
Fonctions polynômes et polynômes à une indéterminée

Chapitre 5

On revient ici sur les formules de Taylor, très utiles dans l’étude des fonctions que ce
soit pour des informations locales ou des identités globales. On verra notamment le
cas particulier des fonctions usuelles qui nous donneront nos premiers développements
en série entière de référence.
Mais ce chapitre est aussi l’occasion de revenir sur la notion plus générale de
polynômes à une indéterminée : les propriétés arithmétiques sont nombreuses et le
principe de factorisation sera indispensable à la réduction des endomorphismes en
dimension finie.
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Pour aller plus loin
L’étude des polynômes est riche en mathématiques car elle offre de beaux problèmes, que ce soit en les traitant de façon
analytique ou de façon algébrique. Il faudra donc en mesurer les différentes propriétés et retenir que leur étude en spé cache
un réel objectif : la réduction des endomorphismes en dimension finie.
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1 Fonctions polynômes et applications

1.1 Rappels sur les fonctions polynômes

Définition On rappelle qu’on appelle :

• fonction polynôme à coefficients réels toute fonction p : R −→ R de la forme :

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n avec a0, . . . , an des nombres réels, appelés coefficients de la fonction polynôme.

• fonction polynôme à coefficients complexes toute fonction p : C −→ C de la forme :

p(z) = a0+a1z+a2z
2+. . .+anz

n avec a0, . . . , an des nombres complexes, appelés coefficients de la fonction polynôme.

Remarques

1. En particulier, une telle fonction polynôme est nulle si et seulement si tous ses coefficients sont nuls.

2. Comme R ⊂ C, on prendra souvent l’habitude de prolonger une telle fonction polynôme à coefficients réels sur C. Cela
nous permettra notamment d’aller chercher les racines d’un polynôme.

Définition Soit p une fonction polynôme à coefficients complexes qu’on suppose non nulle, alors il existe n ∈ N tel que :

p(z) =

n∑
k=0

akz
k avec an 6= 0

On dit alors que p est de degré n et an est appelé coefficient dominant.
Si au contraire, p désigne la fonction polynôme nulle, on pose alors :

deg(p) = −∞

Soient p, q deux fonctions polynômes à coefficients complexes telles que p(z) =
∑n
k=0 akz

k et q(z) =
∑m
k=0 bkz

k.
Alors, les règles usuelles de calculs nous donnent :

1. p+ q désigne encore une fonction polynôme définie sur C par :

(p+ q)(z) = p(z) + q(z) =

max(n,m)∑
k=0

(ak + bk)zk avec ak = 0 si k > n et bk = 0 si k > m

2. pour tout λ ∈ C, λ.p désigne encore une fonction polynôme définie sur C par : λ.p(z) = λ× p(z) =
∑n
k=0 λakz

k.

3. p× q désigne encore une fonction polynôme définie sur C par :

(p× q)(z) = p(z)× q(z) =

n+m∑
k=0

ckz
k

où ck =
∑k
i=0 aibk−i avec ai = 0 si i > n et bk−i = 0 si k − i > m.

Et en particulier, on retiendra : 
deg(p+ q) ≤ max(deg(p), deg(q))

deg(p) 6= deg(q)⇒ deg(p+ q) = max(deg(p), deg(q))

deg(p× q) = deg(p) + deg(q)

Propriété 1 (opérations sur les fonctions polynômes).

Soit p une fonction polynôme à coefficients complexes telle que p(z) =
∑n
k=0 akz

k. Alors, p est de classe C∞ sur C et les
règles usuelles de dérivation nous donnent :

• pour tout i ∈ J0, nK, p(i)(z) =
∑n
k=i akk(k − 1) . . . (k − i+ 1)zk−i =

∑n
k=i ak

k!

(k − i)!z
k−i,

• pour tout i > n, p(i)(z) = 0.

Propriété 2 (règle de dérivation).
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Remarque Par convention, on a encore p(0) = p et avec les notations de la définition, on pourra retenir que la i-ième dérivée
p(i) est encore une fonction polynôme de degré n− i de sorte que :

p(n)(z) = ann! et p(n+1)(z) = 0

1.2 Formules de Taylor et approximation locale

Dans cette partie, les fonctions considérées seront définies sur I, un intervalle de R, à valeurs dans K = R ou C.

Soient n ∈ N et f une fonction de classe Cn+1 sur I à valeurs dans K, a ∈ I. Alors, on a :

∀x ∈ I, f(x) =

n∑
k=0

f (k)(a)
(x− a)k

k!
+

∫ x

a

(x− t)n

n!
f (n+1)(t) dt

La fonction polynôme Tn,a : x 7−→
∑n
k=0 f

(k)(a) (x−a)k
k!

représente le polynôme de Taylor de degré n associé à la fonction
f au point a.

Théorème 3 (formule de Taylor avec reste intégral).

I On procède simplement par récurrence sur n ∈ N dans laquelle on mettra en place une intégration par parties bien choisie.

En effet, il vient :

• pour n = 0, on a pour tout x ∈ I,
∫ x
a

(x−t)0
0!

f ′(t) dt = f(x)− f(a) et ainsi, l’égalité est vraie.

• soit n ∈ N pour lequel on suppose que l’égalité est vraie pour toute fonction de classe Cn+1. Alors, si f ∈ Cn+2(I,K),
f est aussi de classe Cn+1 sur I de sorte que :

∀x ∈ I, f(x) =

n∑
k=0

f (k)(a)
(x− a)k

k!
+

∫ x

a

(x− t)n

n!
f (n+1)(t) dt

En procédant par intégration par parties, on en déduit :

f(x) =

n∑
k=0

f (k)(a)
(x− a)k

k!
+ [− (x− t)n+1

(n+ 1)!
f (n+1)(t)]xa +

∫ x

a

(x− t)n+1

(n+ 1)!
f (n+2)(t) dt

=

n+1∑
k=0

f (k)(a)
(x− a)k

k!
+

∫ x

a

(x− t)n+1

(n+ 1)!
f (n+2)(t) dt

Et ainsi, l’égalité est encore vraie. Ce qui prouve par récurrence la formule de Taylor avec reste intégral.

Soient n ∈ N et f une fonction de classe Cn+1 sur I à valeurs dans K, a ∈ I. On suppose de plus qu’il existe M ∈ R tel que
pour tout x ∈ I, |f (n+1)(x)| ≤M , alors pour tout x ∈ I,

|f(x)−
n∑
k=0

f (k)(a)
(x− a)k

k!
| ≤ |x− a|

n+1

(n+ 1)!
M

Corollaire 4 (inégalité de Taylor-Lagrange).

I C’est immédiat : il suffit de majorer le reste intégral et d’exploiter l’inégalité triangulaire pour les intégrales.

Remarques

1. On retiendra que la formule de Taylor avec reste intégral est très pratique, car elle nous livre ici une égalité globale sur
tout l’intervalle I.

2. L’inégalité de Taylor-Lagrange qui en résulte nous permet de mesurer l’erreur d’approximation entre la fonction f et
Tn,a, le polynôme de Taylor associé. En particulier, si on travaille sur I = [a− α, a+ α], un voisinage de a :

|f(x)−
n∑
k=0

f (k)(a)
(x− a)k

k!
| ≤ |x− a|

n+1

(n+ 1)!
‖f (n+1)‖∞

Et ainsi, quand x→ a,

|f(x)−
n∑
k=0

f (k)(a)
(x− a)k

k!
| −→ 0

On pourra donc retenir que les polynômes de Taylor nous donnent une approximation locale de la fonction f ,
ce qui nous permettra de mieux cerner le comportement de la fonction donnée. C’est d’ailleurs tout l’intérêt de la
formule de Taylor-Young.
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Soient n ∈ N et f une fonction de classe Cn+1 sur I à valeurs dans K, a ∈ I. Alors, pour tout x ∈ I,

f(x) =

n∑
k=0

f (k)(a)
(x− a)k

k!
+ o
x→a

((x− a)n)

Corollaire 5 (formule de Taylor-Young).

I C’est immédiat puisque l’inégalité de Taylor-Lagrange nous permet d’affirmer que le reste intégral est un bien un o((x−a)n).

Les fonctions usuelles étant souvent de classe C∞ sur leur domaine de définition, on en déduit à l’aide de la formule de
Taylor-Young les dévelopements limités suivants au voisinage de 0.
Et ainsi, pour tout n ∈ N, on a :

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .+

xn

n!
+ o
x→0

(xn) =

n∑
k=0

xk

k!
+ o
x→0

(xn)

ch(x) = 1 +
x2

2!
+
x4

4!
+ . . .+

x2n

(2n)!
+ o
x→0

(x2n+1) =

n∑
k=0

x2k

(2k)!
+ o
x→0

(x2n+1)

sh(x) = x+
x3

3!
+
x5

5!
+ . . .+

x2n+1

(2n+ 1)!
+ o
x→0

(x2n+2) =

n∑
k=0

x2k+1

(2k + 1)!
+ o
x→0

(x2n+2)

cos(x) = 1− x2

2!
+
x4

4!
− . . .+ (−1)n

x2n

(2n)!
+ o
x→0

(x2n+1) =

n∑
k=0

(−1)k
x2k

(2k)!
+ o
x→0

(x2n+1)

sin(x) = x− x3

3!
+
x5

5!
− . . .+ (−1)n

x2n+1

(2n+ 1)!
+ o
x→0

(x2n+2) =

n∑
k=0

(−1)k
x2k+1

(2k + 1)!
+ o
x→0

(x2n+2)

(1 +x)α = 1 +α x+α(α− 1)
x2

2!
+ . . .+α(α− 1) . . . (α−n+ 1)

xn

n!
+ o
x→0

(xn) = 1 +

n∑
k=1

α(α− 1) . . . (α− k+ 1)
xk

k!
+ o
x→0

(xn)

En particulier, il vient pour α = −1 :

•
1

1 + x
= 1− x+ x2 − x3 + . . .+ (−1)nxn + o

x→0
(xn) =

n∑
k=0

(−1)kxk + o
x→0

(xn)

•
1

1− x = 1 + x+ x2 + x3 + . . .+ xn + o
x→0

(xn) =

n∑
k=0

xk + o
x→0

(xn)

Par opérations sur les développements limités, on a enfin :

• ln(1 + x) = x− x2

2
+
x3

3
+ . . .+ (−1)n−1 x

n

n
+ o
x→0

(xn) =

n∑
k=0

(−1)k−1 x
k

k
+ o
x→0

(xn)

• ln(1− x) = −x− x2

2
− x3

3
− . . .− xn

n
+ o
x→0

(xn) = −
n∑
k=0

xk

k
+ o
x→0

(xn)

• arctan(x) = x− x3

3
+
x5

5
+ . . .+ (−1)n

x2n+1

2n+ 1
+ o
x→0

(x2n+2) =

n∑
k=0

(−1)k
x2k+1

2k + 1
+ o
x→0

(x2n+2)

Corollaire 6 (développements limités usuels).

Exemple 1 Les questions suivantes sont indépendantes.

1. Déterminer rapidement un développement limité de tan en 0 à l’ordre 7.

2. Déterminer le développement limité à l’ordre 10 en 0 de la fonction f définie sur R par :

f(x) =

∫ x2

x

1√
1 + t4

dt

www.cpgemp-troyes.fr 4/14

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 5
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1.3 Cas particulier des fonctions développables en série entière

Définition On dit qu’une fonction f est développable en série entière au voisinage de 0 s’il existe un réel strictement positif
r et une suite (an) ∈ KN telle que :

∀x ∈]− r, r[, f(x) =

+∞∑
k=0

akx
k

Soit f une fonction de classe C∞ sur un intervalle I, contenant un voisinage de 0, à valeurs dans K. On suppose de plus
qu’il existe r > 0 et M ∈ R+ tels que :

∀n ∈ N, ∀x ∈]− r, r[, |f (n)(x)| ≤M

Alors, f est développable en série entière sur ]− r, r[ et :

∀x ∈]− r, r[, f(x) =

+∞∑
k=0

f (k)(0)
xk

k!

Propriété 7 (condition suffisante pour une fonction de classe C∞ sur un intervalle réel).

I Il suffit d’appliquer la formule de Taylor avec reste intégral, et on montre que le reste intégral définit une suite de fonctions
qui converge simplement vers 0.

Remarques

1. Sous la condition donnée, on récupère donc la forme du développement en série entière et on verra plus tard qu’un
développement en série entière a toujours la même forme.

2. On fera très attention à ne pas confondre les développements limités qui permettent d’obtenir une approximation
locale de f au voisinage d’un point, et les développements en série entière qui fournissent une égalité sur un
intervalle... la confusion vient de l’expression des coefficients de ces développements, ce sont les mêmes que pour les
polynômes de Taylor, mais ces sommes infinies ne peuvent pas être considérées comme des fonctions polynômes !

3. Le cours sur les séries nous a déjà donné des développements de référence et on rappelle que :
∀z ∈ C, ez =

+∞∑
k=0

zk

k!

∀z ∈ C, |z| < 1,
1

1− z =

+∞∑
k=0

zk

En restreignant à R, on retrouve alors des développements en série entière très pratiques.

La condition suffisante ou la remarque précédente nous permettront, plus tard, de retrouver tous ces développements en série
entière usuels :

∀x ∈ R, ex =

+∞∑
k=0

xk

k!

∀x ∈ R, ch(x) =

+∞∑
k=0

x2k

(2k)!

∀x ∈ R, sh(x) =

+∞∑
k=0

x2k+1

(2k + 1)!

∀x ∈ R, cos(x) =

+∞∑
k=0

(−1)k
x2k

(2k)!

∀x ∈ R, sin(x) =

+∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

∀x ∈]− 1, 1[, (1 + x)α = 1 +

+∞∑
k=1

α(α− 1) . . . (α− k + 1)
xk

k!

Corollaire 8 (développements en série entière usuels).
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En particulier, il vient pour α = −1 :

• ∀x ∈]− 1, 1[,
1

1 + x
=

+∞∑
k=0

(−1)kxk

• ∀x ∈]− 1, 1[,
1

1− x =

+∞∑
k=0

xk

Par opérations sur les séries entières, on a enfin :

• ∀x ∈]− 1, 1[, ln(1 + x) =

+∞∑
k=1

(−1)k−1 x
k

k

• ∀x ∈]− 1, 1[, ln(1− x) = −
+∞∑
k=1

xk

k

• ∀x ∈]− 1, 1[, arctan(x) =

+∞∑
k=0

(−1)k
x2k+1

2k + 1

Remarque Ces développements sont très commodes, mais ils ne concernent pas toutes les fonctions et ne sont valables que
sur certains domaines de convergence. Par exemple, la fonction arctan est définie sur R, mais elle n’est développable en
série entière que sur ]− 1, 1[.
De plus, la condition suffisante est très contraignante et il existe de nombreuses fonctions de classe C∞ qui ne sont pas
développables en série entière au voisinage de 0 : on essaiera donc de retenir l’exemple suivant.

Exemple 2 On considère la fonction f : x 7−→ e
− 1

x2 définie sur R∗.

1. Justifier que f peut-être prolongée par continuité sur R.

2. Montrer que pour tout n ∈ N∗, il existe un polynôme Pn de degré < 3n tel que :

∀ x ∈ R∗, f (n)(x) =
Pn(x)

x3n
e
− 1

x2

3. En déduire que f est de classe C∞ sur R et que pour tout n ∈ N, f (n)(0) = 0.

Ainsi, si on suppose que f possède un développement en série entière sur un intervalle non trivial, il viendrait :

∀x ∈]− r, r[, f(x) =

+∞∑
k=0

f (k)(0)
xk

k!
⇒ f = 0 sur ]− r, r[, ce qui est contradictoire.

2 Polynômes à une indéterminée

L’ensemble K désigne encore un sous-corps de C, en général R ou C lui-même.

2.1 L’algèbre des polynômes K[X]

Définition On appelle polynôme à coefficients dans K toute suite de coefficients P = (ak) ∈ KN presque nulle, c’est à dire
pour laquelle il existe n ∈ N tel que :

∀k > n, ak = 0

En notant alors pour tout k ∈ N, Xk = (0, . . . , 0, 1︸︷︷︸
k

, 0, . . .), un tel polynôme peut aussi être défini comme la somme formelle :

P =

+∞∑
k=0

akX
k =

n∑
k=0

akX
k

Généralement, on dit que P désigne un polynôme à coefficients dans K et d’indéterminée X, et on note K[X] l’ensemble
des polynômes à coefficients dans K et d’indéterminée X.

Remarques

1. Bien entendu, l’application φ : K[X] −→ F (K,K) définie par :

φ : P =

n∑
k=0

akX
k 7−→ [p : z 7−→

n∑
k=0

akz
n]

est une application bijective, et ainsi on aura l’habitude d’identifier un polynôme et sa fonction polynôme associée.
On pourra donc noter indifféremment P ou P (X) ces polynômes d’indéterminée X.
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2. En particulier, on retrouve qu’un polynôme est nul si et seulement si tous ses coefficients sont nuls, et on pourra
adapter toutes les définitions et opérations algébriques introduites sur les fonctions polynômes : notion de degré,
somme, produit, produit externe, polynômes dérivés...

Définition Considérons P ∈ K[X] tel que P (X) =
∑+∞
k=0 akX

k. En particulier,

• si tous les coefficients sont nuls, on dit encore que P désigne le polynôme nul noté 0K[X];

• sinon, en notant an le coefficient non nul d’indice le plus élevé, on dit encore que le polynôme P est de degré n et a pour
coefficient dominant an.

Remarque Dans le cas particulier où an = 1, on dit que le polynôme est unitaire et on conviendra encore que le polynôme
nul a pour degré −∞ de sorte que :

deg(P ) ∈ N ∪ {−∞} et si P 6= 0, alors P (X) =
∑n
k=0 akX

k avec an 6= 0

En notant encore +, × et . les lois usuelles sur les fonctions polynômes, alors on peut montrer que (K[X],+,×, .) désigne
une K-algèbre commutative, c’est à dire :{

(K[X],+,×) est un anneau commutatif .

(K[X],+, .) est un K-espace vectoriel.

Propriété 9 (structure algébrique).

Remarque Par construction de K[X], la famille (Xk) constitue une base dénombrable de l’espace et en notant Kn[X]
l’ensemble des polynômes de degré inférieur ou égal à n, (Kn[X],+, .) est un K-espace vectoriel de dimension n+ 1 engendré
par la base canonique des monômes (1, X, . . . ,Xn)... mais ce n’est pas la seule base :

Soient n ∈ N et notons (P0, P1, . . . , Pn) une famille de polynômes échelonnés en degré, c’est à dire tels que pour tout k ∈ J0, nK,
deg(Pk) = k. Alors,

1. (P0, P1, . . . , Pn) est une famille libre de K[X].

2. (P0, P1, . . . , Pn) est encore une base de Kn[X].

Propriété 10 (famille de polynômes échelonnés en degré).

I Pour le premier point, il suffit de revenir à l’étude d’une famille libre. Le second point est immédiat.

En effet,

1. Soient λ0, . . . , λn ∈ K tels que
∑n
k=0 λkPk = 0. Par l’absurde, on suppose qu’il existe des scalaires non tous nuls et on

note :
k0 = max{k ∈ J0, nK, λk 6= 0}

Alors,
∑n
k=0 λkPk = 0⇒

∑k0
k=0 λkPk = 0. On en déduit par passage au degré :

deg(

k0∑
k=0

λkPk) = k0 = −∞ ce qui est impossible

Ainsi, tous les scalaires sont nuls et la famille est libre.

2. C’est immédiat : on a une famille de n+ 1 vecteurs indépendants dans un espace de dimension n+ 1, c’est donc une
base de Kn[X].

2.2 Division euclidienne et idéaux de K[X]

Définition Soient A,B ∈ K[X]. On dit que B divise A dans K[X], que l’on note B|A, s’il existe Q ∈ K[X] tel que A = BQ.
Dans ce cas, on dit que B est un diviseur de A ou que A est un multiple de B.

Remarque Soient A,B ∈ K[X]. On notera DB les diviseurs de B et AK[X] les multiples de A. En particulier, on a
immédiatement :

• 0K[X] = {0} et D0 = K[X],

• pour tout A ∈ K[X], K∗ ⊂ DA.
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Exemple 3 Soit n ∈ N∗, montrer que X − 1 | Xn − 1.

Soit B ∈ K[X] tels que B 6= 0. Alors, pour tout A ∈ K[X], il existe un unique couple (Q,R) ∈ (K[X])2 tel que :{
A = BQ+R

deg(R) < deg(B)

Dans tous les cas, Q et R seront appelés le quotient et le reste dans la division euclidienne de A par B.

Théorème 11 (de la division euclidienne).

I On commence par l’unicité d’un tel couple. On prouve son existence par récurrence forte sur n = deg(A) ∈ N ∪ {−∞} et
on initialisera la récurrence aux cas n < deg(B).

En effet,

• Unicité : si (Q,R) et (Q′, R′) désignent deux couples satisfaisant les conditions du théorème, alors :

BQ+R = BQ′ +R′ ⇔ B(Q−Q′) = R′ −R

Par passage au degré, on a alors : deg(B) + deg(Q − Q′) = deg(R′ − R) ≤ max(deg(R), deg(R′)) < deg(B). D’où,
deg(Q−Q′) < 0 ce qui entrâıne Q−Q′ = 0K[X] et ainsi, Q = Q′. En rinjectant, on trouve aussi R = R′.

• Existence : B étant fixé non nul, on note p = deg(B) ≥ 0 et on raisonne par récurrence su n = deg(A) ∈ {−∞} ∪N.
Si n < p, alors le couple (Q,R) = (0, A) convient immédiatement.
Soit n ∈ N, on suppose que le résultat est vrai pour tout polynôme de degré inférieur ou égal à n et on considère A de
degré n+ 1. On raisonne par disjonction des cas :
∗ si n+ 1 < p, alors c’est encore immédiat et le couple (Q,R) = (0, A) convient.
∗ si n+ 1 > p, on peut écrire :

A = an+1X
n+1 + . . . et B = bpX

p + . . .

et on définit C = A− an+1

bp
Xn+1−pB. Dans ce cas, C désigne un polynôme de degré ≤ n et par hypothèse de récurrence,

il existe (Q,R) tel que : C = BQ+R avec deg(R) < deg(B), mais alors en isolant A, il vient :

A = C +
an+1

bp
Xn+1−pB = B(Q+

an+1

bp
Xn+1−p) +R avec deg(R) < deg(B)

ce qui livre l’hérédité dans le deuxième cas.
Par principe de récurrence, c’est donc vrai pour tout polynôme A de degré n ∈ {−∞} ∪ N.

Remarque On en déduit alors immédiatement que pour tout (A,B) ∈ (K[X])2, B 6= 0 :

B|A⇔ R = 0, où R désigne le reste dans la division euclidienne de A par B

Définition On appelle idéal de K[X] tout sous-groupe additif I de K[X] vérifiant en plus :

∀ A ∈ K[X], ∀ B ∈ I, A×B ∈ I

On dit aussi que I est absorbant.

Soit I un ensemble non vide tel que I ⊂ K[X]. Alors,

I est un idéal de K[X] ⇔ ∃ P ∈ I, I = PK[X]

On dit que I désigne un idéal principal engendré par P .

Théorème 12 (caractérisation des idéaux).

I On procède par double implication, et on fera appel pour le sens direct au théorème de la division euclidienne.

Remarque En fait, on vient de munir l’anneau K[X] d’une structure euclidienne, et en s’inspirant de l’arithmétique dans Z,
on peut alors reconstruire toutes les notions d’arithmétique et aller chercher des théorèmes analogues, adaptés évidemment
aux polynômes à une indéterminée.
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Définition Soient A,B ∈ K[X]. On appelle alors diviseurs communs à A et B les polynômes appartenant à l’ensemble
DA ∩DB , qu’on notera DA,B .

Soient A,B ∈ K[X]. Alors :

(i) DA,0 = DA et DA,B est non vide puisque K∗ ⊂ DA,B

(ii) si de plus A = BQ+R avec (Q,R) ∈ K[X] alors : DA,B = DB,R.

Propriété 13 (conséquences immédiates).

Définition Soient A,B ∈ K[X] non tous nuls. On appelle alors PGCD de A et B, noté pgcd(A,B), le polynôme unitaire de
plus haut degré qui divise A et B.

Soient A,B ∈ K[X] non tous nuls.

1. Alors, il existe un unique polynôme unitaire D ∈ K[X] tel que : AK[X] +BK[X] = DK[X].

2. Et dans ce cas, D = pgcd(A,B).

Théorème 14 (interprétation ensembliste du PGCD).

I On procède par existence et unicité : seule l’existence est astucieuse puisqu’il suffit de montrer que AK[X] + BK[X] est
un idéal de K[X].

Soient A,B ∈ K[X] non tous nuls, et dont on note D = pgcd(A,B). Alors, il existe (U, V ) ∈ (K[X])2 tel que : AU+BV = D.
Une telle égalité est appelée égalité de Bézout et le couple (U, V ) désigne des coefficients de Bézout.

Corollaire 15 (coefficients de Bézout).

Soient A,B ∈ K[X] non tous nuls. On définit la suite des restes (Rn) par récurrence :{
R0 = A, R1 = B

∀ n ∈ N, Rn+2 est le reste dans la division euclidienne de Rn par Rn+1

Alors, il existe un rang p à partir duquel la suite est nulle; et dans ce cas, le PGCD de A et B est le dernier reste non nul
rendu unitaire : pgcd(A,B) = Rp−1/dom(Rp−1).

Propriété 16 (détermination du PGCD par l’algorithme d’Euclide).

I On procède en deux temps: on montre d’abord que (deg(Rn)) définit une suite strictement décroissante de N∪{−∞}, puis
on démontre l’égalité en utilisant la relation DA,B = DB,R.

Exemple 4 Déterminer le PGCD des polynômes : X5 + 2X3 −X2 +X − 1 et X3 −X2 +X − 1 .

Définition On dit que les polynômes A et B sont premiers entre eux si pgcd(A,B) = 1, c’est à dire que 1 est le seul polynôme
unitaire qui divise A et B.

Soient A,B ∈ K[X] non tous nuls. Alors :

A et B sont des polynômes premiers entre eux ⇔ ∃ (U, V ) ∈ (K[X])2, AU +BV = 1

Théorème 17 (théorème de Bézout).

I On procède par double implication... le sens direct est immédiat et provient de la définition du pgcd de deux polynômes.

Exemple 5 Soient a, b ∈ K tels que a 6= b. Montrer que X − a et X − b sont premiers entre eux.

www.cpgemp-troyes.fr 9/14

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 5
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Remarques

1. D’ailleurs, on peut étendre cette définition :
les polynômes P1, . . . , Pn sont dits premiers entre eux dans leur ensemble si pgcd(P1, . . . , Pn) = 1. Par contre, on
distinguera la notion d’entiers premiers entre eux deux à deux tels que pour tous i, j, Pi∧Pj = 1 et on retiendra:

(Pi) premiers entre eux deux à deux ⇒ (Pi) premiers entre eux dans leur ensemble

2. Cette caractérisation des polynômes premiers entre eux est fondamentale, car elle va nous permettre de démontrer de
nombreux résultats très pratiques que ce soit en arithmétique ou plus tard en algèbre linéaire...

Soient A,B ∈ K[X] non tous nuls et C ∈ K[X]. {
A|BC
pgcd(A,B) = 1

⇒ A|C

Propriété 18 (théorème de Gauss).

I Partant du théorème de Bézout, on se ramène au polynôme C.

Soient A,B ∈ K[X] non tous nuls et C ∈ K[X].
A|C
B|C
pgcd(A,B) = 1

⇒ AB|C

Propriété 19 (autre conséquence).

I Partant du théorème de Bézout, on se ramène au polynôme C.

Remarque Cette propriété se généralise par récurrence, et par exemple on a déjà vu : si A1|C, . . . , An|C avec A1, . . . , An
premiers entre eux deux à deux, alors

∏n
i=1Ai|C. C’est même cette propriété qui nous permet de faire passer l’hérédité dans

le théorème de décomposition des noyaux généralisé !

Soient A,B ∈ K[X] non tous nuls et D ∈ K[X] qu’on suppose unitaire. Alors :

D = pgcd(A,B)⇔ ∃ (A′, B′) ∈ (K[X])2,


A = DA′

B = DB′

pgcd(A′, B′) = 1

Propriété 20 (caractérisation du pgcd).

I On procède par double implication. Dans les deux sens, on fera intervenir astucieusement le théorème de Bézout.

Remarque On pourra notamment utiliser le pgcd de deux polynômes pour simplifier des fractions rationnelles. Si
pgcd(A,B) = D, alors il existe A′, B′ ∈ K[X] premiers entre eux de sorte que :

A

B
=
A′

B′

On dit encore que
A′

B′
désigne la forme irréductible de la fraction rationnelle.

2.3 Racines d’un polynôme

Définition Soient P ∈ K[X] qu’on identifie à sa fonction polynôme associée et a ∈ K. On dit alors que a désigne une racine de
P si P (a) = 0.

Soient P ∈ K[X] avec a ∈ K. Alors :
P (a) = 0⇔ (X − a)|P dans K[X]

Propriété 21 (caractérisation d’une racine).
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I Il suffit d’écrire la division euclidienne de P par X − a et de traduire la divisibilité annoncée en terme de fonctions
polynômes associées.

Soient P ∈ K[X] avec a1, a2, . . . , an des scalaires distincts. Alors :

P (a1) = P (a2) = . . . = P (an) = 0⇔ (X − a1)(X − a2) . . . (X − an)|P dans K[X]

Propriété 22 (caractérisation de racines distinctes).

I On procède par double implication. Si le sens réciproque est immédiat, on s’appliquera dans le sens direct et on pourra
prouver cette implication par récurrence sur le nombre de racines.

1. Soit n ∈ N. Tout polynôme non nul de degré n admet au plus n racines distinctes.

2. On en déduit alors que le seul polynôme admettant plus de racines que son degré est le polynôme nul.

Propriété 23 (nombre de racines).

I Ce résultat découle simplement de la propriété précédente à partir de laquelle on raisonnera sur les degrés.

Déterminer les racines d’un polynôme revient donc à déterminer les zéros de la fonction polynôme associée, mais le nombre de
ces racines dépendra directement du corps de base K sur lequel on travaille :

Exemple 6 On considère le polynôme A(X) = X4 + 2X3 + 2X2 +X.

1. Déterminer les racines éventuellement complexes de A.

2. Montrer alors que pour tout n ∈ N,
A|Pn = (X + 1)6n+1 −X6n+1 − 1

Remarque Quand le polynôme donné est à coefficients réels, on pourra en outre retenir que :

P (z0) = 0⇒
n∑
k=0

akzk0 = 0⇒
n∑
k=0

akz0
k = 0⇒ P (z0) = 0

Ainsi, si z0 est une racine complexe de P , alors z0 est aussi une racine de P .

Définition Soient P ∈ K[X] qu’on identifie à sa fonction polynôme associée et a ∈ K. On dit plus généralement que a est racine
de P d’ordre de multiplicité r ≥ 1 si : {

(X − a)r|P
(X − a)r+1 6 |P

Une telle racine sera aussi appelée racine multiple d’ordre r et r désigne la valuation de a dans P .

Soit a ∈ K. Alors, pour tout P ∈ K[X] de degré n, P (X) =
∑n
k=0 P

(k)(a)
(X − a)k

k!
. En particulier, pour a = 0, on peut

identifier les coefficients de P et en notant a0, . . . , an ses coefficients, on a :

∀ k ∈ J0, nK, ak =
P (k)(0)

k!

Théorème 24 (formule de Taylor exacte).

I On reconnait ici une famille de polynômes échelonnés en degré, il suffit alors de déterminer les composantes qui permettent
la décomposition de P dans cette base.

Soient P ∈ K[X], a ∈ K. Alors, a est racine multiple d’ordre r ≥ 1 ⇔

{
P (a) = P ′(a) = . . . = P (r−1)(a) = 0

P (r)(a) 6= 0
.

Corollaire 25 (caractérisation d’une racine multiple).
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I On procède par double implication : dans un sens, on fera appel à la formule de Leibniz. Dans l’autre sens, c’est immédiat
si on se ramène à la formule de Taylor exacte.

Exemple 7 Les questions suivantes sont indépendantes.

1. Montrer que 1 est racine double de Pn(X) = nXn+1 − (n+ 1)Xn + 1.

2. Démontrer que le polynôme P (X) =
∑n
k=0

Xk

k!
(n ∈ N∗) n’a que des racines simples dans C.

Remarques

1. On retrouve ici le vocabulaire déjà rencontré pour les polynômes du second degré : quand ∆ = 0, on parle de racine
double car P (z0) = P ′(z0) = 0.

2. Quand le polynôme donné est à coefficients réels, alors les polynômes dérivés aussi de sorte que cette caractérisation
nous permet d’affirmer :

z0 est une racine complexe d’ordre r ⇒ z0 est aussi une racine multiple d’ordre r

2.4 Théorème de D’Alembert-Gauss et factorisation

Définition Soit P ∈ K[X] un polynôme de degré ≥ 1. On dit que P est irréductible sur K si ses seuls diviseurs sont 1, P ou
les polynômes qui leur sont associés, c’est à dire :

∀ A,B ∈ K[X], P = AB ⇒ deg(A) = 0 ou deg(B) = 0

On admet que tout polynôme non constant de C[X] possède au moins une racine sur C, et ainsi il peut toujours s’écrire sous
une forme scindée dans C[X] :

P (X) = an(X − r1)α1 . . . (X − rk)αk

avec r1, . . . , rk des racines éventuellement complexes d’ordre αk ≥ 1 et an le coefficient dominant de P .

Théorème 26 (de D’Alembert-Gauss).

Remarque Ce dernier résultat est admis pour le moment et on en verra une démonstration plus tard à l’aide des intégrales
à paramètre. Par contre, il ne faudra pas avoir peur de l’évoquer quand on se plonge dans C pour déterminer les racines
éventuelles d’un polynôme donné.

1. Un polynôme de C[X] est irréductible sur C si et seulement s’il est de degré 1.

2. Un polynôme de R[X] est irréductible sur R si et seulement s’il est de degré 1 ou de degré 2 à discriminant < 0.

Propriété 27 (caractérisation des polynômes irréductibles).

I On veillera à traiter les deux sens de ces équivalences : on citera évidemment le théorème de D’Alembert-Gauss quand
celui-ci sera utile.

D’après le théorème de D’Alembert-Gauss et en regroupant les facteurs de racines conjuguées, on en déduit que tout polynôme
non constant de R[X] peut s’écrire comme un produit de polynômes irréductibles sur R de la forme :

P (X) = an(X − r1)α1 . . . (X − rk)αk (X2 + sk+1X + tk+1)αk+1 . . . (X2 + spX + tp)
αp

avec r1, . . . , rk des racines réelles d’ordre αk ≥ 1, αk+1, . . . , αp ≥ 1 et an le coefficient dominant de P .

Corollaire 28 (de factorisation des polynômes sur R).

Remarque Dans le cas particulier où un polynôme P peut s’écrire dans K[X] de la forme :

P (X) = an(X − r1) . . . (X − rn) avec r1, . . . , rn des racines distinctes

on dit plus précisément que P est scindé à racines simples et il est alors très facile d’exhiber des relations entre les
coefficients du polynôme et les racines :

P (X) = anX
n−an(

n∑
i=1

ri)︸ ︷︷ ︸
an−1

Xn−1 + an(
∑

1≤i<j≤n

rirj)︸ ︷︷ ︸
an−2

Xn−2 − an(
∑

1≤i<j<k≤n

rirjrk)Xn−3 . . .+ (−1)nanr1 . . . rn︸ ︷︷ ︸
a0
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Exemple 8 Pour chacun de ces polynômes, déterminer sa factorisation dans C[X], puis dans R[X].

1. P1(X) = X5 − 1

2. P2(X) = X6 + 1

3. P3(X) =
∑2n−1
k=0 Xk

3 Quelques applications fondamentales

3.1 Existence et unicité du polynôme d’interpolation

Exemple 9 Soit f une fonction définie sur un intervalle I à valeurs dans R, et considérons x0 < x1 < . . . < xn des points de I.

1. Montrer qu’il existe une famille de polynômes L0, . . . , Ln ∈ Rn[X] tels que :

∀(i, k) ∈ J0, nK2, Li(xk) = δik

Ces polynômes sont appelés les polynômes de Lagrange associés aux points (xk).

2. Montrer que la famille (L0, . . . , Ln) désigne une base de Rn[X].

3. En déduire qu’il existe un unique polynôme Pn ∈ R[X] de degré n tel que pour tout k ∈ J0, nK, P (xk) = f(xk).
On pourra procéder de quatre façons...

Cet unique polynôme Pn qui cöıncide avec f aux points x0, . . . , xn est appelé polynôme d’interpolation.

Soit f une fonction définie sur un intervalle I à valeurs dans R, et considérons x0 < x1 < . . . < xn des points de I. Alors, il
existe un unique polynôme Pn ∈ R[X] de degré n tel que :

∀k ∈ J0, nK, P (xk) = f(xk)

Théorème 29 (existence et unicité du polynôme d’interpolation).

3.2 Approximation uniforme des fonctions continues sur un segment

Exemple 10 Pour tout n ∈ N, on définit la famille des polynômes de Bernstein de degré n par :

∀k ∈ J0, nK, Bnk = (nk )Xk(1−X)n−k

1. Soit n ∈ N. Calculer
∑n
k=0Bnk,

∑n
k=0 kBnk.

2. De la même façon, calculer
∑n
k=0 k(k − 1)Bnk, puis en déduire que

∑n
k=0 k

2Bnk = n(n− 1)X2 + nX.

3. On considère une fonction f : [0, 1] 7−→ R qu’on suppose continue sur [0, 1] et on définit la suite de polynômes (Pn) par :

∀n ∈ N, Pn(x) =

n∑
k=0

f(
k

n
)Bnk(x)

(a) Soit x ∈ [0, 1]. Calculer la somme
∑n
k=0(x− k

n
)2Bnk(x).

(b) Fixons ε > 0. En utilisant l’uniforme continuité de f sur [0, 1], montrer qu’il existe α > 0 tel que pour tout n ∈ N∗ :

|Pn(x)− f(x)| ≤ ε

2
+

M

2nα2
, avec M = ‖f‖∞

(c) En déduire que :
‖Pn − f‖∞ −→

n→+∞
0

On en déduit qu’il existe une suite de polynômes qui converge uniformément vers la fonction f continue sur le segment [0, 1]. On
peut adapter cet exercice et obtenir un résultat plus général : c’est le théorème de Stone-Weiertsrass.

Soit f : [a, b] −→ R qu’on suppose continue sur [a, b]. Alors, il existe une suite de polynômes (Pn) qui converge uniformément
vers la fonction f sur le segment [a, b] de sorte que :

‖Pn − f‖∞ −→
n→+∞

0

Théorème 30 (de Stone-Weierstrass).
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3.3 Famille de polynômes orthogonaux : le cas particulier des polynômes de Tchebychev

Exemple 11 On travaille dans E = R[X] et on définit sous réserve d’existence l’application φ : E × E −→ R par :

φ(P,Q) =

∫ 1

−1

P (t)Q(t).ω(t) dt, avec pour tout t ∈]− 1, 1[, ω(t) =
1√

1− t2

1. Montrer que φ est bien définie sur E2, puis vérifier qu’il s’agit d’un produit scalaire sur E.

2. Montrer que pour tout n ∈ N, il existe un unique polynôme Tn ∈ Rn[X] tel que :

∀ x ∈ R, Tn(cos(x)) = cos(nx)

On appelle alors suite des polynômes de Tchebychev la suite des polynômes (Tn)n∈N ∈ Rn[X]N ainsi construite vérifiant :

∀ n ∈ N, Tn(X) =

E(n/2)∑
p=0

(
n
2p

)
(X2 − 1)pXn−2p

3. Montrer que pour tout n ∈ N, Tn+2(X) = 2XTn+1(X)− Tn(X).

4. Déterminer le coefficient dominant de Tn et le degré de Tn.

5. Soit n ∈ N∗. Déterminer les racines de Tn, puis en déduire la factorisation de Tn dans R[X].

6. Etablir alors que (Tn) définit une base orthogonale de E.

Plus généralement, on peut considérer d’autres intégrales généralisées de la forme :∫
I

P (t)Q(t).ω(t) dt

avec des poids ω différents. Ainsi, dans de nombreux exercices, on sera amené à construire des suites de polynômes orthogonaux
et qui constitueront une base dénombrable fort utile.
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