectoriel muni d’une norme ‖.‖, c’est à dire une application définie sur E à valeurs dans R+

telle que : 
‖.‖ vérifie la condition de séparation

elle est homogène

elle vérifie l’inégalité triangulaire

De plus, on rappelle qu’on appelle boule ouverte centrée en a ∈ E et de rayon r > 0 et boule fermée centrée en
a ∈ E et de rayon r > 0 les sous-ensembles :

B(a, r) = {x ∈ E, ‖x− a‖ < r} et Bf (a, r) = {x ∈ E, ‖x− a‖ ≤ r}

Définition Soit U une partie non vide de E. On dit que U est un ouvert ou désigne une partie ouverte de E si U contient un
voisinage de chacun de ces points, c’est à dire :

∀ a ∈ U, ∃ r > 0, B(a, r) ⊂ U

Remarques

1. En fait, on va chercher ici à généraliser quelques résultats obtenus pour les fonctions d’une variable réelle à valeurs
réelles et prolonger correctement les notions de limite, continuité, continuité uniforme pour des applications définies
sur un espace vectoriel normé.

2. Par contre, la notion d’ouvert dépendra de l’espace vectoriel considéré : par exemple, dans R les intervalles ouverts de
la forme ]a, b[ sont évidemment des ouverts, mais dans C, ces mêmes intervalles ne sont pas ouverts !

Soient a ∈ E, r > 0 et considérons la boule B(a, r). Alors, B(a, r) désigne une partie ouverte de E.

Propriété 1 (la boule ouverte désigne une partie ouverte).

I Les boules étant convexes, on peut faire un dessin et considérer pour tout x ∈ B(a, r) la boule B(x, 1
2
(r−‖x−a‖)) ⊂ B(a, r).

Par convention, ∅ et E sont des parties ouvertes. De plus,

1. toute réunion quelconque de parties ouvertes est toujours ouverte.

2. une intersection finie de parties ouvertes est ouverte.

Propriété 2 (opérations sur les parties ouvertes).

I Pour ces deux points, on veillera à construire une boule ouverte incluse encore dans la partie considérée.

Remarque Attention, l’intersection quelconque de parties ouvertes n’est pas nécessairement ouverte. On peut considérer :⋂
n∈N∗

]− 1/n, 1/n[= {0} qui n’est pas ouverte dans R

Définition Soit F une partie non vide de E. On dit que F est un fermé ou désigne une partie fermée de E si son complémentaire
CF dans E est ouvert.

Remarque Attention, ce n’est pas parce qu’une partie n’est pas fermée qu’elle est ouverte... par exemple, dans R, l’intervalle
[0, 1[ n’est ni ouvert, ni fermé.

Soient a ∈ E, r > 0 et considérons la boule Bf (a, r). Alors, Bf (a, r) désigne une partie fermée de E.

Propriété 3 (la boule fermée désigne une partie fermée).

I Les boules étant convexes, on peut faire un dessin et considérer pour tout x 6∈ Bf (a, r) la boule ouverte B(x, 1
2
(‖a− x‖ −

r)) ⊂C Bf (a, r).
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Par convention, ∅ et E sont des parties fermées. De plus,

1. toute intersection quelconque de parties fermées est toujours fermée.

2. une réunion finie de parties fermées est fermée.

Propriété 4 (opérations sur les parties fermées).

I C’est immédiat : on passe au complémentaire dans E et on retrouve les propriétés sur les parties ouvertes de E.

Remarque Attention, la réunion quelconque de parties fermées n’est pas nécessairement fermée. On peut considérer :⋃
n∈N∗

[−1 + 1/n, 1− 1/n] =]− 1, 1[ qui n’est pas fermée dans R

Soit F une partie non vide de E. Alors, F est une partie fermée si et seulement si pour toute suite (xn) ∈ FN convergente
de limite x, alors x ∈ F .

Propriété 5 (caractérisation séquentielle des fermés).

I On procède par double implication. Pour le sens direct, on peut raisonner par l’absurde et supposer que x ∈ CF ouvert
dans E. Pour le sens réciproque, on raisonne encore par l’absurde.

Remarques

1. Cette propriété est très pratique : ainsi, par passage à la limite dans les inégalités, on retrouve facilement que toute
boule fermée ou sphère sont fermées dans E.

2. Si des normes sont équivalentes, alors la caractérisation séquentielle est donc indépendante du choix de la norme et
ainsi, on pourra retenir que ces notions toplogiques ne dépendront pas du choix de la norme lorsque celles-ci sont
équivalentes. Ce sera évidemment le cas des espaces vectoriels de dimension finie.

D’ailleurs, dans ce cas particulier, on aura aussi un autre résultat fort utile :

On suppose que E est de dimension finie, et on note F un sous-espace vectoriel de E. Alors, F est une partie fermée de E.

Propriété 6 (des sous-espaces vectoriels en dimension finie).

I On construit une base de F qu’on complète en une base de E, puis en revenant à la caractérisation séquentielle et en
utilisant la norme infinie, on montre que ` ∈ F .

Remarque En particulier, E étant lui-même un sous-espace vectoriel de E, on retiendra que tout espace vectoriel de dimen-
sion finie est fermée. Par exemple, on retiendra que Mn(R) est fermé, mais aussi Sn(R), An(R)... sont fermés.

Définition Soit A une partie non vide de E et considérons a ∈ E.

• On dit que a est un point intérieur à A qu’on note a ∈
◦
A s’il existe r > 0 tel que :

B(a, r) ⊂ A

• On dit que a est un point adhérent à A qu’on note a ∈ A si pour tout r > 0,

B(a, r) ∩A 6= ∅

c’est à dire que toute boule ouverte centrée en a rencontre nécessairement A.

• On dit que a est un point à la frontière de A si a est un point adhérent à A, mais sans être à l’intérieur de A, et ainsi la
frontière de A n’est rien d’autre que :

Fr(A) = A−
◦
A
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Soit A une partie non vide de E et considérons a ∈ E. Alors, a ∈ A si et seulement s’il existe (an) ∈ AN telle que an −→
n→+∞

a.

Propriété 7 (caractérisation séquentielle des points adhérents).

I On procède encore par double implication. Pour le sens direct, il suffit de prendre r = 1/n pour construire une telle suite
de points de A convergente. Pour le sens réciproque, il suffit on traduit la convergence avec ε = r/2 > 0, où r désigne le
rayon de la boule considérée.

Soit A une partie non vide de E.

1. L’ensemble des points intérieurs à A est le plus grand ouvert de E inclus dans A : il est appelé intérieur de A et il

sera encore noté
◦
A.

2. L’ensemble des points adhérents à A est le plus petit fermé de E contenant A : il est appelé adhérence de A et il sera
encore noté A.

Propriété 8 (interprétation topologique de l’intérieur et de l’adhérence d’une partie).

I A chaque fois, il suffit de procéder en trois temps : par exemple, on vérifie que c’est un ouvert, inclus dans A et le plus
grand parmi ces derniers au sens de l’inclusion.

Remarque On en déduit immédiatement : A est ouvert ⇔
◦
A = A. De même, A est fermé ⇔ A = A.

Exemple 1 On se place dans E un K-espace vectoriel muni de la norme ‖.‖.

1. Notons F un sous-espace vectoriel de E. Montrer que F est encore un sous-espace vectoriel de E.

2. Soit H un hyperplan de E. Etablir alors que H = H ou H = E.

Définition Soit A une partie non vide de E. On dit alors que A est dense dans E si l’une de ces assertions équivalentes est
vérifiée :

1. A = E

2. pour tout x ∈ E, x ∈ A, c’est à dire que toute boule ouverte centrée en x rencontre nécessairement A.

3. pour tout x ∈ E, il existe une suite (an) ∈ AN telle que an −→
n→+∞

x.

Encore une fois, on retiendra ce dernier point : il s’agit de la caractérisation séquentielle de la densité qui nous a déjà permis
de mettre en avant quelques parties denses :

• dans R, Q et R−Q sont denses dans R :

par exemple, pour tout nombre réel x, il existe (qn) ∈ QN telle que qn −→ x.

• dans CM([a, b],R) muni de la norme infinie, E([a, b],K) est dense dans CM([a, b],K) :

pour toute fonction f continue par morceaux sur [a, b], il existe (φn) ∈ E([a, b],K)N telle que φn
‖.‖∞−→ f . C’est le

théorème d’approximation uniforme par des fonctions en escalier.

• dans C0([a, b],R) muni de la norme infinie, R[X] est dense dans C0([a, b],R) :

pour toute fonction f continue sur [a, b], il existe (Pn) ∈ R[X]N telle que Pn
‖.‖∞−→ f . C’est le théorème de

Stone-Weiertrass qui livre ce résultat d’approximation uniforme par des fonctions polynômes.

Mais il y en a d’autres qu’il faudra aussi connâıtre, car elles sont utiles pour les oraux.

Exemple 2 On se place dans Mn(K) qu’on munit de la norme ‖.‖∞ définie par : ‖A‖∞ = max1≤i,j≤n |aij |.

1. Soit A ∈Mn(K). On considère la suite (Ap) définie pour tout p ∈ N∗ par Ap = A− 1
p
.In.

Justifier qu’il existe un rang p0 à partir duquel Ap ∈ GLn(K).

2. En déduire que GLn(K) =Mn(K).
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Remarques

1. Encore une fois, si deux normes sont équivalentes, alors la densité ne dépendra du choix de la norme. Par exemple, les
normes étant toutes équivalentes en dimension finie, on pourra donc retenir qu’on a toujours :

GLn(K) =Mn(K)

et cela, peu importe la norme utilisée dans Mn(K).

2. Pour finir, on peut aussi considérer une partie A de E et définir des ouverts et fermés relatifs à A : on parle de
topologie induite, et näıvement les ouverts de A peuvent être vus comme des ouverts de E interceptés avec A, et les
fermés de A peuvent être vus comme des fermés de E interceptés avec A.

1.2 Limite et continuité d’une application

Définition Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et notons A une partie de E et f : A −→ F .

• On dit que f a une limite en un point a adhérent à A s’il existe ` ∈ F , appelé limite de f en a suivant A si :

∀ε > 0, ∃α > 0, ∀x ∈ A, ‖x− a‖E ≤ α⇒ ‖f(x)− `‖F ≤ ε

• On dit que f est continue en un point a ∈ A si :

∀ε > 0, ∃α > 0, ∀x ∈ A, ‖x− a‖E ≤ α⇒ ‖f(x)− f(a)‖F ≤ ε

Remarques

1. On retrouve ici les définitions de limite et continuité telles qu’elles vous ont été présentées l’an dernier. D’ailleurs, on
peut aussi interpréter la définition d’une limite en termes de voisinages :

∀ V ∈ V(`), ∃ U ∈ V(a), f(U ∩A) ⊂ V

2. On peut encore montrer que cette limite est unique et elle est notée limx→a f(x).

3. D’ailleurs, si f possède une limite finie en un point adhérent a, on dit encore que f est prolongeable par continuité
et on pose f(a) = limx→a f(x).

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et notons A une partie de E et f : A −→ F . Alors, on a
immédiatement :

f est continue en a⇔ f(x) −→
x→a

f(a)

Corollaire 9 (relation immédiate).

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et notons A une partie de E, ` ∈ F et f : A −→ F . Alors, on
a les équivalences suivantes :

1. f(x) −→
x→a

`⇔ pour toute suite (xn) ∈ AN telle que xn → a, f(xn) −→
n→+∞

`.

2. f(x) −→
x→a

f(a)⇔ pour toute suite (xn) ∈ AN telle que xn → a, f(xn) −→
n→+∞

f(a).

Corollaire 10 (caractérisation séquentielle de la limite ou de la continuité).

I Le deuxième point étant un cas particulier du premier, on se contente de démontrer la première équivalence par double
implication : on raisonnera par l’absurde pour le sens réciproque.

Remarques

1. En fait, ces deux caractérisations sont fondamentales.

• La première est très utile pour justifier justement qu’une application n’a pas de limite en un point donné : il
suffit d’exhiber deux suites qui tendent vers a, mais dont les suites images par f n’ont pas le même comportement
asymptotique.

• La seconde sera très utile pour étudier des fonctions à paramètre, notamment les intégrales à paramètre car en
discrétisant ainsi le problème, on peut se ramener au théorème de convergence dominée.
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2. On en déduit que pour toute fonction prolongeable par continuité, si a est un point adhérent à A, alors f(a) est adhérent
à f(A).

3. Enfin, cette caractérisation séquentielle nous permet de retrouver toutes les opérations usuelles sur les limites qui avaient
été étudiées pour les suites à valeurs dans un espace vectoriel normé :

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et notons A une partie de E, `1, `2 ∈ F et f, g : A −→ F . On
a encore :

1. si f(x) −→
x→a

`1, alors ‖f(x)‖ −→
x→a
‖`1‖.

Et en particulier, cela nous donne que pour toute fonction f continue sur A, ‖f‖F est continue sur A.

2. si f(x) −→
x→a

`1 et g(x) −→
x→a

`2, alors λ.f(x) + g(x) −→
x→a

λ.`1 + `2.

Et en particulier, cela nous donne que pour toutes fonctions f, g continues sur A, λ.f + g est continue sur A.

3. si f(x) −→
x→a

`1 et g(x) −→
x→a

`2, et en supposant que fg ait un sens et que la norme ‖.‖F est une norme d’algèbre, alors

f(x)g(x) −→
x→a

`1`2.

Et en particulier, cela nous donne que pour toutes fonctions f, g continues sur A, fg est continue sur A.

Propriété 11 (opérations sur les limites).

Soient (E, ‖.‖E), (F, ‖.‖F ) et (G, ‖.‖G) trois K-espaces vectoriels normés, et notons A une partie de E, B une partie de F et
f : A −→ F , g : B −→ G. On a encore : f(x) −→

x→a
b ∈ B

g(X) −→
X→b

` ∈ G
⇒ g ◦ f(x) −→

x→a
`

En particulier, cela nous donne que pour toutes fonctions f, g continues, et sous réserve d’existence, g ◦ f est continue sur A.

Propriété 12 (cas particulier de la composition).

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et f : E −→ F . Les assertions suivantes sont équivalentes :

1. f est continue sur E.

2. l’image réciproque de tout fermé de F par f est un fermé de E.

3. l’image réciproque de tout ouvert de F par f est un ouvert de E.

Propriété 13 (caractérisation ensembliste des applications continues).

I On procède par cycle. Seule la dernière implication peut être difficile : on pourra revenir à la définition en ε.

Remarques

1. Ce résultat est très pratique notamment pour les fonctions à valeurs réelles ou complexes... puisqu’il sera très facile
d’identifier une partie ouverte ou fermée. Par exemple,

M ∈ GLn(K)⇔ det(M) 6= 0⇔ det(M) ∈ K∗ et ainsi, GLn(K) = det−1(K∗)

Le déterminant étant une application continue (nous le verrons plus tard), on en déduit que GLn(K) est nécessairement
une partie ouverte de Mn(K), en tant qu’image réciproque d’un ouvert par une application continue.

2. Et quand celui-ci peut être appliqué à l’identité, il nous permet de relier les ouverts et les fermés d’un espace à l’autre.
Ce sera là une astuce à avoir en tête quand on travaillera sur un espace vectoriel muni de normes distinctes.

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et considérons f, g deux aplications continues sur E à valeurs
dans F . Si de plus, f et g cöıncident sur une partie A dense dans E, alors pour tout x ∈ E, f(x) = g(x).

Propriété 14 (cas d’égalité d’applications continues sur une partie dense).
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I C’est immédiat : en considérant x ∈ E, celui-ci peut-être vu comme un point adhérent à A et on conclut à l’aide de la
caractérisation séquentielle de la continuité.

Exemple 3 Soit n ≥ 2. Les questions suivantes sont indépendantes.

1. Justifier rapidement que GLn(K) est dense dans Mn(K). Fixons B ∈Mn(C), montrer alors que pour tout A ∈Mn(C), les
polynômes caractéristiques χAB et χBA sont égaux.

2. On note Dn(C) l’ensemble des matrices deMn(C) diagonalisables sur C, et on rappelle que Dn(C) =Mn(C). Montrer alors
que pour tout A ∈Mn(C), χA(A) = 0n.

Définition Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et f : E −→ F . On dit aussi que :

• f est lipschitzienne s’il existe k ≥ 0 telle que pour tout (x, y) ∈ E2, ‖f(x)− f(y)‖F ≤ k‖x− y‖E .

• f est uniformément continue si :

∀ ε > 0, ∃ α > 0, ∀ (x, y) ∈ E2, ‖x− y‖E ≤ α⇒ ‖f(x)− f(y)‖F ≤ ε

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et f : E −→ F . Alors, on a :

f est lipschitzienne ⇒ f est uniformément continue ⇒ f est continue

Corollaire 15 (immédiat).

I Cela va assez vite, il suffit à chaque fois de fixer le bon paramètre.

1.3 Cas particulier des applications linéaires continues

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et f ∈ L(E,F ). Alors, les assertions suivantes sont
équivalentes:

1. f est lipschitzienne sur E.

2. f est continue sur E.

3. f est continue en 0E .

4. f est bornée sur la boule unité fermée : ∃ k ≥ 0, ∀x ∈ Bf (0E , 1), ‖f(x)‖F ≤ k.

5. il existe k ≥ 0 tel que pour tout x ∈ E, ‖f(x)‖F ≤ k‖x‖E .

Théorème 16 (caractérisation de la continuité pour les applications linéaires).

I On procède là encore par cycle, et on n’hésitera pas à normaliser les vecteurs pour rentrer dans la boule unité.

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés, et f ∈ L(E,F ) qu’on suppose continue sur E. Alors, les réels
M1, M2 et M3 définis par :

M1 = sup{‖f(x)‖F
‖x‖E

, x 6= 0E} , M2 = sup{‖f(x)‖F , ‖x‖E ≤ 1} , M3 = sup{‖f(x)‖F , ‖x‖E = 1}

existent et on a M1 = M2 = M3.

Ce réel sera aussi noté |||f ||| et il désigne la norme de f subordonnée aux normes ‖.‖E et ‖.‖F .

Propriété 17 (norme subordonnée d’une application linéaire continue).

I L’existence est immédiat à l’aide des axiomes d’existence sur R. Pour les égalités, on travaille simplement par antisymétrie.

Remarque Pour une application linéaire f : E −→ F qu’on suppose continue sur E, on a donc toujours :

∀x ∈ E, ‖f(x)‖F ≤ |||f |||.‖x‖E

et la norme subordonnée peut aussi être vue comme le plus petit entier k ≥ 0 réalisant l’inégalité ‖f(x)‖F ≤ k‖x‖E et ceci
pour tout x ∈ E.
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Exemple 4 Les questions suivantes sont indépendantes.

1. Soit f ∈ L(E) qu’on suppose continue sur E et notons λ une valeur propre de f . Montrer que nécessairement :

|λ| ≤ |||f |||

2. On se place dans E = C0([a, b],R) et on définit φ : E −→ R par :

φ(f) =

∫ b

a

f(t) dt

(a) On munit E de la norme ‖.‖1 et R de la valeur absolue.
Justifier que φ est continue sur E et établir que sa norme subordonnée est |||φ|||1 = 1.

(b) On munit E de la norme ‖.‖2 et R de la valeur absolue.
Justifier que φ est continue sur E et établir que sa norme subordonnée est |||φ|||2 =

√
b− a.

(c) On munit E de la norme ‖.‖∞ et R de la valeur absolue.
Justifier que φ est continue sur E et établir que sa norme subordonnée est |||φ|||∞ = b− a.

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés. Alors, l’ensemble des applications linéaires continues de E
dans F est un K-espace vectoriel noté Lc(E,F ) et l’application |||.||| : f 7−→ |||f ||| est une norme sur Lc(E,F ).

Propriété 18 (la norme subordonnée est une norme sur Lc(E,F )).

I Les propriétés sur les fonctions continues nous permettent d’affirmer que Lc(E,F )est bien un K-espace vectoriel. Reste à
montrer que l’application |||.||| est une norme : on revient simplement à la définition.

Soient (E, ‖.‖E), (F, ‖.‖F ) et (G, ‖.‖G) trois K-espaces vectoriels normés et considérons f ∈ Lc(E,F ) et g ∈ Lc(F,G). Alors,
on a immédiatement :

1. g ◦ f ∈ Lc(E,G) et |||g ◦ f ||| ≤ |||g|||.|||f |||.

2. Et en particulier, Lc(E), l’ensemble des endormophismes continus sur E, est une K-algèbre pour laquelle |||.||| désigne
une norme d’algèbre.

Propriété 19 (composition d’applications linéaires continues).

I La continuité est immédiate. On revient alors à la définition de la norme triple pour obtenir la majoration.

Remarque On pourra retenir par exemple que |||idE ||| = 1 et que pour tout k ∈ N et pour tout f ∈ Lc(E), |||fk||| ≤ |||f |||k.

Soient (E, ‖.‖E) et (F, ‖.‖F ) deux K-espaces vectoriels normés. Si de plus, E est de dimension finie n ≥ 1, alors toute
application linéaire f ∈ L(E,F ) est nécessairement continue.

Théorème 20 (cas particulier des applications linéaires en dimension finie).

I On revient à la caractérisation pour les applications linéaires, puis on cherche à contrôler ‖f(x)‖F à l’aide de la norme
infinie avant de conclure par équivalence des normes en dimension finie.

Remarques

1. On fera par exemple très attention à l’oral : si on vous donne un exercice mettant en jeu des suites de matrices, on
peut toujours travailler par opérations sur les suites vectorielles dans une algèbre normée... mais on peut aussi prendre
l’habitude de reconnnâıtre des applications linéaires en dimension finie.

C’est d’ailleurs ce que nous avions évoqué pour le calcul de l’exponentielle d’une matrice diagonalisable :

∀ p ∈ N,
p∑
k=0

Mk

k!
= P

∑p
k=0

λk
1
k!

(0)

(0)
. . .


︸ ︷︷ ︸

=Dp

P−1 = φ(Dp) , avec φ : X 7−→ PXP−1

φ étant linéaire en dimension finie, elle est continue et par passage à la limite, il vient : φ(Dp) −→ P

(
eλ1 (0)

(0)
. . .

)
P−1.
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2. Encore une fois, en dimension finie, on peut identifier une matrice A ∈ Mn(K) et l’endomorphisme caniniquement
associé uA : X ∈Mn1(K) 7−→ AX. Dans ce cas, uA est continue par linéarité et on pourra aussi noter :

|||A||| = |||uA||| = sup{‖AX‖‖X‖ , X 6= 0}

Soient (E1, ‖.‖1), (E2, ‖.‖2) et (F, ‖.‖F ) des K-espaces vectoriels normés, et considérons l’espace vectoriel produit E = E1×E2

muni de la norme N∞ définie par :
N∞(x1, x2) = max(‖x1‖1, ‖x2‖2)

Alors, pour toute application bilinéaire f : E1 × E2 −→ F , les assertions suivantes sont équivalentes :

1. f est continue sur E.

2. f est continue en 0E = (0E1 , 0E2).

3. f est bornée sur la boule unité fermée : ∃ k ≥ 0, ∀x ∈ Bf (0E , 1), ‖f(x1, x2)‖F ≤ k.

4. il existe k ≥ 0 tel que pour tout (x1, x2) ∈ E, ‖f(x1, x2)‖F ≤ k‖x1‖1 . . . ‖x2‖2.

Théorème 21 (caractérisation de la continuité pour les applications bilinéaires).

I On procède par cycle. Seul le dernier point sera délicat : on reviendra à la définition de la continuité en un point a = (a1, a2)
fixé dans E.

Soient (E1, ‖.‖1), . . . , (Ep, ‖.‖p) et (F, ‖.‖F ) des K-espaces vectoriels normés, et considérons l’espace vectoriel produit E =
E1 × . . .× Ep muni de la norme N∞ définie par :

N∞(x1, . . . , xp) = max(‖x1‖1, . . . , ‖xp‖p)

Alors, on admet que pour toute application p-linéaire f : E1 × . . . × Ep −→ F , on peut généraliser le résultat précédent et
les assertions suivantes sont encore équivalentes :

1. f est continue sur E.

2. f est continue en 0E = (0E1 , . . . , 0Ep).

3. f est bornée sur la boule unité fermée : ∃ k ≥ 0, ∀x ∈ Bf (0E , 1), ‖f(x1, . . . , xp)‖F ≤ k.

4. il existe k ≥ 0 tel que pour tout (x1, . . . , xp) ∈ E, ‖f(x1, . . . , xp)‖F ≤ k‖x1‖1 . . . ‖xp‖p.

Théorème 22 (caractérisation de la continuité pour les applications n-linéaires).

Soient (E1, ‖.‖1), . . . , (Ep, ‖.‖p) et (F, ‖.‖F ) des K-espaces vectoriels normés, et considérons l’espace vectoriel produit E =
E1 × . . .× Ep muni de la norme N∞ définie par :

N∞(x1, . . . , xp) = max(‖x1‖1, . . . , ‖xp‖p)

Si de plus, les espaces vectoriels E1, . . . , Ep sont de dimension finie ni ≥ 1, alors toute application p-linéaire f ∈ L(E,F ) est
nécessairement continue.

Théorème 23 (cas particulier des applications p-linéaires en dimension finie).

I On revient à la caractérisation pour les applications linéaires, puis on cherche à contrôler ‖f(x1, . . . , xp)‖F à l’aide de la
norme infinie sur chacun des sous-espaces avant de conclure par équivalence des normes en dimension finie.

Remarque On peut alors montrer par linéarité que de nombreuses applications sont continues surMn(K) : les applications
produit A 7−→ λA, A 7−→ AM et (A,M) 7−→ AM , sont continues et donc par opérations sur ces fonctions, que toute
expression polynomiale en une matrice donnée est continue.
D’ailleurs, on justifiera de la même façon, que le déterminant, le produit scalaire ou la trace désignent des applications
continues sur Mn(K).
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2 Quelques théorèmes fondamentaux

2.1 Parties compactes d’un espace vectoriel normé

Définition Soit (E, ‖.‖) un K-espace vectoriel normé et considérons K une partie non vide de E.
On dit que la partie K est compacte si toute suite (xn) d’éléments de K possède au moins une valeur d’adhérence dans K, c’est
à dire que de toute suite (xn) ∈ KN, on peut extraire une sous-suite convergente dans K.

Remarques

1. On fera attention car il s’agit de vérifier deux choses : d’une part, que de toute suite d’éléments K, on peut extraire
une sous-suite convergente et que d’autre part, la limite reste bien dans K. On parle parfois de la ”propriété de
Bolzano-Weiertrass”.

2. En particulier, la notion de convergence étant indépendante par des normes équivalentes, la compacité ne dépendra pas
directement du choix de la norme équivalente retenue.

Soit (E, ‖.‖) un K-espace vectoriel normé et notons K une partie non vide de E. Si de plus, K est compacte, alors elle est
fermée et bornée.

Propriété 24 (une partie compacte est fermée et bornée).

I Le premier point est évident en se ramenant à la caractérisation séquentielle des fermés. Pour le scond point, on pourra
raisonner par l’absurde.

Soit (E, ‖.‖) un K-espace vectoriel normé et notons K une partie compacte de E. Si F est une partie fermée de K, alors F
est aussi une partie compacte.

Corollaire 25 (fermé d’une partie compacte).

I C’est immédiat puisque F ⊂ K, donc toute suite d’éléments de F vérifie la propriété de Bolzano-Weiertrass.

Soit (E, ‖.‖) un K-espace vectoriel normé et notons K une partie compacte de E. Alors, toute suite (xn) ∈ KN converge si
et seulement si elle admet une unique valeur d’adhérence.

Corollaire 26 (suite d’éléments d’une partie compacte).

I Le sens direct est immédiat si on connait la relation entre une suite convergente et ses suites extraites. Pour le sens
réciproque, on est ramené au critère de convergence des suites bornées vu en début d’année : on peut à nouveau le prouver
en raisonnant par l’absurde et en supposant que un 6−→ `.

Soit (E, ‖.‖) un K-espace vectoriel normé et considérons K une partie non vide de E. Si de plus, E est de dimenison finie
n ≥ 1, alors les parties compactes sont exactement les parties fermées et bornées.

Théorème 27 (cas particulier des parties compactes en dimension finie).

I Le sens direct a été prouvé plus tôt. Pour le sens réciproque, on n’hésitera pas à réinvestir le théorème de Bolzano-
Weiertrass qui a été vu en début d’année.

Remarques

1. On retrouve ici le cas de la droite réelle et par exemple, les segments de la forme [a, b] sont des parties compactes de
R, mais ce ne sont pas les seules puisque la réunion finie de deux segments disjoints sera aussi compacte, en tant que
partie fermée et bornée.

2. En dimension finie, toute les boules fermées de la forme Bf (a, r) sont nécessairement compactes car elles sont fermées
et aussi bornées :

∀x ∈ Bf (a, r), ‖x‖ ≤ ‖x− a‖+ ‖a‖ ≤ r + ‖a‖

www.cpgemp-troyes.fr 10/12

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 7

Espaces vectoriels normés et propriétés topologiques

Exemple 5 Les questions suivantes sont indépendantes.

1. On se place dans R[X] muni de la norme infinie :

‖P‖∞ = max |ak|

(a) Justifier rapidement que la boule unitée fermée est bien une partie fermée et bornée.

(b) En utilisant la suite des monômes (Xn), montrer que Bf (0R[X], 1) n’est pas compacte.

2. On considère une suite (un) ∈ KN qu’on suppose bornée, et on note A l’ensemble des valeurs d’adhérence de la suite (un).

(a) Justifier que A est non vide.

(b) Etablir que A = ∩p∈N{un, n ≥ p}, puis en déduire qu’il s’agit d’une partie compacte de K.

2.2 Applications continues sur un compact

Soient (E, ‖.‖E), (F, ‖.‖F ) deux K-espaces vectoriels normés et considérons f : E −→ F une application continue.

1. Si K est une partie compacte de E, alors f(K) est compacte dans F .

2. Et dans le cas particulier où F = R, alors f(K) est fermée et bornée dans R. Il existe (a, b) ∈ K2 tel que :{
min f(K) = f(a)

max f(K) = f(b)
et ainsi, pour tout x ∈ K, f(a) ≤ f(x) ≤ f(b)

Théorème 28 (image continue d’un compact et théorème des bornes atteintes).

I Pour le premier point, on revient à la définition d’une partie compacte. Pour le soncd point, on pourra justifier l’existence
des bornes, avant de montrer qu’elles sont réellement atteintes.

Remarque Ce théorème est fondamental, car c’est lui qui nous permet à partir du théorème de Bolzano-Weiertrass dans
(E, ‖.‖∞) de justifier que toutes les normes sont équivalentes en dimension finie.

On aborde ici un exemple d’application du théorème des bornes atteintes... il est très classique et il faudra être capable de le
refaire, d’autant que ce résultat amorce une des preuves du théorème de D’Alembert-Gauss !

Exemple 6 Soient (E, ‖.‖E), (F, ‖.‖F ) deux K-espaces vectoriels normés. On suppose que E est de dimension finie n ≥ 1 et on
considère f : E −→ F qu’on suppose continue sur E et telle que :

‖f(x)‖F −→
‖x‖E→+∞

+∞

Montrer que ‖f‖F possède un minimum absolu sur E.

Soient (E, ‖.‖E), (F, ‖.‖F ) deux K-espaces vectoriels normés et considérons f : E −→ F une application continue. Si K est
une partie compacte de E, alors f est uniformément continue sur K de sorte que :

∀ ε > 0, ∃ α > 0, ∀ (x, y) ∈ A2, ‖x− y‖E ≤ α⇒ ‖f(x)− f(y)‖F ≤ ε

Théorème 29 (de Heine).

I On raisonne par l’absurde et avec α = 1/n, on construit des suites (un) et (vn) de KN qu’on utilisera pour obtenir une
contradiction.

2.3 Parties connexes d’un espace vectoriel normé

Définition Soit (E, ‖.‖) un K-espace vectoriel normé et considérons C une partie non vide de E.
On dit que la partie C est connexe par arcs si pour tout couple (x, y) ∈ C2 il existe une application continue γ : [0, 1] −→ C
telle que :

γ(0) = x et γ(1) = y

On dit aussi que γ représente un arc reliant les vecteurs x et y.

Remarques

1. Autrement dit, une telle partie est toujours d’un seul tenant puisqu’on peut passer d’un point à un autre par un chemin
continu à valeurs dans C.
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2. De la même façon,

• une partie C convexe est nécessairement connexe par arcs. En effet, si (x, y) ∈ C2, alors en posant γ(t) =
tx+ (1− t)y, on construit un chemin continu à valeurs dans C tel que γ(1) = x et γ(0) = y.

• les intervalles de R représentent exactement les parties connexes par arcs de R.

3. Par contre, on essaiera quand même de distinguer les notions de partie convexe et de partie connexe par arcs.

Soient (E, ‖.‖E), (F, ‖.‖F ) deux K-espaces vectoriels normés et considérons f : E −→ F une application continue. Si de plus
C est une partie connexe par arcs de E, alors f(C) est encore connexe par arcs.

Propriété 30 (image continue d’une partie connexe par arcs).

I C’est immédiat : si (x, y) ∈ f(C), alors en notant (t, t′) des antécédents par f , il existe un arc reliant t et t′ de sorte que
f ◦ γ relie x et y.

Soit (E, ‖.‖E) et considérons f : E −→ R une application continue. Si de plus C est une partie connexe par arcs de E, alors
f(C) est un intervalle.

Corollaire 31 (théorème général des valeurs intermédiaires).

I C’est immédiat : d’après la propriété précédente, f(C) est connexe par arcs dans R, c’est donc un intervalle car par
définition, ce sont les parties de R constituées d’un seul tenant.

Remarques

1. Si E = R, on retrouve évidemment le théorème des valeurs intermédiaires : si f est une fonction continue et non
constante, alors l’image d’un intervalle par f est encore un intervalle.

2. La connexité est une notion très délicate. Par exemple, on pourra voir que GLn(C) est connexe par arcs en utilisant la
surjectivité de l’exponentielle de matrices... Mais attention, le résultat n’est pas vraie sur R.

3. Parfois, on préfère démontrer que la partie A est étoilée, c’est à dire qu’il existe a ∈ A tel que pour tout x ∈ A,

[a;x] := {(1− t)a+ tx, t ∈ [0, 1]} ⊂ A

En effet, en considérant (x, y) ∈ A2, on peut alors construire un chemin continu inclus dans A joignant x et y de la
forme :

∀ t ∈ [0, 1], γ(t) =

{
a+ (1− 2t)(x− a), si t ≤ 1/2

a+ (2t− 1)(y − a) si t > 1/2

et ainsi, A est nécessairement connexe par arcs.

Exemple 7 Les questions suivantes sont indépendantes.

1. Montrer que D l’ensemble des matrices deMn(R) diagonalisables sur R est connexe par arcs. On pourra montrer que D est
une partie étoilée.

2. Justifier que GLn(R) n’est pas connexe par arcs.
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