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Chapitre 6
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présente ici la notion d’éléments propres en dimension quelconque. Cela nous perme-
ttra de mieux appréhender le principe de réduction des endomorphismes en dimension
finie et des matrices carrées.
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1.2 Eléments propres d’un endomorphisme . . . . . . . . . . . . . . . . . . 3
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Pour aller plus loin
Ce chapitre est essentiel, car avec celui sur les endormorphismes remarquables d’un espace euclidien, il recouvre presque tous
les sujets de concours en algèbre, et on essaiera de comprendre les objectifs de la réduction : obtenir des tableaux numériques
plus faciles à manipuler, cela facilite notamment la résolution des problèmes algébriques, des problèmes d’optimisation...
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1 Eléments propres et polynôme caractéristique

1.1 Polynômes d’endomorphisme et théorème des noyaux

Définition Soient E un K-espace vectoriel et f ∈ L(E). On rappelle que dans l’algèbre des endomorphismes L(E), on note :

f0 = idE et pour tout n ∈ N∗, fn = f ◦ f ◦ . . . ◦ f

• On appelle alors polynôme d’endomorphisme en f toute application P (f) ∈ L(E) de la forme :

P (f) = anf
n + . . .+ a1f + a0idE

où a0, . . . , an désignent les coefficients du polynôme P (X) = anX
n + . . .+ a1X + a0 ∈ K[X].

• Et dans le cas particulier où P (f) = 0L(E), on dit que P désigne un polynôme annulateur de f .

Remarques

1. En particulier, on en déduit que pour tout x ∈ E :

P (f)(x) = anf
n(x) + . . .+ a1f(x) + a0x

mais on ne confondra surtout pas avec la notation P (f(x)) qui n’aurait pas de sens ici ! C’est même une erreur très
courante à éviter...

2. Si de plus E est de dimension finie p et en notant M la matrice de f dans une base B, alors P (f) a pour matrice :

P (M) = anM
n + . . .+ a1M + a0Ip

et ainsi, on pourra aussi parler de polynôme de matrice en M , ou même de polynôme annulateur de M si
P (M) = 0Mn(K).

Soient E un K-espace vectoriel et f ∈ L(E). Alors, pour tout λ ∈ K et pour tout polynôme P,Q ∈ K[X], on montre que :

1. (λ.P +Q)(f) = λ.P (f) +Q(f)

2. P (f) ◦Q(f) = (PQ)(f) = (QP )(f) = Q(f) ◦ P (f)

et ainsi, on pourra retenir que des polynômes en f commutent toujours.

Propriété 1 (composition de deux polynômes d’endomorphisme).

I Dans les deux cas, on revient à la définition d’un polynôme d’endomorphisme et on pourra invoquer la linéarité de f si
besoin.

Soient E un K-espace vectoriel de dimension finie n ∈ N∗ et f ∈ L(E). On définit Ann(f) = {P ∈ K[X], P (f) = 0L(E)}.
Alors, on a :

1. Ann(f) est un idéal non trivial de K[X].

2. On en déduit qu’il existe un unique polynôme unitaire µf de plus bas degré tel que :

Ann(f) = µfK[X]

On appelle alors polynôme minimal de f le polynôme µf qui engendre cet idéal annulateur.

Théorème 2 (idéal annulateur et existence du polynome minimal en dimension finie).

I Pour le premier point, on revient à la définition d’un idéal de K[X]. Pour le second point, on peut raisonner par existence
et unicité : l’existence est triviale car tous les idéaux de K[X] sont principaux...

Remarque Cette dernière égalité nous donne un résultat pratique : pour tout polynôme P annulateur de f , il vient
P ∈ µfK[X]⇒ µf |P . Et ainsi, le polynôme minimal divise tous les polynômes annulateurs d’un endomorphisme donné.
De plus, on retiendra que nécessairement : deg(µf ) ≥ 1, car µf ne peut pas être égal à 1.

Exemple 1 Les questions suivantes sont indépendantes.

1. Soit E un K-espace vectoriel. Déterminer le polynôme minimal d’une homothétie h = λ.idE , d’un projecteur f et d’une
symétrie s de E.

2. On considère A = (aij) ∈Mn(R) telle que pour tout (i, j) ∈ J1, nK2, aij = 1. Déterminer µA son polynôme minimal.
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Soient E un K-espace vectoriel de dimension finie n ∈ N∗ et f ∈ L(E) et on note µf son polynôme minimal tel que
deg(µf ) = p ≥ 1. Alors,

1. la famille (idE , f, . . . , f
p−1) est nécessairement libre dans L(E).

2. pour tout k ≥ p, fk ∈ V ect(idE , f, . . . , fp−1).

On dit aussi que (idE , f, . . . , f
p−1) désigne une base de K[f ], l’algèbre des polynômes d’endomorphisme en f et en particulier,

on retiendra que :
dim(K[f ]) = deg(µf )

Corollaire 3 (une conséquence du polynôme minimal).

I Pour le premier point, on raisonne par l’absurde... on aura alors un polynôme annulateur en f de degré < p. Pour le
second point, il suffit de faire la division euclidienne Xk par µf .

Soient E un K-espace vectoriel et f ∈ L(E). On considère de plus P,Q ∈ K[X] qu’on suppose premiers entre eux, alors on a
la décomposition :

Ker(PQ(f)) = Ker(P (f))⊕Ker(Q(f))

Théorème 4 (de décomposition des noyaux).

I On revient à la caractérisation d’une décomposition en somme directe de deux sous-espaces supplémentaires, mais on
pensera d’abord à invoquer le théorème de Bézout pour obtenir une relation entre P (f) et Q(f).

Soient E un K-espace vectoriel et f ∈ L(E). On considère de plus P1, . . . , Pn ∈ K[X] qu’on suppose premiers entre eux deux
à deux, alors on a la décomposition :

Ker(P1 . . . Pn(f)) = ⊕ni=1Ker(Pi(f))

Théorème 5 (de décomposition des noyaux généralisé).

I On procède simplement par récurrence sur n ≥ 2. Pour l’hérédité, on pensera à montrer que le produit P1 . . . Pn et Pn+1

sont premiers entre eux avant d’utiliser le résultat précédent.

Remarque Ce théorème des noyaux est fondamental pour ce chapitre. En effet, si on peut exhiber un polynôme annulateur
P tel que P (f) = 0L(E), alors on aura toujours une décompostion immédiate de l’espace de sorte que :

E = Ker( P (f)︸ ︷︷ ︸
=0L(E)

) = ⊕ni=1Ker(Pi(f))

où Pi désignent des polynômes premiers entre eux deux à deux et qui constituent P . C’est même souvent dans cette
décomposition qu’on ira puiser une base de réduction.

1.2 Eléments propres d’un endomorphisme

Définition Soient E un K-espace vectoriel et f ∈ L(E).

• On appelle valeur propre de f tout scalaire λ ∈ K tel que :

∃ x ∈ E − {0E}, f(x) = λ.x

• On appelle vecteur propre de f tout vecteur x ∈ E − {0E} tel que :

∃ λ ∈ K, f(x) = λ.x

Dans ce cas et sous réserve d’existence, on appelle :

• spectre de f sur K noté SpK(f) l’ensemble des valeurs propres distinctes de f appartenant à K.

• sous-espace propre associé à la valeur propre λ le sous-espace Ef (λ) = Ker(f −λ.idE) constitué des vecteurs propres
associés à la valeur propre λ et du vecteur nul.
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Soient E un K-espace vectoriel et f ∈ L(E). On a immédiatement :

λ ∈ SpK(f) ⇔ ∃ x ∈ E − {0E}, f(x) = λ.x ⇔ Ef (λ) 6= {0E} ⇔ f − λ.idE n’est pas injective

Corollaire 6 (première caractérisation d’une valeur propre).

Remarques

1. Sans hypothèse supplémentaire, le spectre d’un endomorphisme sur K peut être vide ou infini... on pourra par exemple
considérer les endomorphismes f ∈ L(K[X]) et g ∈ L(C∞(R,R)) définis par :

f : P 7−→ XP et g : u 7−→ u′

2. Si on supppose de plus que E est de dimension finie, alors la dernière assertion est encore équivalente à f − λ.idE non
bijective. Il faudra s’en souvenir car c’est très utile en exercice avec notamment ce cas particulier :

0 6∈ SpK(f)⇔ f − 0.idE = f est bijectif

Soient E un K-espace vectoriel, f ∈ L(E) et considérons λ ∈ SpK(f), x un vecteur propre associé à la valeur propre λ.

1. Pour tout polynôme P ∈ K[X], on a :
P (f)(x) = P (λ).x

et ainsi, x représente un vecteur propre de P (f) associé à la valeur propre P (λ).

2. Si de plus P est un polynôme annulateur de f , alors P (λ) = 0, et ainsi, on a toujours :

SpK(f) ⊂ RacinesK(P )

Propriété 7 (valeurs propres et polynômes d’endomorphismes en f).

I Pour le premier point, on montre par récurrence que pour tout n ∈ N∗, fn(x) = λn.x, puis on calcule P (f)(x). Le second
point est immédiat puisque x 6= 0E, en tant que vecteur propre de f .

Soient E un K-espace vectoriel, f ∈ L(E) et considérons (λi)i∈I une famille de valeurs propres distinctes. Alors,

1. toute somme finie de sous-espaces propres associés à des valeurs propres distinctes est directe.

2. toute famille de vecteurs propres associés à (λi)i∈I est libre.

Propriété 8 (liberté des vecteurs propres associés à des valeurs propres distinctes).

I Pour le premier point, on procède par récurrence sur le nombre de sous-espaces propres. Pour le second point, il suffit de
montrer que toute sous-famille finie de vecteurs propres est libre.

Remarque Encore une fois, si E est de dimension finie, alors le résultat précédent nous permet d’affirmer que le spectre,
s’il n’est pas vide, est nécessairement fini de sorte que :

0 ≤ Card(SpK(f)) ≤ dim(E)

Exemple 2 Soit n ∈ N∗ et considérons A ∈Mn(R) telle que :

6ATA = 5A− In

1. On introduit f ∈ L(Rn) canoniquement associé à la matrice A. Montrer qu’il existe un polynôme P scindé à racines simples
tel que P (f) = 0L(Rn).

2. En déduire que f est nécessairement diagonalisable, et montrer alors que Ap −→
p→+∞

0.
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Réduction des endomorphismes et des matrices carrées

1.3 Définition du polynôme caractéristique et théorème de Cayley-Hamilton

Pour le reste du chapitre, on fait alors le choix de se placer en dimension finie. Ainsi, E désignera un K-espace vectoriel de
dimension finie n ≥ 1 et on notera B une base de E.

Définition Soit f ∈ L(E). On appelle polynôme caractéristique de f le polynôme unitaire χf de degré n définie sur K par :

χf (λ) = det(λ.idE − f) = det(λ.In −MatB(f))

Remarques

1. Si on note M = MatB(f), alors par définition du déterminant, on rappelle que pour tout λ ∈ K :

χf (λ) =

∣∣∣∣∣∣∣∣∣∣

λ−m11 −m12 . . . −m1n

−m21 λ−m22 . . .
...

...
. . . −mn−1n

−mn1 . . . −mnn−1 λ−mnn

∣∣∣∣∣∣∣∣∣∣
=
∑
σ∈Sn

ε(σ)aσ(1)1 . . . aσ(n)n

=

n∏
i=1

(λ−mii) +
∑

σ∈Sn,σ 6=id

ε(σ)aσ(1)1 . . . aσ(n)n︸ ︷︷ ︸
de degré ≤n−2

= λn − (

n∑
i=1

mii)λ
n−1 + qn−2λ

n−2 + . . .+ q1λ+ q0

Avec λ = 0, on obtient q0 = χf (0) = (−1)ndet(M), et ainsi on pourra donc retenir que χf est bien l’expresssion d’un
polynôme unitaire de degré n en λ tel que :

χf (λ) = λn − tr(M)λn−1 + . . .+ (−1)ndet(M)

2. Attention, dans certains ouvrages, on peut faire un abus de notation et définir χf par :

χf (X) = det(X.idE − f)

en laissant croire que X désigne une indéterminée classique et qui pourra être évaluée comme on l’entend : malheureuse-
ment, avec X = g, cela n’aurait pas de sens algébrique... car on travaille dans (L(E),+, ◦, .).
On sera donc extrêmement rigoureux et on veillera à utiliser uniquement des scalaires dans la définition liée au
déterminant. Bien entendu, une fois la forme polynomiale obtenue, on pourra alors travailler avec une indéterminée X.

Soient E un K-espace vectoriel et f ∈ L(E). On a immédiatement :

λ ∈ SpK(f) ⇔ χf (λ) = 0

Corollaire 9 (seconde caractérisation d’une valeur propre).

I On revient à la définition d’une valeur propre et on donne les équivalences usuelles... sans oublier qu’on travaille ici en
dimension finie.

Remarques

1. En dimension finie, les valeurs propres de f sont exactement les racines du polynôme caractéristique. Il faudra donc
faire attention si on travaille dans R ou C et en fonction du corps des scalaires retenus, on a encore :

0 ≤ Card(SpK(f)) ≤ deg(χf ) = dim(E)

2. On peut alors parler d’ordre de multiplicité d’une valeur propre λ0, c’est simplement son ordre de multiplicité
vis à vis du polynôme caractéristique.

Soit f ∈ L(E) et considérons encore B,B′ deux bases de E. Alors, on a pour tout λ ∈ K,

χf (λ) = det(λ.In −MatB(f)) = det(λ.In −MatB′(f))

Autrement dit, le polynôme caractéristique ne dépend pas de la base retenue : c’est un invariant de similtude.

Propriété 10 (le polynôme caractéristique est un invariant de similitude).

I On revient à la définition du polynôme caractéristique et on voit In = PP−1...
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Réduction des endomorphismes et des matrices carrées

Soit f ∈ L(E) et considérons F un sous-espace stable par f , fF l’endomorphisme induit sur F . Alors, on a : χfF | χf .

Propriété 11 (polynôme caractéristique d’un endomorphisme induit).

I On considère une base de F qu’on complète en une base de E. On obtient alors une matrice par blocs avec laquelle il est
facile de calculer le polynôme caractéristique.

Soit f ∈ L(E) et considérons λ0 une valeur propre de f d’ordre de multiplicité mλ0 . Alors, le sous-espace propre Ef (λ0) est
un sous-espace stable et on a :

1 ≤ dim(Ef (λ0)) ≤ mλ0

Propriété 12 (majoration de la dimension des sous-espaces propres).

I On vérifie d’abord que les endomorphismes f et f − λ0.idE commutent, puis on invoque la propriété précédente.

Remarque Pour finir, on rappelle qu’à toute matrice donnée M ∈ Mn(K), on peut construire un unique endomorphisme
f ∈ L(Kn) tel que M = MatB(f), où B désigne la base canonique de Kn. Ainsi, on pourra adapter toutes les définitions des
éléments propres de f à la matrice M :

Définition Soit M ∈Mn(K).

• On appelle valeur propre de M tout scalaire λ ∈ K tel que :

∃ X ∈Mn1 − {0}, MX = λ.X

• On appelle vecteur propre de M tout vecteur X ∈Mn1 − {0} tel que :

∃ λ ∈ K, MX = λ.X

Dans ce cas et sous réserve d’existence, on appelle :

• spectre de M sur K noté SpK(M) l’ensemble des valeurs propres distinctes de M appartenant à K.

• sous-espace propre associé à la valeur propre λ le sous-espace EM (λ) = Ker(M−λ.In) constitué des vecteurs propres
associés à la valeur propre λ et du vecteur nul.

De plus, on appelle polynôme caractéristique de M le polynôme unitaire χM de degré n définie sur K par :

χM (λ) = det(λ.In −M)

Exemple 3 Les questions suivantes sont indépendantes.

1. Soit (a0, . . . , an−1) ∈ Kn et on définit A ∈Mn(K) par :

A =


0 0 . . . −a0

1 0 . . . −a1

0
. . .

. . .
...

0 . . . 1 −an−1


Montrer que χA(λ) = λn + an−1λ

n−1 + . . .+ a1λ+ a0.

En fait, pour tout polynôme unitaire P , on peut construire une telle matrice A telle que χA = P : on dit aussi
qu’il s’agit de la matrice compagnon associée au polynôme P .

2. On considère A la matrice de Mn(R) définie par :

An =



0 1 1 · · · 1
1 0 1 · · · 1

1 1
. . .

. . . 1

1 1
. . . 0 1

1 1 · · · 1 0


Montrer que χA(λ) = (λ− n+ 1)(λ+ 1)n−1.
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Remarques

1. On retrouve alors les mêmes propriétés sur le polynôme caractéristique : c’est un invariant de similitude et on a toujours
l’équivalence fondamentale :

λ ∈ SpK(f) ⇔ ∃ X ∈Mn1 − {0}, MX = λ.X ⇔⇔ M − λ.In n’est pas inversible ⇔ χM (λ) = 0

En particulier, des matrices semblables ont les mêmes valeurs propres.

2. Lorsque K = R, on pourra vite être limité dans l’étude d’un endomorphisme f ∈ L(E) surtout quand le spectre sur R
est vide... Par contre, si on travaille matriciellement, alors on a évidemment :

M ∈Mn(R) ⊂Mn(C)

et dans ce cas, le théorème de D’Alembert-Gauss nous fournira au moins une valeur propre avec laquelle travailler et
le polynôme caractéristique sera toujours scindé de la forme :

χM (λ) = (λ− λ1)mλ1 . . . (λ− λr)mλr , avec mλ1 + . . .+mλr = n

On prendra donc souvent l’habitude de se plonger dans Mn(C) !

3. Il y a enfin des matrices pour lesquelles il est très facile de lire le spectre, ce sont les matrices triangulaires ou diagonales.

Soit M ∈ Mn(K) qu’on suppose semblable à une matrice triangulaire ou diagonale. Alors, le polynôme caractéristique est
scindé dans K[X] et les valeurs propres sont données par les coefficients diagonaux (tii)1≤i≤n ou (dii)1≤i≤n.

Corollaire 13 (cas particulier des matrices semblables à une matrice triangulaire ou diagonale).

I C’est immédiat : le polynôme caractéristique est un invariant de similitude, il suffit alors de calculer le déterminant d’une
matrice triangulaire.

1. Soit f ∈ L(E) et notons χf son polynôme caractéristique. Alors, χf (f) = 0L(E) et ainsi,

χf ∈ Ann(f)

2. En adaptant les définitions, on montre aussi que pour toute matrice M ∈Mn(K), χM (M) = 0Mn(K) et ainsi,

χM ∈ Ann(M)

Théorème 14 (de Cayley-Hamilton).

I Soit x un vecteur non nul, on introduit le sous-espace Fx = V ect(fk(x), k ∈ N) : on montre alors qu’il s’agit d’un sous-
espace stable de dimension p ≤ n, et on calcule le polynôme caractéristique de l’endomorphisme induit fFx avant de justifier
que χf (f)(x) = 0E. Le résultat étant encore vrai pour x = 0E, on en déduit le théorème de Cayley-Hamilton.

Remarques

1. Bien entendu, cela nous donne une relation immédiate entre le polynôme minimal et le polynôme caratéristique d’un
endomorphisme f : on retiendra que µf | χf et ainsi, on a immédiatement :

SpK(f) ⊂ RacinesK(µf ) ⊂ SpK(f)⇒ RacinesK(µf ) = SpK(f)

2. Le polynôme caractéristique nous donne ici un polynôme annulateur particulier, mais on rappelle que deg(χM ) = n,
et donc, il ne sera pas toujours exploitable... on préfèrera la plupart du temps calculer les premières puissances de M
pour en déterminer un polynôme annulateur de degré moins élevé.
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2 Réduction des endomorphismes et des matrices carrées

2.1 Endomorphisme diagonalisable et matrice diagonalisable

Définition

• Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). On dit que f est diagonalisable s’il existe une base
B de E dans laquelle la matrice de f est diagonale.

• Soit M ∈ Mn(K) et notons f l’endomorphisme de Kn canoniquement associé. On dit que M est diagonalisable si f est
diagonalisable, c’est à dire si M est semblable à une matrice diagonale :

∃ P ∈ GLn(K), M = PDP−1

avec D une matrice diagonale.

Remarques

1. Si f est diagonalisable, alors la base B dans laquelle f est diagonale n’est rien d’autre qu’une base de vecteurs propres
(e1, . . . , en) puisque pour tout i ∈ J1, nK, f(ei) = λiei.

2. Ces définitions sont très proches. On travaillera donc sur les endomorphismes diagonalisables et on pourra encore une
fois adapter tous les résultats obtenus aux matrices carrées : il suffira d’introduire en cas de besoin l’endomorphisme
canoniquement associé.

Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). On note de plus λ1, . . . , λp ses valeurs propres
distinctes. Alors, les assertions suivantes sont équivalentes :

1. f est diagonalisable

2. E = ⊕pi=1Ef (λi), et ainsi E se décompose en somme directe de sous-espaces propres stables par f

3.
∑p
i=1 dim(Ef (λi)) = n

Et dans ce cas, on peut toujours construire B une base de vecteurs propres associés aux valeurs propres λ1, . . . , λp tels que :

MatB(f) =



λ1 (0)

(0)
. . .

(0)

λ2 (0)

(0)
. . .

(0)
λp (0)

(0)
. . .



Propriété 15 (interprétation de la diagonalisabilité d’un endomorphisme).

I On procède par cycle, et on n’hésitera pas à revenir aux résultats précédents : que ce soit la caractérisation d’une
décomposition en dimension finie, ou la liberté des vecteurs propres associés à des valeurs propres distinctes.

Remarque Si E = ⊕pi=1Ef (λi), alors on peut remarquer que E se décompose en somme directe de sous-espaces propres
stables par f et pour chacun de ces sous-espaces l’endomorphisme induit vérifie :

fEf (λi) = λi.idE , c’est une homothétie !

Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). Si de plus f possède n valeurs propres distinctes, alors
f est nécessairement diagonalisable.

Propriété 16 (une condition suffisante de diagonalisation).

I Dans ce cas particulier, on peut obtenir n vecteurs propres associés, et donc libres, qui définiront une base de diagonalisation.
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Remarques

1. On fera attention, il ne s’agit là que d’une condition suffisante car a priori, on n’a pas toujours n valeurs propres
distinctes. C’est par exemple le cas des projecteurs et des symétries : ce sont des endomorphismes diagonalisables pour
lesquels le spectre ne contient qu’une ou deux valeurs propres.

2. En fait, pour vérifier si un endomorphisme est diagonalisable, on préfèrera souvent passer par l’une des deux
caractérisations à venir :

• à l’aide du polynôme caractéristique,

• en utilisant un polynôme annulateur bien choisi.

Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). Alors, f est diagonalisable si et seulement si :{
son polynôme caractéristique χf est scindé dans K[X]

pour toute valeur propre λi ∈ SpK(f), dim(Ef (λi)) = mλi

où mλi désigne l’ordre de multiplicité de λi dans le polynôme caractéristique.

Théorème 17 (condition nécessaire et suffisante de diagonalisation à l’aide du polynôme caractéristique).

I On procède par double implication. Pour le sens direct, on traduit la diagonalisabilité et on calcule χf dans la base de
vecteurs propres, il restera à justifier l’égalité des dimensions. Pour le sens réciproque, on écrit l’égalité au niveau des degrés,
ce qui permet en fait d’obtenir une base de n vecteurs propres indépendants.

Remarque La trace et le déterminant étant des invariants de similitude, on en déduit que pour tout endormorphisme f
diagonalisable :{

tr(f) =
∑p
i=1 mλi .λi, c’est à dire la somme des valeurs propres comptées avec leur ordre de multiplicité

det(f) =
∏p
i=1 λ

mλi
i , c’est à dire le produit des valeurs propres comptées avec leur ordre de multiplicité

Exemple 4 On note pour tout a ∈ R,

M(a) =

1 1 a
0 2 0
0 0 a


Déterminer l’ensemble des réels a pour lesquels M(a) est diagonalisable dans M3(R).

Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E) qu’on suppose diagonalisable. Alors, en notant λ1, . . . , λp
ses valeurs propres distinctes, on a :

µf (X) = (X − λ1)(X − λ2) . . . (X − λp)

Propriété 18 (polynôme minimal d’un endomorphisme diagonalisable).

I On procède en deux temps : à l’aide du théorème des noyaux, on montre d’abord que le produit des (X − λi) désigne un
polynôme annulateur. Puis, on justifie que µf est aussi multiple de ce produit... les polynômes étant associés et unitaires, ils
seront égaux.

Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). Alors,

1. f est diagonalisable si et seulement si f annule un polynôme scindé à racines simples dans K[X].

2. f est diagonalisable si et seulement si µf est scindé à racines simples.

Théorème 19 (condition nécessaire et suffisante de diagonalisation à l’aide des polynômes annulateurs).

I On procède par double implication. Le sens direct est immédiat puisque le polynôme minimal convient. Pour le sens
réciproque, on invoque encore le théorème des noyaux pour exhiber une décomposition de E en somme directe de sous-espaces
propres. Le second point est immédiat : c’est un cas particulier très pratique.

Exemple 5 Soit E un R-espace vectoriel de dimension 3 et notons f ∈ L(E) tel que :

f4 = f2 et ± 1 ∈ Sp(f)

Etablir que f est nécessairement diagonalisable.
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Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E) qu’on suppose diagonalisable. Alors, pour tout
sous-espace F stable par f , l’endomorphisme induit fF est aussi diagonalisable.

Corollaire 20 (diagonalisation d’un endomorphisme induit).

I C’est immédiat : f annule un polynôme scindé à racines simples P , il en est donc de même pour fF .

On finit ici avec une application directe du corollaire précédent : c’est la réduction simultanée qui est très utile dans de
nombreux exercices, et qu’il ne faudra pas hésiter à rappeler dans vos oraux.

Exemple 6 Considérons ici E un K-espace vectoriel de dimension finie n ≥ 1 et considérons f, g ∈ L(E) pour lesquels on suppose
que : {

f et g sont diagonalisables

f ◦ g = g ◦ f

En particulier, f étant diagonalisable, on note λ1, . . . , λp ses valeurs propres distinctes et Ef (λi) les sous-espaces propres associés
tels que : E = ⊕pi=1Ef (λi).

1. Justifier que pour tout i ∈ J1, pK, Ef (λi) est stable par g.

2. Montrer alors qu’il existe une base de E dans laquelle les matrices associées à f et g sont simultanément diagonales.

Remarques

1. On peut réécrire le résultat de l’exemple précédent et ainsi, dans les conditions de l’exemple et en notant A,B des
matrices canoniquement associées aux endomorphismes f et g, il existe une matrice de passage commune P ∈ GLn(K)
telle que : {

A = PD1P
−1

B = PD2P
−1

avec D1, D2 des matrices diagonales

2. D’ailleurs, on retiendra (et c’est un exercice difficile) que par récurrence sur le nombre d’endomorphismes, on peut
généraliser ce résultat, et si u1, . . . , up (p ≥ 2) désignent des endomorphismes de E de dimension finie, tels que :{

∀i ∈ J1, pK, ui est diagonalisable

∀(i, j) ∈ J1, pK2, ui ◦ uj = uj ◦ ui

alors il existe une base de diagonalisation commune dans laquelle les matrices associées sont toutes diagonales.

2.2 Endomorphisme trigonalisable et matrice trigonalisable

Définition

• Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). On dit que f est trigonalisable s’il existe une base
B de E dans laquelle la matrice de f est triangulaire.

• Soit M ∈ Mn(K) et notons f l’endomorphisme de Kn canoniquement associé. On dit que M est trigonalisable si f est
trigonalisable, c’est à dire si M est semblable à une matrice triangulaire :

∃ P ∈ GLn(K), M = PTP−1

avec T une matrice triangulaire.

Remarques

1. La plupart du temps, on se ramènera à une matrice triangulaire supérieure, mais cela n’a pas beaucoup d’importance.
En effet, s’il existe une base B = (e1, . . . , en) dans laquelle la matrice de f est triangulaire supérieure, on peut toujours
réarranger les vecteurs et obtenir dans la base B′ = (en, . . . , e1) une matrice qui sera triangulaire inférieure.

2. Ces définitions sont très proches. On travaillera donc sur les endomorphismes trigonalisables et on pourra encore une
fois adapter tous les résultats obtenus aux matrices carrées : il suffira d’introduire en cas de besoin l’endomorphisme
canoniquement associé.
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Soient E un K-espace vectoriel de dimension finie n ≥ 1 et g ∈ L(E). On suppose de plus que g est nilpotent d’indice p ≥ 1,
c’est à dire que p désigne le plus petit entier tel que :

gp = 0L(E) et gp−1 6= 0L(E)

Alors, on a :

1. p ≤ dim(E)

2. {0E}  Ker(g)  Ker(g2) . . .  Ker(gp−1)  Ker(gp) = E

3. il existe une base B dans laquelle la matrice de g est triangulaire strictement supérieure et peut s’écrire par blocs :

MatB(g) =


O1 F . . . F
... O2

. . .
...

F
(0) . . . Op



Propriété 21 (cas particulier des endomorphismes nilpotents).

I Les deux premiers points ont déjà été traités en exercice. Il suffit alors de prendre une base de B1 de Ker(g) qu’on complète
en une base B1 ∪B2 de Ker(g2)... jusqu’à compléter en une base de B1 ∪ . . . ∪Bp de Ker(gp) = E.

Remarques

1. Globalement, on pourra donc retenir qu’un endomorphisme nilpotent est toujours trigonalisable et de spectre nul puisque
dans cette base, tous les coefficients diagonaux sont nuls. En particulier, on obtient dans cette base : χg(λ) = λn.

2. Ce dernier point nous permet même de caractériser les matrices nilpotentes à l’aide du polynôme caractéristique :

M nilpotente si et seulement si son polynôme caractéristique vérifie χM (λ) = λn

D’ailleurs, le sens réciproque est immédiat puisqu’il découle du théorème de Cayley-Hamilton.

Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). On considère λi une valeur propre de f et le sous-espace
Ec,f (λi) = Ker((f − λi.idE)mλi ) est appelé sous-espace caractéristique associé à la valeur propre λi. Alors, on a :

1. les sous-espaces caractéristiques associés à des valeurs propres distinctes sont en somme directe.

2. dim(Ec,f (λi)) = mλi

3. Ef (λi) ⊂ Ec,f (λi) et on a égalité si f est diagonalisable.

Propriété 22 (des sous-espaces caractéristiques).

I Le premier point est immédiat et il découle du théorème de décomposition des noyaux. Pour le second point, on pourra
travailler de deux façons (χf scindé ou non)... mais dans les deux cas, on montre d’abord que la dimension est inférieure à
la multiplicité avant d’aller chercher l’égalité. Enfin, le dernier point a déjà été établi.

Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). Alors, f est trigonalisable si et seulement si son
polynôme caractéristique χf est scindé dans K[X].

Théorème 23 (condition nécessaire et suffisante de trigonalisation à l’aide du polynôme caractéristique).

I On procède par double implication. Pour le sens direct, on traduit encore la trigonalisabilité et on calcule χf dans la base
obtenue. Pour le sens réciproque, on invoque le théorème de Cayley-Hamilton : le théorème des noyaux nous permet alors
de décomposer E en somme directe de sous-espaces caractéristiques sur lesquels on a un opérateur nilpotent.

Remarques

1. Cette preuve est constructive puisqu’elle nous donne un moyen pratique pour construire une base de trigonal-
isation à partir de la décomposition spectrale :

E = Ker(χf (f)) = ⊕pi=1Ker((f − λi.idE)mλi )
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Ainsi, pour chaque sous-espace caractéristique, on cherche une base de mλi vecteurs adaptée à la suite d’inclusions
strictes :

{0E}  Ker(f − λi.idE)  Ker((f − λi.idE)2) . . .  Ker((f − λi.idE)pi) = . . . = Ec,f (λi)

où pi désigne l’indice de nilpotence de gi = f − λi.idE , puis en concaténant les bases obtenues, on aura :

MatB(f) =



λ1 ∗ ∗
. . . ∗

(0) λ1

(0)

λ2 ∗ ∗
. . . ∗

(0) λ2

(0)

λp ∗ ∗
. . . ∗

(0) λp


On peut alors remarquer que E se décompose en somme directe de sous-espaces caractéristiques stables par f et pour
chacun de ces sous-espaces l’endomorphisme induit vérifie :

fEc,f (λi) = λi.idE + gi, où gi = f − λi.idE est nilpotent

2. La trace et le déterminant étant des invariants de similitude, on en déduit que pour tout endormorphisme f trigonal-
isable, on a encore :{

tr(f) =
∑p
i=1 mλi .λi, c’est à dire la somme des valeurs propres comptées avec leur ordre de multiplicité

det(f) =
∏p
i=1 λ

mλi
i , c’est à dire le produit des valeurs propres comptées avec leur ordre de multiplicité

3. D’après le théorème de D’Alembert-Gauss, tout polynôme de C[X] est nécessairement scindé et ainsi, pour toute matrice
M ∈Mn(C), χM est scindé. On en déduit qu’elle est toujours trigonalisable sur C :

∃ P ∈ GLn(C), M = PTP−1

Ainsi, même avec des matrices à coefficients réels, on n’hésitera pas à se plonger dans Mn(C).

Exemple 7 Soit n ∈ N∗. Déterminer l’ensemble des matrices M ∈Mn(R) telles que :

M5 = M2 et tr(M) = n

Soient E un K-espace vectoriel de dimension finie n ≥ 1 et f ∈ L(E). Alors, en adaptant la preuve précédente, on obtient
un dernier critère de trigonalisation tout aussi pratique :

f est trigonalisable si et seulement si f annule un polynôme scindé dans K[X].

Corollaire 24 (condition nécessaire et suffisante de trigonalisation à l’aide d’un polynôme annulateur).

Comme pour les endomorphismes diagonalisables, on peut encore obtenir sous certaines conditions une réduction simultanée
de deux endomorphismes trigonalisables.

Exemple 8 Considérons ici E un K-espace vectoriel de dimension finie n ≥ 1 et considérons f, g ∈ L(E) pour lesquels on suppose
que : {

f et g sont trigonalisables

f ◦ g = g ◦ f

1. Etablir que f et g possèdent au moins un vecteur propre commun.

2. Montrer alors que f et g sont simultanément trigonalisables, c’est à dire qu’en notant A,B des matrices canoniquement
associées aux endomorphismes f et g, montrer qu’il existe une matrice de passage commune P ∈ GLn(K) telle que :{

A = PT1P
−1

B = PT2P
−1

avec T1, T2 des matrices triangulaires
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Remarque D’ailleurs, on retiendra (et ce sont les mêmes idées que pour la diagonalisation simultanée) que par récurrence
sur le nombre d’endomorphismes, si u1, . . . , up (p ≥ 2) désignent des endomorphismes de E de dimension finie, tels que :{

∀i ∈ J1, pK, ui est trigonalisable

∀(i, j) ∈ J1, pK2, ui ◦ uj = uj ◦ ui

alors il existe une base de trigonalisation commune dans laquelle les matrices associées sont toutes triangulaires.

3 Cas particulier de l’exponentielle de matrices

Définition On rappelle que sur Mn(K) il est toujours possible de considérer la norme ‖.‖ définie par :

‖A‖ = max
1≤i≤n

n∑
j=1

|aij |

Cette norme désigne une norme d’algèbre et ainsi, on montre que pour toute matrice A ∈Mn(K), la série
∑ Ak

k!
est absolument

convergente, et donc en dimension finie, elle est convergente.
On appelle alors exponentielle de A la somme de cette série de sorte que :

exp(A) =

+∞∑
k=0

Ak

k!

Soient A,B ∈Mn(K) telles que AB = BA. Alors, on a :

exp(A+B) = exp(A) exp(B)

Propriété 25 (propriété algébrique pour deux matrices qui commutent).

I Les séries
∑
Ak/k! et

∑
Bk/k! étant absolument convergentes, on peut invoquer le théorème relatif au produit de Cauchy.

Soit A ∈Mn(K). Alors, exp(A) ∈ GLn(K) et on a :

(exp(A))−1 = exp(−A)

Corollaire 26 (inversibilité et inverse).

I C’est immédiat : comme A et −A commutent, il suffit d’appliquer le résultat précédent.

Soit A ∈Mn(K) qu’on suppose nilpotente d’indice p ≥ 1. Alors, on a immédiatement :

exp(A) =

p−1∑
k=0

Ak

k!

Propriété 27 (cas particulier d’une matrice nilpotente).

I La matrice étant nilpotente, la somme est finie.

Soit A ∈ Mn(K) qu’on suppose diagonalisable. Alors, il existe P ∈ GLn(K) tel que A = PDP−1 avec D une matrice
diagonale de coeffients (λi)i∈J1,nK. Alors, on a immédiatement par opérations sur les matrices diagonales :

exp(A) = P exp(D)P−1 = P

e
λ1 (0)

. . .

(0) eλn

P−1

Ainsi, exp(A) est aussi diagonalisable et SpK(exp(A)) = {eλi , λi ∈ SpK(A)}, avec le même ordre de multiplicité pour les
valeurs propres distinctes.

Propriété 28 (cas particulier d’une matrice diagonalisable).
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I On se ramène à cran fini afin d’opérer sur les coefficients et on reconnâıt la somme partielle d’une série exponentielle.

Soit A ∈ Mn(K) qu’on suppose trigonalisable. Alors, il existe P ∈ GLn(K) tel que A = PTP−1 avec T une matrice
triangulaire de coeffients (λi)i∈J1,nK. Alors, on a immédiatement par opérations sur les matrices triangulaires :

exp(A) = P exp(T )P−1 = P

e
λ1 ∗ ∗

. . . ∗
(0) eλn

P−1

Ainsi, exp(A) est aussi trigonalisable et SpK(exp(A)) = {eλi , λi ∈ SpK(A)}, avec le même ordre de multiplicité pour les
valeurs propres distinctes.

Propriété 29 (cas particulier d’une matrice trigonalisable).

I On se ramène à cran fini afin d’opérer sur les coefficients et on reconnâıt la somme partielle d’une série exponentielle.

Remarques

1. Dans les deux cas, on peut facilement calculer le déterminant de exp(A) et il vient :

det(exp(A)) =

n∏
i=1

eλi = e
∑n
i=1 λi = etr(A)

D’ailleurs, la trace et le déterminant étant des invariants de similitude, ce dernier résultat sur le déterminant sera vrai
pour toute matrice A donnée.

2. En fait, si on se plonge encore dans Mn(C), la décomposition de Dunford vue en TD spécifique nous permet alors
d’obtenir :

exp(M) = exp(D +N) = exp(D) exp(N)

et en utilisant les propriétés précédentes, on peut alors calculer rapidement l’exponentielle de M .
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