Chapitre 6

Réduction des endomorphismes et des matrices carrées

Apreés avoir révisé les principaux résultats d’algébre linéaire en début d’année, on
présente ici la notion d’éléments propres en dimension quelconque. Cela nous perme-
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Pour aller plus loin

Ce chapitre est essentiel, car avec celui sur les endormorphismes remarquables d’un espace euclidien, il recouvre presque tous
les sujets de concours en algeébre, et on essaiera de comprendre les objectifs de la réduction : obtenir des tableaux numériques
plus faciles & manipuler, cela facilite notamment la résolution des problemes algébriques, des problemes d’optimisation...



Chapitre 6
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1 Eléments propres et polynéme caractéristique

1.1 Polynémes d’endomorphisme et théoréme des noyaux

Définition Soient F un K-espace vectoriel et f € L(E). On rappelle que dans l’algébre des endomorphismes £(FE), on note :
f° =idg et pour tout n € N*, f* = fofo...of
e On appelle alors polyndme d’endomorphisme en f toute application P(f) € L(E) de la forme :
P(f)=anf" + ...+ a1f + aoidg

ol ao, . . ., an désignent les coefficients du polynéme P(X) = an X" + ... + a1 X + ao € K[X].

o Et dans le cas particulier oit P(f) = 0.(g), on dit que P désigne un polynéme annulateur de f.

Remarques

1. En particulier, on en déduit que pour tout z € F :
P(f)(@) = anf™(@) + ... + arf(2) + aox

mais on ne confondra surtout pas avec la notation P(f(x)) qui n’aurait pas de sens ici ! C’est méme une erreur tres
courante a éviter...

2. Si de plus E est de dimension finie p et en notant M la matrice de f dans une base B, alors P(f) a pour matrice :
P(M) = anM™ 4+ ...+ a1 M + aol,

et ainsi, on pourra aussi parler de polynéme de matrice en M, ou méme de polynéme annulateur de M si
P(M) = Opm,, x)-

{Propriété 1 (composition de deux polynémes d’endomorphisme).]

Soient E un K-espace vectoriel et f € L(E). Alors, pour tout A € K et pour tout polynéme P, Q € K[X], on montre que :
L (AP+Q)(f) = AP(f)+Q(f)

2. P(f) o Q(f) = (PQ)(f) = (QP)(f) = Q(f) o P(f)

et ainsi, on pourra retenir que des polynémes en f commutent toujours.

» Dans les deux cas, on revient a la définition d’un polynéme d’endomorphisme et on pourra invoquer la linéarité de f si
besoin.

{Théoréme 2 (idéal annulateur et existence du polynome minimal en dimension ﬁnie).]

Soient E un K-espace vectoriel de dimension finie n € N* et f € £(E). On définit Ann(f) = {P € K[X], P(f) = 0zm)}-
Alors, on a :

1. Ann(f) est un idéal non trivial de K[X].
2. On en déduit qu’il existe un unique polynéme unitaire py de plus bas degré tel que :

Ann(f) = psKIX]

On appelle alors polynéme minimal de f le polyndme iy qui engendre cet idéal annulateur.

» Pour le premier point, on revient & la définition d’un idéal de K[X]. Pour le second point, on peut raisonner par existence
et unicité : lexistence est triviale car tous les idéaux de K[X] sont principauz...

Remarque Cette derniere égalité nous donne un résultat pratique : pour tout polynéme P annulateur de f, il vient
P € pusK[X] = py|P. Et ainsi, le polynéme minimal divise tous les polynémes annulateurs d’un endomorphisme donné.
De plus, on retiendra que nécessairement : deg(py) > 1, car py ne peut pas étre égal a 1.

Exemple 1 Les questions suivantes sont indépendantes.

1. Soit E un K-espace vectoriel. Déterminer le polynéme minimal d’une homothétie h = A.idg, d’un projecteur f et d’une
symétrie s de E.

2. On considere A = (a;;) € M (R) telle que pour tout (i,5) € [1,n]?, ai; = 1. Déterminer 4 son polynéme minimal.
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{Corollaire 3 (une conséquence du polynéme minimal).]

Soient F un K-espace vectoriel de dimension finie n € N* et f € L(E) et on note uy son polyndéme minimal tel que
deg(py) =p > 1. Alors,

1. la famille (idg, f, ..., fP7') est nécessairement libre dans £(E).
2. pour tout k > p, f* € Vect(idg, f,..., 7).

On dit aussi que (idg, f, . - ., f*~") désigne une base de K[f], I’algebre des polynémes d’endomorphisme en f et en particulier,
on retiendra que :

dim(K[f]) = deg(yy)

» Pour le premier point, on raisonne par l’absurde... on aura alors un polynéme annulateur en f de degré < p. Pour le
second point, il suffit de faire la division euclidienne X* par .

Théoréme 4 (de décomposition des noyaux).]

Soient E un K-espace vectoriel et f € L(E). On considere de plus P, Q € K[X] qu’on suppose premiers entre eux, alors on a
la décomposition :

Ker(PQ(f)) = Ker(P(f)) ® Ker(Q(f))

» On revient & la caractérisation d’une décomposition en somme directe de deux sous-espaces supplémentaires, mais on
pensera d’abord & invoquer le théoréme de Bézout pour obtenir une relation entre P(f) et Q(f).

Théoréme 5 (de décomposition des noyaux généralisé).]

Soient E un K-espace vectoriel et f € L(E). On considére de plus P, ..., P, € K[X] qu'on suppose premiers entre eux deux
a deux, alors on a la décomposition :
Ker(P1...P,(f)) = ®i=1 Ker(P;(f))

» On procede simplement par récurrence sur n > 2. Pour ’hérédité, on pensera a montrer que le produit Pi ... P, et Py+1
sont premiers entre eux avant d’utiliser le résultat précédent.

Remarque Ce théoréme des noyaux est fondamental pour ce chapitre. En effet, si on peut exhiber un polynéme annulateur
P tel que P(f) = 0z(g), alors on aura toujours une décompostion immédiate de I’espace de sorte que :

E = Ker( P(f)) =®i—1Ker(P(f))
——
=0c(m)
ou P; désignent des polyndémes premiers entre eux deux a deux et qui constituent P. C’est méme souvent dans cette

décomposition qu’on ira puiser une base de réduction.

1.2 Eléments propres d’un endomorphisme

Définition Soient E un K-espace vectoriel et f € L(E).

e On appelle valeur propre de f tout scalaire A € K tel que :

Jz e E—{0g}, f(z) =z

e On appelle vecteur propre de f tout vecteur z € E — {0g} tel que :
IreK, f(z)=Az
Dans ce cas et sous réserve d’existence, on appelle :
e spectre de f sur K noté Spx(f) 'ensemble des valeurs propres distinctes de f appartenant a K.

e sous-espace propre associé a la valeur propre ) le sous-espace Ef(\) = Ker(f — A.idg) constitué des vecteurs propres
associés a la valeur propre A et du vecteur nul.
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Corollaire 6 (premiere caractérisation d’une valeur propre).]

Soient E un K-espace vectoriel et f € £L(F). On a immédiatement :

A€ Spr(f) & Fz e E—{0r}, f(z) =Xz & E;(A\) #{0r} & f— Aidg n’est pas injective

Remarques

1. Sans hypothese supplémentaire, le spectre d’'un endomorphisme sur K peut étre vide ou infini... on pourra par exemple
considérer les endomorphismes f € L(K[X]) et g € L(C*(R,R)) définis par :

f:P— XPetg:u—u

2. Si on supppose de plus que E est de dimension finie, alors la derniére assertion est encore équivalente a f — A\.idg non
bijective. Il faudra s’en souvenir car c’est tres utile en exercice avec notamment ce cas particulier :

0 ¢ Spx(f) < f—0.dg = f est bijectif

{Propriété 7 (valeurs propres et polynémes d’endomorphismes en f)]

Soient E un K-espace vectoriel, f € L(E) et considérons A € Spk(f), £ un vecteur propre associé & la valeur propre A.

1. Pour tout polynéme P € K[X], on a :
P(f)(x) = P(N).x

et ainsi, x représente un vecteur propre de P(f) associé & la valeur propre P(\).

2. Si de plus P est un polynéme annulateur de f, alors P(A) = 0, et ainsi, on a toujours :

Spx(f) C Racinesg (P)

» Pour le premier point, on montre par récurrence que pour tout n € N*, f™(x) = A"z, puis on calcule P(f)(z). Le second
point est immédiat puisque x # O, en tant que vecteur propre de f.

{Propriété 8 (liberté des vecteurs propres associés & des valeurs propres distinctes).]

Soient E un K-espace vectoriel, f € L(E) et considérons (A;)i;er une famille de valeurs propres distinctes. Alors,

1. toute somme finie de sous-espaces propres associés a des valeurs propres distinctes est directe.

2. toute famille de vecteurs propres associés & (\;)ier est libre.

» Pour le premier point, on procéde par récurrence sur le nombre de sous-espaces propres. Pour le second point, il suffit de
montrer que toute sous-famille finie de vecteurs propres est libre.

Remarque Encore une fois, si E est de dimension finie, alors le résultat précédent nous permet d’affirmer que le spectre,
8’il n’est pas vide, est nécessairement fini de sorte que :

0 < Card(Spk(f)) < dim(E)

Exemple 2 Soit n € N* et considérons A € M, (R) telle que :
6ATA=5A-1I,

1. On introduit f € £L(R™) canoniquement associé a la matrice A. Montrer qu’il existe un polynéme P scindé a racines simples
tel que P(f) = Oz@n)-

2. En déduire que f est nécessairement diagonalisable, et montrer alors que AP —+> 0.
p——+oo
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1.3 Définition du polyndéme caractéristique et théoreme de Cayley-Hamilton

Pour le reste du chapitre, on fait alors le choix de se placer en dimension finie. Ainsi, F désignera un K-espace vectoriel de
dimension finie n > 1 et on notera B une base de F.

Définition Soit f € L(E). On appelle polynéme caractéristique de f le polynéme unitaire x; de degré n définie sur K par :

Xr(A) =det(Nidg — f) = det(A\.I, — Matg(f))

Remarques
1. Si on note M = Matg(f), alors par définition du déterminant, on rappelle que pour tout A € K :
A —mi1 —Mia .. —Min
iy =| " A o C =3 d0)armn o

—Mn—1n oc€Snp
—Mn1 .. —Mnn—-1 )\ — Mnn

= H()\ — M) + Z €(0)ar(1)1 - - - Go(n)n
im1

0ESy,0#id

de degré <n—2
=\"— (Z mm‘)An_l A P4 ar+q
i=1

Avec A = 0, on obtient go = xr(0) = (—1)"det(M), et ainsi on pourra donc retenir que Xy est bien I’expresssion d’un
polynéme unitaire de degré n en A tel que :

XrA) = X" —tr(M)N" .+ (=1)"det(M)
2. Attention, dans certains ouvrages, on peut faire un abus de notation et définir x par :
Xf(X) =det(X.idg — f)

en laissant croire que X désigne une indéterminée classique et qui pourra étre évaluée comme on l’entend : malheureuse-
ment, avec X = g, cela n’aurait pas de sens algébrique... car on travaille dans (L(E), +,o0,.).

On sera donc extrémement rigoureux et on veillera a utiliser uniquement des scalaires dans la définition liée au
déterminant. Bien entendu, une fois la forme polynomiale obtenue, on pourra alors travailler avec une indéterminée X.

Corollaire 9 (seconde caractérisation d’une valeur propre).]

Soient E un K-espace vectoriel et f € £L(F). On a immédiatement :

A€ Spr(f) & xs(A) =0

» On revient a la définition d’une valeur propre et on donne les équivalences usuelles... sans oublier qu’on travaille ici en
dimension finie.

Remarques

1. En dimension finie, les valeurs propres de f sont exactement les racines du polyndéme caractéristique. Il faudra donc
faire attention si on travaille dans R ou C et en fonction du corps des scalaires retenus, on a encore :

0 < Card(Spx(f)) < deg(xs) = dim(E)

2. On peut alors parler d’ordre de multiplicité d’une valeur propre \g, c’est simplement son ordre de multiplicité
vis & vis du polynéme caractéristique.

{Propriété 10 (le polynéme caractéristique est un invariant de similitude).]

Soit f € L(FE) et considérons encore B, B’ deux bases de E. Alors, on a pour tout A € K,
xr(A) =det(N\.I, — Mats(f)) = det(\.I, — Matg/(f))

Autrement dit, le polynéme caractéristique ne dépend pas de la base retenue : c’est un invariant de similtude.

» On revient d la définition du polynéme caractéristique et on voit I,, = PP~ ...
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Propriété 11 (polynome caractéristique d’un endomorphisme induit).]

Soit f € L(FE) et considérons F un sous-espace stable par f, fr endomorphisme induit sur F. Alors, on a: xn| Xf-

» On considére une base de F' qu’on compléte en une base de E. On obtient alors une matrice par blocs avec laquelle il est
facile de calculer le polynéme caractéristique.

Propriété 12 (majoration de la dimension des sous-espaces propres).]

Soit f € L(E) et considérons Ao une valeur propre de f d’ordre de multiplicité m»,. Alors, le sous-espace propre FEf(\o) est
un sous-espace stable et on a :
1 < dim(Ef(Xo)) < ma,

» On vérifie d’abord que les endomorphismes f et f — Xo.idg commutent, puis on invoque la propriété précédente.

Remarque Pour finir, on rappelle qu’a toute matrice donnée M € M, (K), on peut construire un unique endomorphisme
f € LK) tel que M = Matg(f), ou B désigne la base canonique de K™. Ainsi, on pourra adapter toutes les définitions des
éléments propres de f a la matrice M :

Définition Soit M € M, (K).
e On appelle valeur propre de M tout scalaire A € K tel que :

AX € My — {0}, MX =A.X

e On appelle vecteur propre de M tout vecteur X € M, — {0} tel que :

INeK, MX =\.X

Dans ce cas et sous réserve d’existence, on appelle :

e spectre de M sur K noté Spx(M) 'ensemble des valeurs propres distinctes de M appartenant a K.

e sous-espace propre associé a la valeur propre ) le sous-espace Ea(\) = Ker(M —\.I,,) constitué des vecteurs propres
associés a la valeur propre A et du vecteur nul.

De plus, on appelle polynéme caractéristique de M le polynéme unitaire xas de degré n définie sur K par :

xm(A) = det(\.I, — M)

Exemple 3 Les questions suivantes sont indépendantes.

1. Soit (ao,-...,an—1) € K" et on définit A € M, (K) par :

0 0 500 —ag

1 0 000 —ai
A =

0 . . :

0 1 —Aan—1

Montrer que xa(A\) = A" + A A" '+ ..+ a )+ ao.

En fait, pour tout polyndéme unitaire P, on peut construire une telle matrice A telle que x4 = P : on dit aussi
qu’il s’agit de la matrice compagnon associée au polynéme P.

2. On considére A la matrice de M, (R) définie par :

0 1 1 1
1 0 1 1
A, =11 1 1
1 1 0 1
1 1 1 0

Montrer que xa(\) = (A —n+1)(A+1)" L
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Remarques

1. On retrouve alors les mémes propriétés sur le polynéme caractéristique : c’est un invariant de similitude et on a toujours
I’équivalence fondamentale :

AeESP(f) @ I X eMp —{0}, MX =AX &< M — A1, n'est pas inversible < xa(A\) =0
En particulier, des matrices semblables ont les mémes valeurs propres.

2. Lorsque K = R, on pourra vite étre limité dans 1’étude d’un endomorphisme f € £(E) surtout quand le spectre sur R
est vide... Par contre, si on travaille matriciellement, alors on a évidemment :

M e M, (R) C M,(C)

et dans ce cas, le théoréeme de D’Alembert-Gauss nous fournira au moins une valeur propre avec laquelle travailler et
le polynéme caractéristique sera toujours scindé de la forme :

XA = A =X)™1 .. (A= X)) avec myy ... M, =1
On prendra donc souvent ’habitude de se plonger dans M, (C) !

3. Il y a enfin des matrices pour lesquelles il est tres facile de lire le spectre, ce sont les matrices triangulaires ou diagonales.

Corollaire 13 (cas particulier des matrices semblables & une matrice triangulaire ou diagonale).]

Soit M € M, (K) qu’on suppose semblable & une matrice triangulaire ou diagonale. Alors, le polynéme caractéristique est
scindé dans K[X] et les valeurs propres sont données par les coefficients diagonaux (¢i;)1<i<n ou (dii)i<i<n.

» C’est immédiat : le polynéme caractéristique est un invariant de similitude, il suffit alors de calculer le déterminant d’une
matrice triangulaire.

{Théoréme 14 (de Cayley—Hamilton).]

1. Soit f € L(E) et notons xy son polynéme caractéristique. Alors, xs(f) = Oz(g) et ainsi,
xs € Ann(f)

2. En adaptant les définitions, on montre aussi que pour toute matrice M € M (K), xar(M) = Opq,, (k) et ainsi,

xm € Ann(M)

» Soit x un vecteur non nul, on introduit le sous-espace Fp = Vect(fk(x), k € N) : on montre alors qu’il s’agit d’un sous-
espace stable de dimension p < n, et on calcule le polynéme caractéristique de l’endomorphisme induit fr, avant de justifier
que Xf(f)(xz) = 0g. Le résultat étant encore vrai pour x = Og, on en déduit le théoréme de Cayley-Hamilton.

Remarques

1. Bien entendu, cela nous donne une relation immeédiate entre le polynome minimal et le polyndéme caratéristique d’un
endomorphisme f : on retiendra que uys| xs et ainsi, on a immédiatement :

Spx(f) C Racinesk(uf) C Spr(f) = Racinesk (us) = Spx(f)
2. Le polyndme caractéristique nous donne ici un polynéme annulateur particulier, mais on rappelle que deg(xnm) = n,

et dong, il ne sera pas toujours exploitable... on préferera la plupart du temps calculer les premiéres puissances de M
pour en déterminer un polynéme annulateur de degré moins élevé.
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2 Réduction des endomorphismes et des matrices carrées

2.1 Endomorphisme diagonalisable et matrice diagonalisable

Définition
e Soient E un K-espace vectoriel de dimension finie n > 1 et f € L(F). On dit que f est diagonalisable s’il existe une base
B de FE dans laquelle la matrice de f est diagonale.

e Soit M € M, (K) et notons f 'endomorphisme de K" canoniquement associé. On dit que M est diagonalisable si f est
diagonalisable, c’est & dire si M est semblable & une matrice diagonale :

3PeGL,(K), M =PDP!

avec D une matrice diagonale.

Remarques

1. Si f est diagonalisable, alors la base B dans laquelle f est diagonale n’est rien d’autre qu'une base de vecteurs propres
(e1,...,en) puisque pour tout ¢ € [1,n], f(e:;) = \ies.

2. Ces définitions sont tres proches. On travaillera donc sur les endomorphismes diagonalisables et on pourra encore une
fois adapter tous les résultats obtenus aux matrices carrées : il suffira d’introduire en cas de besoin ’endomorphisme
canoniquement associé.

{Propriété 15 (interprétation de la diagonalisabilité d’un endomorphisme).}

Soient E un K-espace vectoriel de dimension finie n > 1 et f € L(E). On note de plus A1,..., A, ses valeurs propres
distinctes. Alors, les assertions suivantes sont équivalentes :

1. f est diagonalisable
2. E=@®P_Ef(\), et ainsi F se décompose en somme directe de sous-espaces propres stables par f
3. Zle dzm(Ef()\l)) =n

Et dans ce cas, on peut toujours construire B une base de vecteurs propres associés aux valeurs propres A1, ..., A, tels que :

(0)

Matgp(f) = (0)

» On procéde par cycle, et on m’hésitera pas a revenir aux résultats précédents : que ce soit la caractérisation d’une
décomposition en dimension finie, ou la liberté des vecteurs propres associés a des valeurs propres distinctes.

Remarque Si E = ®!_, E¢(\;), alors on peut remarquer que E se décompose en somme directe de sous-espaces propres
stables par f et pour chacun de ces sous-espaces ’endomorphisme induit vérifie :

fEf(Ai) = \i.idg, c’est une homothétie !

Propriété 16 (une condition suffisante de diagonalisation).]

Soient F un K-espace vectoriel de dimension finie n > 1 et f € L(FE). Si de plus f posséde n valeurs propres distinctes, alors
f est nécessairement diagonalisable.

» Dans ce cas particulier, on peut obtenir n vecteurs propres associ€s, et donc libres, qui définiront une base de diagonalisation.
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Remarques

1. On fera attention, il ne s’agit 1a que d’une condition suffisante car a priori, on n’a pas toujours n valeurs propres
distinctes. C’est par exemple le cas des projecteurs et des symétries : ce sont des endomorphismes diagonalisables pour
lesquels le spectre ne contient qu’une ou deux valeurs propres.

2. En fait, pour vérifier si un endomorphisme est diagonalisable, on préférera souvent passer par l’une des deux
caractérisations a venir :

e & 'aide du polynoéme caractéristique,

e en utilisant un polynéme annulateur bien choisi.

{Théoréme 17 (condition nécessaire et suffisante de diagonalisation & 'aide du polynéme caractéristique).]

Soient E un K-espace vectoriel de dimension finie n > 1 et f € L(E). Alors, f est diagonalisable si et seulement si :

son polyndéme caractéristique x5 est scindé dans K[X]
pour toute valeur propre A\; € Spx(f), dim(Ef(Ai)) = max,

i

ou my, désigne I'ordre de multiplicité de A; dans le polynéme caractéristique.

» On procéde par double implication. Pour le sens direct, on traduit la diagonalisabilité et on calcule x ¢ dans la base de
vecteurs propres, il restera o justifier l’égalité des dimensions. Pour le sens réciproque, on écrit I’égalité au niveau des degrés,
ce qui permet en fait d’obtenir une base de n vecteurs propres indépendants.

Remarque La trace et le déterminant étant des invariants de similitude, on en déduit que pour tout endormorphisme f
diagonalisable :

{tr(f) =3P _,mx,. M, cest & dire la somme des valeurs propres comptées avec leur ordre de multiplicité

det(f) =117 Amk", c’est a dire le produit des valeurs propres comptées avec leur ordre de multiplicité

i=1""

Exemple 4 On note pour tout a € R,

1 1
M(a)=10 2
0 0

e O

Déterminer ’ensemble des réels a pour lesquels M (a) est diagonalisable dans M3(R).

Propriété 18 (polynéme minimal d’un endomorphisme diagonalisable).]

Soient E un K-espace vectoriel de dimension finien > 1 et f € £(E) qu’on suppose diagonalisable. Alors, en notant A1,...,Ap
ses valeurs propres distinctes, on a :
pp(X) = (X = M) (X = A2) ... (X = Ap)

» On procéde en deuz temps : a laide du théoréme des noyauz, on montre d’abord que le produit des (X — \;) désigne un
polynéome annulateur. Puis, on justifie que py est aussi multiple de ce produit... les polynomes étant associés et unitaires, ils
seront égaux.

{Théoréme 19 (condition nécessaire et suffisante de diagonalisation & I’aide des polynémes annulateurs).}

Soient E un K-espace vectoriel de dimension finie n > 1 et f € L(FE). Alors,

1. f est diagonalisable si et seulement si f annule un polynéme scindé & racines simples dans K[X].

2. f est diagonalisable si et seulement si py est scindé a racines simples.

» On procede par double implication. Le sens direct est immédiat puisque le polynéme minimal convient. Pour le sens
réciproque, on invoque encore le théoréme des noyaux pour exhiber une décomposition de E en somme directe de sous-espaces
propres. Le second point est immédiat : c’est un cas particulier trés pratique.

Exemple 5 Soit F un R-espace vectoriel de dimension 3 et notons f € L(E) tel que :

ff=fet £1€Sp(f)

Etablir que f est nécessairement diagonalisable.
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Corollaire 20 (diagonalisation d’un endomorphisme induit).]

Soient E un K-espace vectoriel de dimension finie n > 1 et f € L(E) qu’on suppose diagonalisable. Alors, pour tout
sous-espace F' stable par f, ’endomorphisme induit fr est aussi diagonalisable.

» (C’est immédiat : f annule un polynéme scindé a racines simples P, il en est donc de méme pour fr.

On finit ici avec une application directe du corollaire précédent : c’est la réduction simultanée qui est tres utile dans de
nombreux exercices, et qu’il ne faudra pas hésiter a rappeler dans vos oraux.

Exemple 6 Considérons ici F un K-espace vectoriel de dimension finie n > 1 et considérons f, g € L(E) pour lesquels on suppose
que :

f et g sont diagonalisables
fog=gof

En particulier, f étant diagonalisable, on note A, ..., \, ses valeurs propres distinctes et Ef()\;) les sous-espaces propres associés
tels que : E = ®f_ Er(\).

1. Justifier que pour tout ¢ € [1,p], Ef(A:) est stable par g.

2. Montrer alors qu’il existe une base de E dans laquelle les matrices associées & f et g sont simultanément diagonales.

Remarques

1. On peut réécrire le résultat de I'exemple précédent et ainsi, dans les conditions de ’exemple et en notant A, B des
matrices canoniquement associées aux endomorphismes f et g, il existe une matrice de passage commune P € GL,, (K)
telle que :

A=PD, P!
{ ! avec D1, D2 des matrices diagonales

B=PD,P7!

2. D’ailleurs, on retiendra (et c’est un exercice difficile) que par récurrence sur le nombre d’endomorphismes, on peut
généraliser ce résultat, et si u1,...,up (p > 2) désignent des endomorphismes de £ de dimension finie, tels que :

Vi € [1,p], u; est diagonalisable
V(Zh]) € [[17pﬂ27 Ui OUj = Uj O Ui

alors il existe une base de diagonalisation commune dans laquelle les matrices associées sont toutes diagonales.

2.2 Endomorphisme trigonalisable et matrice trigonalisable

Définition

e Soient E un K-espace vectoriel de dimension finie n > 1 et f € L(E). On dit que f est trigonalisable s’il existe une base
B de FE dans laquelle la matrice de f est triangulaire.

e Soit M € M,(K) et notons f l’endomorphisme de K" canoniquement associé. On dit que M est trigonalisable si f est
trigonalisable, c’est a dire si M est semblable a une matrice triangulaire :

3PeGL,(K), M=PTP!

avec 1" une matrice triangulaire.

Remarques

1. La plupart du temps, on se rameénera a une matrice triangulaire supérieure, mais cela n’a pas beaucoup d’importance.
En effet, s’il existe une base B = (e1,. .., en) dans laquelle la matrice de f est triangulaire supérieure, on peut toujours
réarranger les vecteurs et obtenir dans la base B’ = (ey, ..., e1) une matrice qui sera triangulaire inférieure.

2. Ces définitions sont tres proches. On travaillera donc sur les endomorphismes trigonalisables et on pourra encore une
fois adapter tous les résultats obtenus aux matrices carrées : il suffira d’introduire en cas de besoin I’endomorphisme
canoniquement associé.
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{Propriété 21 (cas particulier des endomorphismes nilpotents).]

Soient E un K-espace vectoriel de dimension finie n > 1 et g € £(F). On suppose de plus que g est nilpotent d’indice p > 1,
c’est a dire que p désigne le plus petit entier tel que :

9" = 0c(p) et g° ' # 0z(m)
Alors, on a :
1. p < dim(E)
2. {0} ¢ Ker(g) ¢ Ker(g®)... ¢ Ker(¢°™ ') & Ker(¢*) = E

3. il existe une base B dans laquelle la matrice de g est triangulaire strictement supérieure et peut s’écrire par blocs :

O % ... %
O-
Matgp(g) =
*
(0) Op

» Les deuz premiers points ont déja été traités en exercice. Il suffit alors de prendre une base de B1 de Ker(g) qu’on compléte
en une base B1 U Bz de Ker(g?)... jusqu’a compléter en une base de By U...U B, de Ker(gP) = E.

Remarques

1. Globalement, on pourra donc retenir qu'un endomorphisme nilpotent est toujours trigonalisable et de spectre nul puisque
dans cette base, tous les coefficients diagonaux sont nuls. En particulier, on obtient dans cette base : xg(A) = A".

2. Ce dernier point nous permet méme de caractériser les matrices nilpotentes a ’aide du polynéme caractéristique :
M nilpotente si et seulement si son polyndme caractéristique vérifie xar(A) = A"

D’ailleurs, le sens réciproque est immédiat puisqu’il découle du théoreme de Cayley-Hamilton.

{Propriété 22 (des sous-espaces caractéristiques).]

Soient E un K-espace vectoriel de dimension finien > 1 et f € L(FE). On considere \; une valeur propre de f et le sous-espace
E. (X)) = Ker((f — Xi.idg)™i) est appelé sous-espace caractéristique associé a la valeur propre \;. Alors, on a :

1. les sous-espaces caractéristiques associés a des valeurs propres distinctes sont en somme directe.
2. dim(Ec ¢(Xi)) = my,

3. Ef(N\i) C E¢ r(N\i) et on a égalité si f est diagonalisable.

» Le premier point est immédiat et il découle du théoréme de décomposition des noyaux. Pour le second point, on pourra
travailler de deuz fagons (xs scindé ou non)... mais dans les deuz cas, on montre d’abord que la dimension est inférieure d

/////

Théoréme 23 (condition nécessaire et suffisante de trigonalisation & 1’aide du polynéme caractéristique).]

Soient E un K-espace vectoriel de dimension finie n > 1 et f € L(FE). Alors, f est trigonalisable si et seulement si son
polyndéme caractéristique x s est scindé dans K[X].

» On procéde par double implication. Pour le sens direct, on traduit encore la trigonalisabilité et on calcule x5 dans la base
obtenue. Pour le sens réciproque, on invoque le théoréeme de Cayley-Hamilton : le théoréme des moyaux nous permet alors
de décomposer E en somme directe de sous-espaces caractéristiques sur lesquels on a un opérateur nilpotent.

Remarques

1. Cette preuve est constructive puisqu’elle nous donne un moyen pratique pour construire une base de trigonal-
isation a partir de la décomposition spectrale :

E = Ker(xs(f)) = &= Ker((f — Aiidp)™)
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Ainsi, pour chaque sous-espace caractéristique, on cherche une base de my, vecteurs adaptée a la suite d’inclusions

strictes :
{08} € Ker(f — M\ivide) G Ker((f — Mivide)?) ... © Ker((f — Mivide)") = ... = E. s (\)
ou p; désigne 'indice de nilpotence de g; = f — \;.idg, puis en concaténant les bases obtenues, on aura :
A1 * *
% (0)
(0) A1
)\2 * *
Matp(f) = (0) Ao
Ap k%
(0) Lok
(0) Ap

On peut alors remarquer que F se décompose en somme directe de sous-espaces caractéristiques stables par f et pour
chacun de ces sous-espaces I’endomorphisme induit vérifie :

fEc,f(M) = \i.idg + gi, ou g; = f — A\;.idg est nilpotent

2. La trace et le déterminant étant des invariants de similitude, on en déduit que pour tout endormorphisme f trigonal-
isable, on a encore :

tr(f) =37, mx,. A, c’est & dire la somme des valeurs propres comptées avec leur ordre de multiplicité
det(f) =TI, /\:Mi, c’est a dire le produit des valeurs propres comptées avec leur ordre de multiplicité

3. D’apres le théoréme de D’ Alembert-Gauss, tout polynéme de C[X] est nécessairement scindé et ainsi, pour toute matrice
M € M, (C), xn est scindé. On en déduit qu’elle est toujours trigonalisable sur C :

3P€gGL,(C), M =PTP "

Ainsi, méme avec des matrices & coefficients réels, on n’hésitera pas a se plonger dans M, (C).

Exemple 7 Soit n € N*. Déterminer ’ensemble des matrices M € M, (R) telles que :

M° =M? et tr(M)=n

{Corollaire 24 (condition nécessaire et suffisante de trigonalisation & l’aide d’un polynéme annulateur).\

J

Soient E un K-espace vectoriel de dimension finie n > 1 et f € L(FE). Alors, en adaptant la preuve précédente, on obtient
un dernier critére de trigonalisation tout aussi pratique :

f est trigonalisable si et seulement si f annule un polynéme scindé dans K[X].

Comme pour les endomorphismes diagonalisables, on peut encore obtenir sous certaines conditions une réduction simultanée
de deux endomorphismes trigonalisables.

Exemple 8 Considérons ici F un K-espace vectoriel de dimension finie n > 1 et considérons f, g € L(E) pour lesquels on suppose
que :

f et g sont trigonalisables
fog=gof

1. Etablir que f et g posseédent au moins un vecteur propre commun.
2. Montrer alors que f et g sont simultanément trigonalisables, c’est & dire qu’en notant A, B des matrices canoniquement

associées aux endomorphismes f et g, montrer qu’il existe une matrice de passage commune P € GL, (K) telle que :

A=Ph P
{ ! avec 11, T> des matrices triangulaires

B = PP !
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Remarque D’ailleurs, on retiendra (et ce sont les mémes idées que pour la diagonalisation simultanée) que par récurrence
sur le nombre d’endomorphismes, si u1,...,up (p > 2) désignent des endomorphismes de E de dimension finie, tels que :

Vi € [1,p], u; est trigonalisable
V(i,j) € [L,p]?, wiou; =u; ous

alors il existe une base de trigonalisation commune dans laquelle les matrices associées sont toutes triangulaires.

3 Cas particulier de I’exponentielle de matrices

Définition On rappelle que sur M, (K) il est toujours possible de considérer la norme ||.|| définie par :
n
141 = e 3 s
3=

. o . L A¥
Cette norme désigne une norme d’algebre et ainsi, on montre que pour toute matrice A € M, (K), la série T est absolument

convergente, et donc en dimension finie, elle est convergente.
On appelle alors exponentielle de A la somme de cette série de sorte que :

+oo k
exp(4) =S 4

T L g
k=0

{Propriété 25 (propriété algébrique pour deux matrices qui commutent).]

Soient A, B € M, (K) telles que AB = BA. Alors, on a :

exp(A + B) = exp(A) exp(B)

» Les séries Y A* /KD et > Bk/k! étant absolument convergentes, on peut invoquer le théoréme relatif au produit de Cauchy.

Corollaire 26 (inversibilité et inverse).]

Soit A € M, (K). Alors, exp(A) € GL,(K) et on a :

(exp(4)) ™" = exp(~A)

» (C’est immédiat : comme A et —A commutent, il suffit d’appliquer le résultat précédent.

{Propriété 27 (cas particulier d’'une matrice nilpotente).]

Soit A € M,,(K) qu’on suppose nilpotente d’indice p > 1. Alors, on a immédiatement :

p

1
Ak
exp(A4) = m
‘ k!

>
I

» La matrice étant nilpotente, la somme est finie.

{Propriété 28 (cas particulier d’une matrice diagonalisable).]

Soit A € M,(K) qu’on suppose diagonalisable. Alors, il existe P € GL£,(K) tel que A = PDP~! avec D une matrice
diagonale de coeffients (Xi)ie[1,n]. Alors, on a immédiatement par opérations sur les matrices diagonales :
eM (0)
exp(A) = Pexp(D)P~' =P p!
(0) et

Ainsi, exp(A) est aussi diagonalisable et Spx(exp(A)) = {e*, A\; € Spr(A)}, avec le méme ordre de multiplicité pour les
valeurs propres distinctes.
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» On se raméne a cran fini afin d’opérer sur les coefficients et on reconnait la somme partielle d’une série exponentielle.

{Propriété 29 (cas particulier d’'une matrice trigonalisable).]

Soit A € M, (K) qu’on suppose trigonalisable. Alors, il existe P € GL,(K) tel que A = PTP~! avec T une matrice
triangulaire de coeffients (Ai)scp1,n]. Alors, on a immédiatement par opérations sur les matrices triangulaires :

e * *
exp(A) = Pexp(T)P™ ' =P P!
(0) et
Ainsi, exp(A) est aussi trigonalisable et Spr(exp(A)) = {e*i, \; € Spr(A)}, avec le méme ordre de multiplicité pour les
valeurs propres distinctes.

» On se raméne & cran fini afin d’opérer sur les coefficients et on reconnait la somme partielle d’une série exponentielle.

Remarques

1. Dans les deux cas, on peut facilement calculer le déterminant de exp(A) et il vient :

n

det(exp(A)) = H i = elim1 M — tr(A)
=1
D’ailleurs, la trace et le déterminant étant des invariants de similitude, ce dernier résultat sur le déterminant sera vrai
pour toute matrice A donnée.

2. En fait, si on se plonge encore dans M, (C), la décomposition de Dunford vue en TD spécifique nous permet alors
d’obtenir :
exp(M) = exp(D + N) = exp(D) exp(N)

et en utilisant les propriétés précédentes, on peut alors calculer rapidement ’exponentielle de M.
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