Chapitre 5

Fonctions polynémes et polynémes a une indéterminée

On revient ici sur les formules de Taylor, trés utiles dans l’étude des fonctions que ce
soit pour des informations locales ou des identités globales. On verra notamment le
cas particulier des fonctions usuelles qui nous donneront nos premiers développements
en série entiére de référence.

Mais ce chapitre est aussi l’occasion de revenir sur la motion plus générale de
polynomes a une indéterminée : les propriétés arithmétiques sont nombreuses et le
principe de factorisation sera indispensable a la réduction des endomorphismes en
dimension finie.
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Pour aller plus loin

L’étude des polynomes est riche en mathématiques car elle offre de beaux problemes, que ce soit en les traitant de fagon
analytique ou de fagon algébrique. Il faudra donc en mesurer les différentes propriétés et retenir que leur étude en spé cache
un réel objectif : la réduction des endomorphismes en dimension finie.
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1 Fonctions polynoémes et applications

1.1 Rappels sur les fonctions polynoémes

Définition On rappelle qu'on appelle :

e fonction polyndéme a coefficients réels toute fonction p : R — R de la forme :

p(z) = a0+ a1z + a21‘2 + ...+ apz" avec ag, ..., a, des nombres réels, appelés coefficients de la fonction polynéme.

e fonction polyndéme a coefficients complexes toute fonction p : C — C de la forme :

p(z) = ao +a1z+asz’+. . . 4anz™ avec aq, . .., an des nombres complexes, appelés coefficients de la fonction polynéme.

Remarques
1. En particulier, une telle fonction polynéme est nulle si et seulement si tous ses coefficients sont nuls.

2. Comme R C C, on prendra souvent I’habitude de prolonger une telle fonction polyndéme a coefficients réels sur C. Cela
nous permettra notamment d’aller chercher les racines d’'un polynoéme.

Définition Soit p une fonction polynéme & coefficients complexes qu’on suppose non nulle, alors il existe n € N tel que :

p(z) = Zakzk avec an # 0

k=0

On dit alors que p est de degré n et a, est appelé coefficient dominant.
Si au contraire, p désigne la fonction polynéme nulle, on pose alors :

deg(p) = —o0

{Propriété 1 (opérations sur les fonctions polynémes).}

Soient p, g deux fonctions polynémes & coefficients complexes telles que p(z) = > 7 _, apz® et q(z) = PO brz".
Alors, les regles usuelles de calculs nous donnent :

1. p+ ¢ désigne encore une fonction polynéme définie sur C par :

max(n,m)

(p+q)(2) =p(z) +q(2) = Z (ax +by)2" avec ap = 0sik >net by =0si k>m
k=0

2. pour tout A € C, \.p désigne encore une fonction polynéme définie sur C par : Ap(z) = A x p(z) =Y 1_, axz".
3. p X q désigne encore une fonction polynéme définie sur C par :

n+m

(px q)(2) =p(2) x q(z) = > cx2"
k=0
ol Ck :Zfzoaibk—i aveca; =0sit>netby_; =0sik—17>m.
Et en particulier, on retiendra :
deg(p + q) < max(deg(p), deg(q))

deg(p) # deg(q) = deg(p + q) = max(deg(p), deg(q))
deg(p x q) = deg(p) + deg(q)

{Propriété 2 (régle de dérivation).]

Soit p une fonction polynéme & coefficients complexes telle que p(z) = > 7_, apz®. Alors, p est de classe C* sur C et les
regles usuelles de dérivation nous donnent :
, , k! ,
e pour tout i € [0,n], p(2) = Sr_ ark(k —1)...(k—i+1)2" 7" =37 ax mzkﬂ,
—1)!

e pour tout i > n, p?(z) = 0.
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Remarque Par convention, on a encore p{® = p et avec les notations de la définition, on pourra retenir que la i-ieme dérivée
p“) est encore une fonction polynéme de degré n — i de sorte que :

p™(2) = ann! et p"TV(2) =0

1.2 Formules de Taylor et approximation locale

Dans cette partie, les fonctions considérées seront définies sur I, un intervalle de R, a valeurs dans K = R ou C.

{Théoréme 3 (formule de Taylor avec reste intégral).}

Soient n € N et f une fonction de classe C™*! sur I & valeurs dans K, a € I. Alors, on a :

Vz eI, f(z) = zn: £® @ E= i /z (@ _!t)nf<"“)(t) dt

k! n
k=0

k
La fonction polynéme Tnq : x — > 7o f (k)(a)% représente le polynéme de Taylor de degré n associé a la fonction
f au point a.

» On procéde simplement par récurrence sur n € N dans laquelle on mettra en place une intégration par parties bien choisie.

En effet, il vient :

N . . L L .
e pour n =0, on a pour tout x € I, [ ( u!/) : fl(t) dt = f(x) — f(a) et ainsi, [’égalité est vraie.

e soit n € N pour lequel on suppose que I’égalité est vraie pour toute fonction de classe C™ . Alors, si f € C"T?(1,K),
f est aussi de classe C™' sur I de sorte que :

Ve eI, f(x) = 2 f“")(a) (@ ;‘a)k + /‘lb (w=0)" f(nJrl)(f,) dt
k=0 ) s

n!

En procédant par intégration par parties, on en déduit :

n . k P n+1 o T . n+1 .
fla) = Z £® () (a mn) + - (J(/n l)l)! FOD O 4 / %f” 2 (¢) dt
k=0 Ja

n+1
o [>71+l

z—a)k T (x (n+2
:Zf“‘)(a)i(‘ = ) +/ 7(<”+l)! FUT2 () at

k=0
Et ainsi, [’égalité est encore vrate. Ce qui prouve par récurrence la formule de Taylor avec reste intégral.

{Corollaire 4 (inégalité de Taylor—Lagrange).]

Soient n € N et f une fonction de classe C™ ! sur I & valeurs dans K, a € I. On suppose de plus qu’il existe M € R tel que
pour tout z € I, |f("+1>(x)| < M, alors pour tout z € I,

"k (z —a)* |z —a
If(m)szzof“(a) P Y

|n+1

M

» C’est immédiat : il suffit de majorer le reste intégral et d’exploiter l’inégalité triangulaire pour les intégrales.

Remarques
1. On retiendra que la formule de Taylor avec reste intégral est tres pratique, car elle nous livre ici une égalité globale sur

tout l'intervalle I.

2. L’inégalité de Taylor-Lagrange qui en résulte nous permet de mesurer 'erreur d’approximation entre la fonction f et
Th,a, le polynéme de Taylor associé. En particulier, si on travaille sur I = [a — a, a 4+ «], un voisinage de a :

n _ k _ n+1
) =2 £ < e e
Et ainsi, quand z — a,
n _\k
1) =3 19 @ o

On pourra donc retenir que les polynémes de Taylor nous donnent une approximation locale de la fonction f,
ce qui nous permettra de mieux cerner le comportement de la fonction donnée. C’est d’ailleurs tout 'intérét de la
formule de Taylor-Young.
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{Corollaire 5 (formule de Taylor-Young) ]

Soient n € N et f une fonction de classe C™ ! sur I & valeurs dans K, a € I. Alors, pour tout x € I,

f@) =3 1P@E 1 o (@—a))

k=0

» C’est immédiat puisque l'inégalité de Taylor-Lagrange nous permet d’affirmer que le reste intégral est un bien un o((x—a)™).

{Corollaire 6 (développements limités usuels).]

Les fonctions usuelles étant souvent de classe C°° sur leur domaine de définition, on en déduit a 'aide de la formule de

Taylor-Young les dévelopements limités suivants au voisinage de 0.
Et ainsi, pour tout n € N, on a :

2 1’3 " w0 xk:
e :1+x+§+§+...+m+zgo(a¢)=k —!—i—zgo(x)
=0
2 4 2n e 2k
= i L 2n+41y __ X 2n+1
h@) =1+gr+ g+ o T.%E )Tl @ T8 )
k=0
75 5 L2l S n 2k+1 S
h = —_— . w2 — n
sh(z) =z + 50+ 57 + t an D o ) 2. GET 1) Lo )
2 4 2n n 2k
_q_ T LA 1\ F 2n41y _ kT In+1
cos() =1 -5 + 7, D gy t.9.) S TR R
k=0
3 5 2n+1 n 2k+1
. .z n_ % 2n+2y _ r 2n+2
sin(z) =z 3l + = (=D @n+ 1) x—)O( ) k:o( ) 2k 1 1)! x_)D(ZE )
z? b n o
1+2)*=14+az+ala—1) E—l—...—i—a(a—l)...(a—n—i—l) —'—i—zgo(x") =1+)» ala—1) ..(oz—k—l—l)ﬁ +Igo(ac")
k=1
En particulier, il vient pour a = —1 :

: —11- —=l-u +2* -2 +.. .+ (-D)"2"+ o (z") = kzzo(fl)kxk v z-go(xn)

1 n
=l4+z4+224+234+... +2"+ o (z") = @+ o (2M)
1—x z—0 = z—0

Par opérations sur les développements limités, on a enfin :

et =L+ % 4y (ﬂ—f&ﬁ*ﬁ+ (")
. 7= 2 3 n achx _k—() k a:gox
2 3 n no ok

¥ oz N n

e R I Al DE s NG
k=0

B P gt - n . g2kt I

. arctan(m)fﬂc—g—i—g—l—...—k(—l) 2n+1+zgo(a: )7;:0(_1) 2k+1+zgo(x )

Exemple 1 Les questions suivantes sont indépendantes.
1. Déterminer rapidement un développement limité de tan en 0 a ’ordre 7.

2. Déterminer le développement limité a l’ordre 10 en 0 de la fonction f définie sur R par :

1‘2 1
f@:L g
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1.3 Cas particulier des fonctions développables en série entiére

Définition On dit qu’une fonction f est développable en série entiére au voisinage de 0 s’il existe un réel strictement positif]
r et une suite (a,) € K" telle que :

—+oo
Vo €] —r,r[, f(z) = Zakxk
k=0

{Propriété 7 (condition suffisante pour une fonction de classe C* sur un intervalle réel).]

Soit f une fonction de classe C°° sur un intervalle I, contenant un voisinage de 0, a valeurs dans K. On suppose de plus
qu’il existe r > 0 et M € Ry tels que :
vneN, Vo €] —rr, [f™(z)] <M

Alors, f est développable en série entiere sur | — r,r[ et :

—+oo

Ve e = f(@) =Y fPO %

k=0

» [l suffit d’appliquer la formule de Taylor avec reste intégral, et on montre que le reste intégral définit une suite de fonctions
qui converge simplement vers 0.

Remarques

1. Sous la condition donnée, on récupere donc la forme du développement en série entiere et on verra plus tard qu'un
développement en série entiére a toujours la méme forme.

2. On fera tres attention a ne pas confondre les développements limités qui permettent d’obtenir une approximation
locale de f au voisinage d’un point, et les développements en série entiére qui fournissent une égalité sur un
intervalle... la confusion vient de I’expression des coefficients de ces développements, ce sont les mémes que pour les
polynoémes de Taylor, mais ces sommes infinies ne peuvent pas étre considérées comme des fonctions polynomes !

3. Le cours sur les séries nous a déja donné des développements de référence et on rappelle que :
o0 Zk
[ -
VzeC, e = Z ol
k=0

_ k

—_

En restreignant a R, on retrouve alors des développements en série entiére tres pratiques.

{Corollaire 8 (développements en série entiere usuels).]

La condition suffisante ou la remarque précédente nous permettront, plus tard, de retrouver tous ces développements en série
entiere usuels :

+oo
Vrz €R, e = %
k=0
too 22k
Vz € R, ch(z) = kZ:O k!
+oo x2k+1
Vz € R, sh(z) = kZ:O CTE]
too . 22k
Vz € R, cos(z) = kz:;)(—l) 2R
. ) ) X $2k+1
z € R, sin(z) = kZ:O(—l) hF D)
v o S s
zel—1,1], (1+z) :1+;a(a—1)...(a—k+1)H
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En particulier, il vient pour a = —1 :

oo
1
o Vz €] —1,1], T > (-1
k=0

—+ oo
1
o Vo €] -1,1], T— =>
k=0

Par opérations sur les séries entieres, on a enfin :

+o00 k
o Vo e]— 1,1, In(1+2) = Z(—l)k‘l%
k=1
+oo :Ek
e Vxe]l—1,1[, In(1—2)=— -
k=1
EO:O , z2F
o Vr €] — 1,1, arctan(z) = » (—1)
= 2k +1

Remarque Ces développements sont trés commodes, mais ils ne concernent pas toutes les fonctions et ne sont valables que
sur certains domaines de convergence. Par exemple, la fonction arctan est définie sur R, mais elle n’est développable en
série entiére que sur | — 1, 1].

De plus, la condition suffisante est trés contraignante et il existe de nombreuses fonctions de classe C°° qui ne sont pas
développables en série entiere au voisinage de 0 : on essaiera donc de retenir I’exemple suivant.

1
Exemple 2 On considere la fonction f: x — e 22 définie sur R*.

1. Justifier que f peut-étre prolongée par continuité sur R.
2. Montrer que pour tout n € N* il existe un polynéme P, de degré < 3n tel que :

P, (z) o 1

2

*  p(n) _
VzeR*, f'(z)= A

3. En déduire que f est de classe C°° sur R et que pour tout n € N, f(”)(O) =0.

Ainsi, si on suppose que f posseéde un développement en série entiere sur un intervalle non trivial, il viendrait :

+o0 k
Vx €] —r,r[, f(z) = Z f(k)(O)% = f=0sur | —r,r[, ce qui est contradictoire.
k=0

2 Polynémes a une indéterminée

L’ensemble K désigne encore un sous-corps de C, en général R ou C lui-méme.

2.1 L’algébre des polynémes K[X]

Définition On appelle polynéme & coefficients dans K toute suite de coefficients P = (az) € K" presque nulle, c’est & dire
pour laquelle il existe n € N tel que :

Vk>mn, ar =0
En notant alors pour tout k € N, X* = (0,...,0, 1 ,0,...), un tel polyndéme peut aussi étre défini comme la somme formelle :

~—
k

“+ oo n
P = Zaka = Zaka
k=0 k=0

Généralement, on dit que P désigne un polynéme a coefficients dans K et d’indéterminée X, et on note K[X] ’ensemble,
des polynoémes a coefficients dans K et d’indéterminée X.

Remarques

1. Bien entendu, lapplication ¢ : K[X] — F(K, K) définie par :
¢:P:Zakal—>[p:Zb—>Zakz"]
k=0 k=0

est une application bijective, et ainsi on aura I’habitude d’identifier un polynoéme et sa fonction polynéme associée.
On pourra donc noter indifféremment P ou P(X) ces polynomes d’indéterminée X .
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2. En particulier, on retrouve qu'un polynéme est nul si et seulement si tous ses coefficients sont nuls, et on pourra
adapter toutes les définitions et opérations algébriques introduites sur les fonctions polynémes : notion de degré,
somme, produit, produit externe, polynémes dérivés...

Définition Considérons P € K[X] tel que P(X) = 3> axX*. En particulier,
e si tous les coefficients sont nuls, on dit encore que P désigne le polynéme nul noté Og[x;

e sinon, en notant a, le coefficient non nul d’indice le plus élevé, on dit encore que le polynéme P est de degré n et a pour
coefficient dominant a,.

Remarque Dans le cas particulier ot a,, = 1, on dit que le polynoéme est unitaire et on conviendra encore que le polynéme
nul a pour degré —oo de sorte que :

deg(P) € NU{—o0} et si P # 0, alors P(X) = >_}_, ax X" avec an # 0

{Propriété 9 (structure algébrique).}

En notant encore 4+, X et . les lois usuelles sur les fonctions polynémes, alors on peut montrer que (K[X],+, X,.) désigne
une K-algébre commutative, c’est a dire :

(K[X], +, X) est un anneau commutatif.
(K[X], +, .) est un K-espace vectoriel.

Remarque Par construction de K[X], la famille (X*) constitue une base dénombrable de I’espace et en notant K, [X]
l’ensemble des polynémes de degré inférieur ou égal a n, (K, [X],+,.) est un K-espace vectoriel de dimension n + 1 engendré
par la base canonique des mondémes (1, X,..., X™)... mais ce n’est pas la seule base :

{Propriété 10 (famille de polynémes échelonnés en degré).]

Soient n € N et notons (P, Pi, ..., P,) une famille de polynémes échelonnés en degré, c’est a dire tels que pour tout k € [0, n],
deg(Pr) = k. Alors,

1. (Po, P1,...,P,) est une famille libre de K[X].

2. (Po, P1, ..., P,) est encore une base de K,[X].

» Pour le premier point, il suffit de revenir a l’étude d’une famille libre. Le second point est immédiat.

En effet,

1. Soient Ao, ..., An € K tels que Z;‘L() APy = 0. Par l’absurde, on suppose qu’il existe des scalaires non tous nuls et on

note :

ko = max{k € [0,n], \x # 0}
Alors, > 7 o A\ePr =0 = Zi“:() AP = 0. On en déduit par passage au degré :

ko
({(:g(z A Pr) = ko = —o0 ce qui est impossible
k=0

Ainsi, tous les scalaires sont nuls et la famille est libre.

2. C’est immédiat : on a une famille de n + 1 vecteurs indépendants dans un espace de dimension n + 1, c’est donc une
base de K, [X].

2.2 Division euclidienne et idéaux de K[X]

Définition Soient A, B € K[X]. On dit que B divise A dans K[X], que I'on note B|A, s’il existe Q € K[X] tel que A = BQ.
Dans ce cas, on dit que B est un diviseur de A ou que A est un multiple de B.

Remarque Soient A, B € K[X]. On notera Dp les diviseurs de B et AK[X] les multiples de A. En particulier, on a
immédiatement :

o OK[X] = {0} et Do = K[X],

e pour tout A € K[X], K* C Da.
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Exemple 3 Soit n € N*, montrer que X —1 | X" — 1.

—(Théoréme 11 (de la division euclidienne).}

Soit B € K[X] tels que B # 0. Alors, pour tout A € K[X], il existe un unique couple (Q, R) € (K[X])? tel que :

A=BQ+R
deg(R) < deg(B)

Dans tous les cas, Q et R seront appelés le quotient et le reste dans la division euclidienne de A par B.

» On commence par ['unicité d’un tel couple. On prouve son existence par récurrence forte sur n = deg(A) € NU {—oo} et
on initialisera la récurrence auzx cas n < deg(B).

En effet,
e Unicité : si (Q,R) et (Q', R) désignent deux couples satisfaisant les conditions du théoréme, alors :
BQ+R=BQ'+R ©B(Q-Q)=R —R
Par passage au degré, on a alors : deg(B) + deg(Q — Q') = deg(R' — R) < max(deg(R),deg(R’)) < deg(B). D’ou,
deg(Q — Q") < 0 ce qui entraine Q — Q' = Ok(x) et ainsi, Q = Q'. En rinjectant, on trouve aussi R = R/.

e Existence : B étant fizé non nul, on note p = deg(B) > 0 et on raisonne par récurrence sun = deg(A) € {—oo} UN.
Sin < p, alors le couple (Q, R) = (0, A) convient immédiatement.
Soit n € N, on suppose que le résultat est vrai pour tout polynéme de degré inférieur ou égal a n et on considere A de
degré n+ 1. On raisonne par disjonction des cas :
x sin+1<p, alors c’est encore immédiat et le couple (Q, R) = (0, A) convient.
x sin+ 1> p, on peut écrire :
A=ap X" Yy . etB= bpXP + ...

- ~ Qn n —p Y 5 ar A 5 > 5
et on définit C = A— THX WP B Dans ce cas, C désigne un polynéme de degré < n et par hypothése de récurrence,

P
il existe (Q, R) tel que : C'= BQ + R avec deg(R) < deg(B), mais alors en isolant A, il vient :

A=C+ agtilwiklpr = B(Q + MXnJrl*p) + R avec deg(R) < deg(B)

Op bp

Par principe de récurrence, c¢’est donc vrai pour tout polynéme A de degré n € {—oco} UN.

Remarque On en déduit alors immédiatement que pour tout (A4, B) € (K[X])?, B#0 :

B|A < R =0, ou R désigne le reste dans la division euclidienne de A par B

Définition On appelle idéal de K[X] tout sous-groupe additif I de K[X] vérifiant en plus :
VAeK[X],VBel, AxBel

On dit aussi que [ est absorbant.

—(Théoréme 12 (caractérisation des idéaux).}

Soit I un ensemble non vide tel que I C K[X]. Alors,
I est un idéal de K[X] < 3 P €I, I = PK[X]

On dit que I désigne un idéal principal engendré par P.

» On procéde par double implication, et on fera appel pour le sens direct au théoréme de la division euclidienne.

Remarque En fait, on vient de munir ’anneau K[X] d’une structure euclidienne, et en s’inspirant de Parithmétique dans Z,
on peut alors reconstruire toutes les notions d’arithmétique et aller chercher des théoréemes analogues, adaptés évidemment
aux polyndémes a une indéterminée.
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Définition Soient A, B € K[X]. On appelle alors diviseurs communs & A et B les polyndmes appartenant & ’ensemble
DanNDpg, quon notera D4 p.

{Propriété 13 (conséquences immédiates).]

Soient A, B € K[X]. Alors :

(1) Da,o =Da et Da,p est non vide puisque K* C D4 g

(ii) si de plus A = BQ + R avec (Q, R) € K[X] alors : Da,g = Dp,r.

Définition Soient A, B € K[X] non tous nuls. On appelle alors PGCD de A et B, noté pgcd(A, B), le polynéme unitaire de
plus haut degré qui divise A et B.

{Théoréme 14 (interprétation ensembliste du PGCD).]

Soient A, B € K[X] non tous nuls.
1. Alors, il existe un unique polynéme unitaire D € K[X] tel que : AK[X] 4+ BK[X] = DK[X].

2. Et dans ce cas, D = pgcd(A, B).

» On procéde par existence et unicité : seule Uexistence est astucieuse puisqu’il suffit de montrer que AK[X]+ BK[X] est
un idéal de K[X].

{Corollaire 15 (coefficients de Bézout).]

Soient A, B € K[X] non tous nuls, et dont on note D = pged(A, B). Alors, il existe (U, V) € (K[X])? tel que : AU +BV = D.
Une telle égalité est appelée égalité de Bézout et le couple (U, V) désigne des coefficients de Bézout.

{Propriété 16 (détermination du PGCD par l'algorithme d’Euclide).]

Soient A, B € K[X] non tous nuls. On définit la suite des restes (R,) par récurrence :

Ro=A, R =B
Vn €N, R,y2 est le reste dans la division euclidienne de R,, par Rn11

Alors, il existe un rang p a partir duquel la suite est nulle; et dans ce cas, le PGCD de A et B est le dernier reste non nul
rendu unitaire : pged(A, B) = Rp—1/dom(Rp—1).

» On procéde en deux temps: on montre d’abord que (deg(Ry)) définit une suite strictement décroissante de NU{—o0}, puis
on démontre l’égalité en utilisant la relation Da,.p = D R.

Exemple 4 Déterminer le PGCD des polynémes : X° +2X% — X2 4+ X —let X3 - X2 4+ X —1.

Définition On dit que les polyndmes A et B sont premiers entre eux si pged(A, B) = 1, c’est & dire que 1 est le seul polynome,
unitaire qui divise A et B.

{Théoréme 17 (théoreme de Bézout).]

Soient A, B € K[X] non tous nuls. Alors :

A et B sont des polynémes premiers entre eux < 3 (U, V) € (K[X])?, AU + BV =1

» On procéde par double implication... le sens direct est immédiat et provient de la définition du pgcd de deux polynémes.

Exemple 5 Soient a,b € K tels que a # b. Montrer que X — a et X — b sont premiers entre eux.
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Remarques

1. D’ailleurs, on peut étendre cette définition :
les polynémes P4, ..., P, sont dits premiers entre eux dans leur ensemble si pged(Pi, ..., P,) = 1. Par contre, on
distinguera la notion d’entiers premiers entre eux deux a deux tels que pour tous ¢, j, P; A P; = 1 et on retiendra:

(P;) premiers entre eux deux a deux = (P;) premiers entre eux dans leur ensemble

2. Cette caractérisation des polynémes premiers entre eux est fondamentale, car elle va nous permettre de démontrer de
nombreux résultats tres pratiques que ce soit en arithmétique ou plus tard en algebre linéaire...

{Propriété 18 (théoreme de Gauss).]

Soient A, B € K[X] non tous nuls et C' € K[X].

A|B
|1BC = A|lC
pgcd(A, B) = 1

» Partant du théoreme de Bézout, on se raméne au polynéme C'.

{Propriété 19 (autre conséquence).]

Soient A, B € K[X] non tous nuls et C' € K[X].

AlC
B|C = AB|C
pged(A,B) =1

» Partant du théoreme de Bézout, on se ramene au polynome C'.

énérali & X dia vu : si A AL Vi 1,..., A,
Remarque Cette propriété se généralise par récurrence, et par exemple on a déja vu : si A1|C,..., A,|C avec Aq,..., A
premiers entre eux deux & deux, alors []}" , A¢|C. C’est méme cette propriété qui nous permet de faire passer I’hérédité dans
le théoréme de décomposition des noyaux généralisé !

{Propriété 20 (caractérisation du pgcd).]

Soient A, B € K[X] non tous nuls et D € K[X] qu’on suppose unitaire. Alors :
A=DA
D = pged(A,B) & 3 (A',B') € (K[X])?, { B= DB’
pgcd(A', B') =1

» On procéde par double implication. Dans les deux sens, on fera intervenir astucieusement le théoréme de Bézout.

Remarque On pourra notamment utiliser le pged de deux polyndémes pour simplifier des fractions rationnelles. Si
pged(A, B) = D, alors il existe A’, B’ € K[X] premiers entre eux de sorte que :
A_4
B B
’
On dit encore que i désigne la forme irréductible de la fraction rationnelle.

2.3 Racines d’un polynoéme

Définition Soient P € K[X] qu’on identifie & sa fonction polynome associée et a € K. On dit alors que a désigne une racine de
P si P(a) = 0.

{Propriété 21 (caractérisation d’une racine).]

Soient P € K[X] avec a € K. Alors :
P(a) =0« (X —a)|P dans K[X]
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» [l suffit d’écrire la division euclidienne de P par X — a et de traduire la divisibilité annoncée en terme de fonctions
polynomes associées.

Propriété 22 (caractérisation de racines distinctes).]

Soient P € K[X] avec a1, az,...,a, des scalaires distincts. Alors :

P(a1) =P(az) =...=Plan) =0 (X —a1)(X —a2)...(X — an)|P dans K[X]

» On procéde par double implication. Si le sens réciproque est immédiat, on s’appliquera dans le sens direct et on pourra
prouver cette implication par récurrence sur le nombre de racines.

Propriété 23 (nombre de racines).]

1. Soit n € N. Tout polynéme non nul de degré n admet au plus n racines distinctes.

2. On en déduit alors que le seul polynome admettant plus de racines que son degré est le polynéme nul.

» Ce résultat découle simplement de la propriété précédente a partir de laquelle on raisonnera sur les degrés.

Déterminer les racines d'un polynome revient donc & déterminer les zéros de la fonction polynéme associée, mais le nombre de
ces racines dépendra directement du corps de base K sur lequel on travaille :

Exemple 6 On consideére le polynome A(X) = X* 4+ 2X3 +2X2 + X.
1. Déterminer les racines éventuellement complexes de A.

2. Montrer alors que pour tout n € N,
A|P — (X + 1)6n+1 _ X6n+1 -1

Remarque Quand le polyndéme donné est a coefficients réels, on pourra en outre retenir que :

k=0 k=0

Ainsi, si 2o est une racine complexe de P, alors Zy est aussi une racine de P.

Définition Soient P € K[X] qu’on identifie & sa fonction polynéme associée et a € K. On dit plus généralement que a est racine
de P d’ordre de multiplicité r > 1 si:
{(x ~a)'|P

(X —a)** P

Une telle racine sera aussi appelée racine multiple d’ordre r et r désigne la valuation de a dans P.

{Théoréme 24 (formule de Taylor exacte).w

P
q . n (k) (X - a)k s 0.
Soit @ € K. Alors, pour tout P € K[X] de degré n, P(X) = >, P (a)T. En particulier, pour ¢ = 0, on peut
identifier les coefficients de P et en notant ao,...,a, ses coefficients, on a :
p*)
Vk € IIO,TL]], ar = %

» On reconnait ici une famille de polynémes échelonnés en degré, il suffit alors de déterminer les composantes qui permettent
la décomposition de P dans cette base.

Corollaire 25 (caractérisation d’une racine multiple).}

P(a)=P'(a)=...= P Y(a)=0

Soient P € K[X], a € K. Alors, a est racine multiple d’ordre r > 1 <
P™(a) #£0
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» On procéde par double implication : dans un sens, on fera appel a la formule de Leibniz. Dans ’autre sens, c’est immédiat
si on se ramene a la formule de Taylor exacte.

Exemple 7 Les questions suivantes sont indépendantes.

1. Montrer que 1 est racine double de Pn(X) = nX"t! — (n + 1) X" + 1.

Xk
2. Démontrer que le polynéme P(X) = >"7_, T (n € N*) n’a que des racines simples dans C.

Remarques

1. On retrouve ici le vocabulaire déja rencontré pour les polynémes du second degré : quand A = 0, on parle de racine
double car P(z9) = P'(20) = 0.

2. Quand le polynéme donné est a coefficients réels, alors les polynémes dérivés aussi de sorte que cette caractérisation
nous permet d’affirmer :

zo est une racine complexe d’ordre r = Zg est aussi une racine multiple d’ordre r

2.4 Théoréme de D’Alembert-Gauss et factorisation

Définition Soit P € K[X] un polynéme de degré > 1. On dit que P est irréductible sur K si ses seuls diviseurs sont 1, P ou
les polynémes qui leur sont associés, c’est a dire :

VA, B eK[X], P=AB = deg(A) =0 ou deg(B) =0

{Théoréme 26 (de D’Alembert-Gauss).]

On admet que tout polynéme non constant de C[X] posséde au moins une racine sur C, et ainsi il peut toujours s’écrire sous
une forme scindée dans C[X] :
P(X)=an(X —r1)* .. (X —rp)*

avec r1,...,7r des racines éventuellement complexes d’ordre ax > 1 et a,, le coefficient dominant de P.

Remarque Ce dernier résultat est admis pour le moment et on en verra une démonstration plus tard a l'aide des intégrales
a parametre. Par contre, il ne faudra pas avoir peur de I’évoquer quand on se plonge dans C pour déterminer les racines
éventuelles d'un polynome donné.

Propriété 27 (caractérisation des polynémes irréductibles).

—

1. Un polynéme de C[X] est irréductible sur C si et seulement s’il est de degré 1.

2. Un polynéme de R[X] est irréductible sur R si et seulement s’il est de degré 1 ou de degré 2 & discriminant < 0.

» On veillera a traiter les deux sens de ces équivalences : on citera évidemment le théoréme de D’Alembert-Gauss quand
celui-ci sera utile.

{Corollaire 28 (de factorisation des polynémes sur R)]

D’apres le théoreme de D’ Alembert-Gauss et en regroupant les facteurs de racines conjuguées, on en déduit que tout polynome
non constant de R[X] peut s’écrire comme un produit de polynémes irréductibles sur R de la forme :

P(X) = an(X —71)% ... (X = 78) " (X% 4 spp1 X + teg1) ¥ (X2 4 5p X + 1)

avec 71, ..., 7, des racines réelles d’ordre ar > 1, agy1,...,ap > 1 et a, le coefficient dominant de P.

Remarque Dans le cas particulier olt un polynéme P peut s’écrire dans K[X] de la forme :
P(X)=an(X —71)...(X —ry) avec r1,...,r, des racines distinctes

N

on dit plus précisément que P est scindé & racines simples et il est alors trés facile d’exhiber des relations entre les
coefficients du polynéme et les racines :

P(X)= a,LX"—a,L(Z n-)X"_1 + an( Z n-rj)X"_2 — an( Z rirjrk)X"_S et (D) "anr1 .oy

— e = [ —
i=1 1<i<j<n 1<i<j<k<n
—_—— ag
An—1 Ap_9
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Exemple 8 Pour chacun de ces polynomes, déterminer sa factorisation dans C[X], puis dans R[X].
1. AX)=X°—1
2. P(X)=X®+1

3. P3(X) =Yt x*
3 Quelques applications fondamentales

3.1 Existence et unicité du polynéme d’interpolation
Exemple 9 Soit f une fonction définie sur un intervalle I a valeurs dans R, et considérons zo < z1 < ... < x,, des points de I.
1. Montrer qu’il existe une famille de polynémes Lo, ..., L, € R,[X] tels que :
V(i k) € [0,n]°, Li(zx) = dir
Ces polynomes sont appelés les polynémes de Lagrange associés aux points (zx).
2. Montrer que la famille (Lo, ..., L,) désigne une base de R, [X].

3. En déduire qu’il existe un unique polynéme P, € R[X] de degré n tel que pour tout k € [0,n], P(zx) = f(zk).
On pourra procéder de quatre fagons...

Cet unique polynéme P, qui coincide avec f aux points xo, ..., T, est appelé polynéme d’interpolation.

{Théoréme 29 (existence et unicité du polynéme d’interpolation).]

Soit f une fonction définie sur un intervalle I & valeurs dans R, et considérons zo < 1 < ... < x,, des points de I. Alors, il
existe un unique polynéme P, € R[X] de degré n tel que :

Vk € [0,n], P(xx) = f(xx)

3.2 Approximation uniforme des fonctions continues sur un segment

Exemple 10 Pour tout n € N, on définit la famille des polynémes de Bernstein de degré n par :
Vk € [0,n], Bnx = (1)X*(1 — X)"7F
1. Soit n € N. Calculer 7 Bnk, > p_o kBnk-
2. De la méme fagon, calculer Y }_, k(k — 1) By, puis en déduire que >3 k*Bur = n(n — 1) X? + nX.

3. On considere une fonction f : [0, 1] — R qu’on suppose continue sur [0, 1] et on définit la suite de polynémes (P, ) par :
vneN, Pu@) = 3 F(5)Busie)
k=0

(a) Soit = € [0,1]. Calculer la somme > }'_ (z — E)QBnk ().
n

(b) Fixons € > 0. En utilisant I’uniforme continuité de f sur [0, 1], montrer qu’il existe o > 0 tel que pour tout n € N* :

M
+5—5 avec M = ||l

€
Pa(a) = F@) S 5+ 5

(c) En déduire que :
[Pn = flloo —> 0
n—-+oo
On en déduit qu’il existe une suite de polynémes qui converge uniformément vers la fonction f continue sur le segment [0,1]. On
peut adapter cet exercice et obtenir un résultat plus général : c’est le théoréme de Stone-Weiertsrass.

{Théoréme 30 (de Stone—Weierstrass).]

Soit f : [a,b] — R qu’on suppose continue sur [a, b]. Alors, il existe une suite de polyndmes (P,) qui converge uniformément
vers la fonction f sur le segment [a, b] de sorte que :

1Pn = flloo =2 0

n—-+oo
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3.3 Famille de polynémes orthogonaux : le cas particulier des polynémes de Tchebychev

Exemple 11 On travaille dans E = R[X] et on définit sous réserve d’existence 1’application ¢ : E x F — R par :

o(P,Q) = [1 P(t)Q(t).w(t) dt, avec pour tout t €] — 1,1[, w(t) = \/1%7752

1. Montrer que ¢ est bien définie sur E?, puis vérifier qu’il s’agit d’un produit scalaire sur E.
2. Montrer que pour tout n € N, il existe un unique polynéme T,, € R, [X] tel que :

Vz €R, Th(cos(z)) = cos(nz)

On appelle alors suite des polynémes de Tchebychev la suite des polynémes (T, )nen € Rn[X ]N ainsi construite vérifiant :

E(n/2) n
VneN, To(X)= > <2p> (X2 —1)Px"??
p=0

3. Montrer que pour tout n € N, Ty, 42(X) = 2X T 11(X) — Th(X).
4. Déterminer le coefficient dominant de T, et le degré de T,.
5. Soit n € N*. Déterminer les racines de T, puis en déduire la factorisation de 7, dans R[X].

6. Etablir alors que (75) définit une base orthogonale de E.
Plus généralement, on peut considérer d’autres intégrales généralisées de la forme :
/ POQ)w(t) dt
I

avec des poids w différents. Ainsi, dans de nombreux exercices, on sera amené a construire des suites de polynéomes orthogonaux
et qui constitueront une base dénombrable fort utile.
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