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Pour aller plus loin
Ce chapitre reprend la même construction que celui sur les séries numériques, et il faudra aussi en maitriser les subtilités car
on y trouve des résultats essentiels pour l’étude des suites et séries de fonctions : c’est d’ailleurs dans ce contexte qu’on fera
souvent tourner les théorèmes de Lebesgue.
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1 Intégrale d’une fonction continue par morceaux sur un segment

1.1 Rappel sur sa construction par les fonctions en escalier

Définition Soit f une fonction définie sur un segment [a, b] à valeurs dans R.

• On dit que f est en escalier s’il existe (xi) une subdivision de [a, b] telle que pour tout i ∈ J0, n − 1K, f est constante sur
]xi, xi+1[ et ainsi :

x0 x1 x2 xn

Et on note E([a, b],R) l’espace vectoriel des fonctions en escalier sur [a, b].

• On dit que f est continue par morceaux s’il existe (xi) une subdivision de [a, b] telle que pour tout i ∈ J0, n− 1K, f est
continue sur ]xi, xi+1[, prolongeable par continuité sur [xi, xi+1], et ainsi :

x0 x1 x2 xn

Et on note CM([a, b],R) l’espace vectoriel des fonctions continues par morceaux sur [a, b].

Remarques

1. Pour un segment donné [a, b], on travaillera souvent avec la subdivision à pas constant définie par :

∀i ∈ J0, n− 1K, xi = a+ i(
b− a
n

)

où (b− a)/n désigne le pas de la subdivision.

2. Pour une fonction en escalier f , on peut noter fi la hauteur des paliers sur chaque intervalle de la subdivision, et ainsi
en posant :

I(f) =

n−1∑
i=0

(xi+1 − xi)fi

I(f) représente l’aire algébrique associée à f et est appelée intégrale de f sur le segment [a, b]. On montre d’ailleurs
en première année qu’elle satisfait les propriétés de l’intégrale : linéarité, croissance, inégalité triangulaire et relation
de Chasles.

Soit f : [a, b] −→ R qu’on suppose continue sur [a, b].

1. Pour tout ε > 0, il existe φ une fonction en escalier sur [a, b] telle que ‖φ− f‖∞ ≤ ε.

2. En particulier, il existe (φn) ∈ E([a, b],R)N, une suite de fonctions en escalier, qui converge uniformément vers f , c’est
à dire telle que :

‖φn − f‖∞ −→ 0

On dit aussi que E([a, b],R) est dense dans C0([a, b],R) et on note : E([a, b],R) = C0([a, b],R).

Théorème 1 (d’approximation uniforme par des fonctions en escalier).

I Pour le premier point, on invoque le théorème de Heine afin de pouvoir contrôler la distance entre f et les paliers retenus.
Pour le second point, il suffit de discrétiser le premier point avec ε = 1/n.
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Remarques

1. Au lieu de prendre le point milieu, on peut aussi considérer les min et max de f sur les intervalles fermés de la
subdivision, et ainsi on peut construire deux suites de fonctions en escalier (φn) et (ψn) telles que :{

φn ≤ f ≤ ψn
‖φn − f‖∞ −→ 0, ‖ψn − f‖∞ −→ 0

2. Si f est continue par morceaux, alors elle peut être prolongée par continuité sur chaque intervalle fermé de la subdi-
vision et en appliquant le théorème sur chaque intervalle [xi, xi+1], on peut étendre ce théorème d’approximation
uniforme aux fonctions continues par morceaux.

3. Ce théorème d’approximation est fondamental, car c’est lui qui nous permet de justifier la définition suivante :

Soit f : [a, b] −→ R qu’on suppose continue par morceaux sur [a, b]. Alors, on a :

sup
φ∈E([a,b],R)

{I(φ), φ ≤ f} = inf
ψ∈E([a,b],R)

{I(ψ), ψ ≥ f}

Cette valeur commune est appelée intégrale de f sur [a, b] et est notée

∫ b

a

f(t) dt.

Propriété 2 (définition de l’intégrale d’une fonction continue par morceaux).

I On montre d’abord une première inégalité : la borne supérieure du premier ensemble est inférieure à la borne inférieure du
second ensemble. Puis, s’il n’y a pas égalité, on introduit des suites de fonctions en escalier qui convergent de part et d’autres
vers f avant d’obtenir une contradiction.

En considérant les fonctions en escalier situées de part et d’autre de f , on a immédiatement que :

∀(φ, ψ) ∈ E([a, b],R)2, φ ≤ f ≤ ψ ⇒ I(φ) ≤ I(ψ)

et ainsi, d’après les axiomes de R, les bornes sup et inf données existent et elles vérifient :

sup
φ∈E([a,b],R)

{I(φ), φ ≤ f} ≤ inf
ψ∈E([a,b],R)

{I(ψ), ψ ≥ f}

Reste à montrer qu’il y a égalité. Pour cela, on note M = supφ∈E([a,b],R){I(φ), φ ≤ f}, m = infψ∈E([a,b],R){I(ψ), ψ ≥ f}, et
on raisonne par l’absurde en supposant que M < m avec ε = m−M > 0.
Or le théorème d’approximation uniforme nous donne l’existence de deux suites de fonctions en escalier (φn) et (ψn) telles
que : {

φn ≤ f ≤ ψn
‖φn − f‖∞ −→ 0, ‖ψn − f‖∞ −→ 0

Ainsi, avec ε′ = ε/3(b − a) > 0, ∃N ∈ N, ∀n ≥ N, ‖φn − f‖∞ ≤ ε′ et ‖ψn − f‖∞ ≤ ε′, et donc par inégalité triangulaire,
‖ψn − φn‖∞ ≤ 2ε′. En particulier, il vient pour tout n ≥ N :

ε ≤ I(ψn)− I(φn) = I(ψn − φn) ≤ I(2ε′) = 2ε/3⇒ 1 ≤ 2/3

CONTRADICTION, et ainsi, M = m. Ce qui nous permet de définir l’intégrale d’une telle fonction f continue par morceaux
sur [a, b].

Soient f, g : [a, b] −→ R qu’on suppose continue par morceaux sur [a, b]. On peut alors montrer par caractérisation séquentielle
des bornes sup et inf que :

1. l’intégrale est linéaire : ∀λ ∈ R,
∫ b

a

λf(t) + g(t) dt = λ

∫ b

a

f(t) dt+

∫ b

a

g(t) dt

2. l’intégrale est croissante : f ≤ g ⇒
∫ b

a

f(t) dt ≤
∫ b

a

g(t) dt

3. l’intégrale vérifie l’inégalité triangulaire : |
∫ b

a

f(t) dt| ≤
∫ b

a

|f(t)| dt

4. l’intégrale vérifie la relation de Chasles : ∀c ∈ [a, b],

∫ c

a

f(t) dt+

∫ b

c

f(t) dt =

∫ b

a

f(t) dt

Propriété 3 (de l’intégrale d’une fonction continue par morceaux sur un segment).
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Remarque Cette dernière propriété nous permet de retrouver les deux conventions :∫ a

a

f(t) dt = 0 et

∫ a

b

f(t) dt = −
∫ b

a

f(t) dt

Définition Soit f une fonction définie sur un segment [a, b] à valeurs complexes. On dit encore que f est continue par morceaux
sur [a, b] s’il existe des fonctions (Re(f), Im(f)) ∈ CM([a, b],R)2 telles que :

∀x ∈ [a, b], f(x) = Re(f)(x) + iIm(f)(x)

Dans ce cas, on définit l’intégrale de f sur [a, b] par :∫ b

a

f(t) dt =

∫ b

a

Re(f)(t) dt+ i

∫ b

a

Im(f)(t) dt

de sorte que : Re(

∫ b

a

f(t) dt) =

∫ b

a

Re(f)(t) dt et Im(

∫ b

a

f(t) dt) =

∫ b

a

Im(f)(t) dt.

Remarque Cela nous permet en outre de prolonger les propriétés de l’intégrale aux fonctions à valeurs complexes et ainsi,
on aura encore :

1. l’intégrale est linéaire : λ ∈ C,
∫ b

a

λf(t) + g(t) dt = λ

∫ b

a

f(t) dt+

∫ b

a

g(t) dt

2. l’intégrale vérifie l’inégalité triangulaire : |
∫ b

a

f(t) dt| ≤
∫ b

a

|f(t)| dt

3. l’intégrale vérifie la relation de Chasles : ∀c ∈ [a, b],

∫ c

a

f(t) dt+

∫ b

c

f(t) dt =

∫ b

a

f(t) dt

1.2 Calcul intégral pour les fonctions continues

Soit f une fonction continue sur un intervalle I à valeurs complexes et notons a ∈ I. Alors, la fonction :

F : x ∈ I 7−→
∫ x

a

f(f) dt désigne l’unique primitive de f qui s’annule en a.

Elle est parfois appelée intégrale dépendant de sa borne supérieure.

Théorème 4 (existence et unicité d’une primitive qui s’annule en un point).

I On procède par existence et unicité. Pour l’existence, on revient au taux d’accroisement et on montre que l’intégrale définie
par sa borne supérieure est bien dérivable en un point x0 ∈ I.

Soit f une fonction continue sur [a, b] à valeurs complexes et notons F une primitive quelconque de f sur [a, b]. Alors,∫ b

a

f(t) dt = F (b)− F (a)

Théorème 5 (fondamental de l’analyse).

I Il suffit de rappeler que toutes les primitives sont égales à une constante près et on utilise le résultat précédent.

En effet, il existe alors C ∈ K telle que :

∀x ∈ [a, b], F (x) =

∫ x

a

f(t) dt+ C

On en déduit : F (b)− F (a) = (
∫ b
a
f(t) dt+ C)− (0 + C) =

∫ b
a
f(t) dt.

Soit f une fonction qu’on suppose de classe C1 sur [a, b] à valeurs complexes. On a l’inégalité :

|f(b)− f(a)| ≤ ‖f ′‖∞|b− a|

Corollaire 6 (inégalité des accroissements finis pour une fonction de classe C1).
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I C’est immédiat : cela découle du théorème fondamental de l’analyse appliqué à la fonction dérivée.

En effet,

|f(b)− f(a)| = |
∫ b

a

f ′(t) dt| ≤
∫ b

a

|f ′(t)| dt ≤
∫ b

a

‖f ′‖∞ dt = ‖f ′‖∞|b− a|

Soit f une fonction continue sur [a, b]. Si de plus, f est à valeurs réelles et de signe constant, alors :∫ b

a

f(t) dt = 0⇔ f = 0 sur [a, b]

Propriété 7 (intégrale nulle d’une fonction continue et de signe constant).

I Le sens réciproque est trivial. Pour le sens direct, on invoque encore l’unique primitive de f qui s’annule en a.

En effet, si par exemple, f ≥ 0, alors F : x 7−→
∫ x

a

f(t) dt est croissante et vérifie pour tout x ∈ [a, b] :

0 ≤
∫ x

a

f(t) dt ≤
∫ b

a

f(t) dt = 0

Ainsi, la fonction F est constante sur [a, b] et sa dérivée F ′ = f est nulle.

Remarque On fera attention, car la continuité est essentielle ici et il ne faut pas oublier de la mentionner. En effet, dans le
cas contraire, on peut avoir une aire algébrique nulle sans que la fonction soit nulle :

•

a b

Soient f, g deux fonctions qu’on suppose de classe C1 sur [a, b] à valeurs complexes. On a :∫ b

a

f ′(t)g(t) dt = [f(t)g(t)]ba −
∫ b

a

f(t)g′(t) dt

Propriété 8 (formule d’intégration par parties).

I C’est immédiat, puisqu’on intègre bêtement la formule de dérivation du produit (fg)′ = f ′g + fg′.

Exemple 1 On considère f une fonction de classe C1 sur [a, b] à valeurs réelles, et on définit pour tout λ ∈ R,

I(λ) =

∫ b

a

f(t) sin(λt) dt

1. Montrer que I(λ) −→
λ→+∞

0.

2. On suppose désormais que f est seulement continue sur le segment [a, b].

(a) Soit φ ∈ E([a, b],R). Etablir que

∫ b

a

φ(t) sin(λt) dt −→
λ→+∞

0.

(b) Justifier alors qu’on a encore : ∫ b

a

f(t) sin(λt) dt −→
λ→+∞

0

Bien entendu, on pourra retenir ce lemme de Riemann-Lebesgue et ainsi, pour toute fonction f continue sur [a, b] :

lim
λ→+∞

∫ b

a

f(t) sin(λt) dt = lim
λ→+∞

∫ b

a

f(t) cos(λt) dt = lim
λ→+∞

∫ b

a

f(t)eiλt dt = 0
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Soit f une fonction continue sur [a, b] à valeurs complexes et considérons φ de classe C1 telle que φ(α) = a, φ(β) = b.
En posant le chagement de variable t = φ(u), on a :∫ b

a

f(t) dt =

∫ β

α

f ◦ φ(u).φ′(u) du

Propriété 9 (formule de changement de variable).

I Dans l’expression f ◦ φ(u).φ′(u), on reconnâıt encore une formule de dérivées composées.

En effet, on peut alors invoquer le théorème fondamental de l’analyse pour retrouver :∫ β

α

f ◦ φ(u).φ′(u) du = [F ◦ φ(u)]βα = F (b)− F (a) =

∫ b

a

f(t) dt

Remarques

1. Il s’agit d’un résultat très pratique, mais les hypothèses associées peuvent être plus ou moins fortes. On sera donc
vigilant plus tard avec les intégrales généralisées, car on devra imposer des hypothèses plus fortes sur l’application φ.

2. De plus, on rappelle que cette formule nous permet de transformer des intégrales données sur un domaine symétrique,
lorsque les fonctions sont paires ou impaires :

f paire ⇒
∫ a

−a
f(t) dt = 2

∫ a

0

f(t) dt

f impaire ⇒
∫ a

−a
f(t) dt = 0

On aborde encore un exemple classique et on pourra, à l’oral, citer l’équivalent obtenu et expliquer comment le retrouver.

Exemple 2 On définit les intégrales de Wallis pour tout n ∈ N par :

In =

∫ π
2

0

cosn(t) dt et Jn =

∫ π
2

0

sinn(t) dt

1. Justifier que pour tout n ∈ N, In = Jn, puis établir que pour tout n ∈ N, n ≥ 2, on a la relation : nIn = (n− 1)In−2 (∗).

2. Etablir que la suite (nIn−1In)n≥1 est constante et préciser la valeur de cette constante.

3. Déterminer un équivalent de la suite In au voisinage de l’infini et préciser la nature de la suite (In).

4. Soit n ∈ N. Retrouver alors la forme explicite de I2n et I2n+1 en fonction de n.

1.3 Théorème de convergence des sommes de Riemann

Soit f une fonction définie sur [a, b] à valeurs dans C et considérons (xi) la subdivision à pas constant (b− a)/n. On appelle
somme de Riemann associée toute somme de la forme :

Sn(f) =

n−1∑
i=0

(xi+1 − xi)f(θi) =

n−1∑
i=0

(
b− a
n

)f(θi)

où pour tout i ∈ J0, n− 1K, θi ∈ [xi, xi+1].

1. Si f est de classe C1 sur [a, b], alors Sn(f) −→
n→+∞

∫ b

a

f(t) dt.

2. De la même façon, si f est seulement continue sur [a, b], alors on a encore :

Sn(f) −→
n→+∞

∫ b

a

f(t) dt

Théorème 10 (de convergence des sommes de Riemann).

I Dans les deux cas, on étudie la différence |Sn(f)−
∫ b
a
f | et il faudra contrôler la différence entre deux images que ce soit

à l’aide de l’inégalité des accroissements finis ou en invoquant l’uniforme continuité.
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Remarques

1. Cela nous donne un moyen très pratique d’approcher l’intégrale d’une fonction continue sur un segment. D’ailleurs,
c’est ce théorème qui justifie la convergence des méthodes numériques d’intégration classiques : méthode des
rectangles, du point milieu, des trapèzes, de Simpson...

2. Il faut essayer de connâıtre ce résultat sous les deux hypothèses de régularité, et on vous demandera très souvent de
refaire la preuve au tableau dans le cas C1.

Concrètement, il faut apprendre à reconnâıtre des sommes d’aires algébriques, et on retiendra deux cas particuliers pour une
fonction f continue sur [0, 1] :

1

n

∑n−1
k=0 f(k/n) −→

∫ 1

0

f(t) dt : c’est la méthode des rectangles gauches

1

n

∑n
k=1 f(k/n) −→

∫ 1

0

f(t) dt : c’est la méthode des rectangles droites

Exemple 3 Déterminer les limites des suites (un) et (vn) définies pour tout n ∈ N∗ par :

un =

n∑
k=1

n+ k

n2 + k2
et vn =

1

n
(

n∏
k=1

(k + n))1/n

2 Intégrales généralisées

Dans cette seconde partie, on cherche à généraliser la notion d’intégrale qui a été définie pour des fonctions continues
par morceaux sur un segment. Ainsi, pour des intervalles quelconques de la forme [a, b[, ]a, b] ou encore ]a, b[, on parle
généralement d’intégrales impropres ou d’intégrales généralisées.

2.1 Premières définitions et exemples de référence

Définition Soit f une fonction définie sur un intervalle I à valeurs réelles ou complexes. On dit encore que f est continue par
morceaux sur I si sa restriction à tout segment inclus dans I est continue par morceaux.

On se place alors dans le cas où f est continue par morceaux sur I = [a, b[ avec a < b, b ∈ R ∪ {+∞}, et on introduit
F l’intégrale dépendant de sa borne supérieure définie par :

F : x ∈ [a, b[ 7−→
∫ x

a

f(t) dt

• On dit que l’intégrale généralisée (ou impropre)

∫ b

a

f(t) dt est convergente si F (x) admet une limite finie quand

x→ b, et dans ce cas, on note :∫
[a,b[

f(t) dt ou bien

∫ b

a

f(t) dt = lim
x→b

F (x) = lim
x→b

∫ x

a

f(t) dt

• Sinon, on dit que l’intégrale est divergente.

Remarques

1. On peut aussi adapter la définition précédente à une fonction continue par morceaux sur ]a, b] ou sur un intervalle
ouvert ]a, b[. Autrement dit :

• si f ∈ CM(]a, b],K) avec −∞ ≤ a < b < +∞, l’intégrale généralisée

∫ b

a

f(t) dt est convergente si

∫ b

x

f(t) dt

admet une limite finie quand x→ a et dans ce cas :∫
]a,b]

f(t) dt ou bien

∫ b

a

f(t) dt = lim
x→a

∫ b

x

f(t) dt

• si f ∈ CM(]a, b[,K) avec −∞ ≤ a < b ≤ +∞, l’intégrale généralisée

∫ b

a

f(t) dt est convergente si

∫ y

x

f(t) dt

admet une limite finie quand x→ a et y → b et dans ce cas pour tout c ∈]a, b[ :∫
]a,b[

f(t) dt ou bien

∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt = lim
x→a

∫ c

x

f(t) dt+ lim
y→b

∫ y

c

f(t) dt

2. Ces définitions nous donnent un moyen naturel de calculer une intégrale généralisée : on se ramène d’abord à cran
fini pour calculer l’intégrale sur un segment de la forme [a, x], [x, b] ou [x, y], puis on passe à la limite.
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3. Lorsque a et b sont réels, on sera très vigilant car la notation
∫ b
a
f(t) dt peut désigner l’intégrale d’une fonction continue

par morceaux sur un segment, mais aussi une intégrale généralisée que ce soit sur ]a, b], [a, b[ ou encore ]a, b[. On veillera
donc à identifier rapidement les singularités et on retiendra que l’aire sous un point étant négligeable, on a quand
celles-ci ont un sens : ∫

[a,b]

f(t) dt =

∫
]a,b]

f(t) dt =

∫
[a,b[

f(t) dt =

∫
]a,b[

f(t) dt

Soit α ∈ R. Alors, l’intégrale

∫ +∞

0

eαt dt converge si et seulement si α < 0.

Propriété 11 (exponentielle d’exposant réel).

I On introduit f : t 7−→ eαt continue sur [0,+∞[, puis on se ramène à cran fini avant de discuter de l’existence de la limite.

Soit α ∈ R.

1. L’intégrale

∫ +∞

1

1

tα
dt converge si et seulement si α > 1.

2. L’intégrale

∫ 1

0

1

tα
dt converge si et seulement si α < 1.

Propriété 12 (intégrales de Riemann de paramètre réel).

I Dans les deux cas, on introduit la fonction f : t 7−→ 1/tα et on se ramène à cran fini pour discuter de l’existence de la
limite.

Soit α ∈ R et considérons a, b deux réels tels que a < b. On peut adapter la preuve précédente et montrer que :

1. L’intégrale

∫ b

a

1

(b− t)α dt converge si et seulement si α < 1.

2. L’intégrale

∫ b

a

1

(t− a)α
dt converge si et seulement si α < 1.

Corollaire 13 (intégrales de Riemann translatées en un point).

I Par exemple, pour le second point, on introduit f : t 7−→ 1/(t− a)α et on se ramène à cran fini.

En effet, la fonction f est ici continue sur ]a, b]. Considérons alors x ∈]a, b], il vient :

∫ b

x

1

(t− a)α
dt =

α = 1 : [ln(t− a)]bx = ln(b− a)− ln(x− a) −→ +∞

α 6= 1 : [
(t− a)−α+1

−α+ 1
]bx =

(b− a)−α+1

−α+ 1
− (x− a)−α+1

−α+ 1

or quand x→ a, cette dernière expression possède une limite finie si et seulement si −α+ 1 > 0⇔ α < 1. Ce qui nous livre
la condition attendue.

Soit f une fonction continue sur [a, b[ (ou ]a, b]), avec a, b deux réels tels que a < b. Si de plus f est prolongeable par

continuité sur [a, b], alors

∫ b

a

f(t) dt est convergente et on dit que l’intégrale est faussement impropre.

Propriété 14 (cas particulier des fonctions prolongeables par continuité sur un intervalle borné).

I On note f̃ le prolongement par continuité de f sur le segment [a, b] et on introduit F : x ∈ [a, b] 7−→
∫ x
a
f̃(t) dt, l’unique

primitive de f̃ qui s’annule en a, avant de se ramener à cran fini.

En particulier, F est continue en b et ainsi, pour tout x ∈ [a, b[,∫ x

a

f(t) dt =

∫ x

a

f̃(t) dt = F (x) −→
x→b

F (b) ∈ R et par conséquent, l’intégrale de f sur [a, b[ est convergente.
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Ce dernier résultat est très efficace, car il nous permet de traiter rapidement certaines singularités et cela, sans même revenir au
calcul d’une primitive.

Exemple 4 Les intégrales suivantes sont-elles convergentes ?∫ 1

0

ln(t) dt ,

∫ +∞

0

cos(t) dt ,

∫ 1

0

sin(t)

t
dt

2.2 Cas particulier des fonctions à valeurs positives

Soit f une fonction continue par morceaux sur [a, b[ à valeurs dans R+. Alors, la fonction F : x ∈ [a, b[ 7−→
∫ x

a

f(t) dt est

croissante et on a : ∫ b

a

f(t) dt converge ⇔ F est majorée : ∃M ∈ R, ∀x ∈ [a, b[,

∫ x

a

f(t) dt ≤M

et dans ce cas,

∫ b

a

f(t) dt = sup
x∈[a,b[

∫ x

a

f(t) dt. Sinon, l’intégrale diverge et on peut noter :

∫ b

a

f(t) dt = +∞.

Propriété 15 (caractérisation de la convergence par majoration).

I La fonction f étant à valeurs dans R+, on montre que F est croissante et on conclut à l’aide du théorème de la limite
monotone.

En effet, si (x, y) ∈ [a, b[2, avec x < y, alors d’après la relation de Chasles :

F (y) =

∫ y

a

f(t) dt =

∫ x

a

f(t) dt+

∫ y

x

f(t) dt = F (x) +

∫ y

x

f(t) dt︸ ︷︷ ︸
≥0

⇒ F (x) ≤ F (y)

Ainsi, F est croissante sur [a, b[ : d’après le théorème de la limite monotone, elle admet une limite finie en b si et seulement
si elle est majorée. Sinon, elle tend vers +∞.

Remarques

1. On peut trouver une caractérisation identique pour une fonction f ∈ CM(]a, b],R+) et ceci en montrant d’abord que

la fonction F : x ∈]a, b] 7−→
∫ b
x
f(t) dt est décroissante sur ]a, b]. En effet, d’après le théorème de la limite monotone,

une telle fonction F possède une limite finie en a si et seulement si F est aussi majorée !

2. Dans la suite du chapitre, on décide donc de travailler sur un intervalle de la forme [a, b[ et on adaptera si besoin les
différentes propriétés obtenues.

Soient f et g deux fonctions continues par morceaux sur [a, b[ à valeurs dans R+ telles que f(x) ≤ g(x).

1. Si

∫ b

a

g(t) dt est convergente, alors

∫ b

a

f(t) dt est convergente.

2. Si

∫ b

a

f(t) dt est divergente, alors

∫ b

a

g(t) dt est divergente.

Corollaire 16 (comparaison pour les fonctions à valeurs positives).

I On se ramène à cran fini et on compare les intégrales sur [a, x].

Par croissance de l’intégrale, on peut écrire pour tout x ∈ [a, b[ :∫ x

a

f(t) dt ≤
∫ x

a

g(t) dt

Si l’intégrale
∫ b
a
g(t) dt converge, alors pour tout x ∈ [a, b[,

∫ x
a
f(t) dt ≤

∫ x
a
g(t) dt ≤

∫ b
a
g(t) dt ∈ R et le résultat précédent

nous permet de conclure.
De la même façon, pour le second point, en tant que fonctions à valeurs positives, la fonction F : x 7−→

∫ x
a
f(t) dt tend

nécessairement vers +∞ et par comparaison,
∫ x
a
g(t) dt tend aussi vers +∞.
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Remarque En fait, on peut même supposer que l’inégalité n’est vraie qu’au voisinage de b, de la forme [c, b[.

Dans ce cas, on obtient des résultats analogues pour les intégrales
∫ b
c
f(t) dt et

∫ b
c
g(t) dt, mais la nature des intégrales sur

[a, b[ ne dépendent, par la relation de Chasles, que de la nature des intégrales sur [c, b[ puisque :∫ b

a

f(t) dt =

∫ c

a

f(t) dt︸ ︷︷ ︸
∈R+

+

∫ b

c

f(t) dt

Ainsi, on récupère quand même les mêmes conclusions :

1. si
∫ b
a
g(t) dt est convergente, alors

∫ b
c
g(t) dt converge ⇒

∫ b
c
f(t) dt converge ⇒

∫ b
a
f(t) dt converge.

2. si
∫ b
a
f(t) dt est divergente, alors la série

∫ b
c
f(t) dt diverge ⇒

∫ b
c
g(t) dt diverge ⇒

∫ b
a
g(t) dt diverge.

Soient f et g deux fonctions continues par morceaux sur [a, b[ à valeurs dans R∗+ telles que f(x) = o
x→b

(g(x)).

1. Si

∫ b

a

g(t) dt est convergente, alors

∫ b

a

f(t) dt est convergente et on peut comparer les restes partiels :

∫ b

x

f(t) dt = o
x→b

(

∫ b

x

g(t) dt)

2. Si

∫ b

a

f(t) dt est divergente, alors

∫ b

a

g(t) dt est divergente et on peut comparer les intégrales partielles :

∫ x

a

f(t) dt = o
x→b

(

∫ x

a

g(t) dt)

Et de la même façon, si f(x) = O
x→b

(g(x)), on peut aussi comparer les restes ou intégrales partielles des deux fonctions.

Propriété 17 (comparaison pour les fonctions à valeurs positives).

I On traduit simplement la relation de comparaison et on invoque la propriété précédente. Pour la comparaison sur les restes
ou intégrales partielles, c’est plus fin car on reviendra à la définition de la limite avant d’intégrer les inégalités au voisinage
de b.

Ces résultats sont très utiles, car encore une fois, ils nous permettent de conclure par comparaison à nos intégrales de référence.

Exemple 5 On définit pour tout n ∈ N, la fonction fn : t ∈ R+ 7−→ tne−t dt.

1. Montrer que

∫ +∞

0

fn(t) dt est convergente.

2. Etablir alors que pour tout n ∈ N, ∫ +∞

0

tne−t dt = n!

Soient f et g deux fonctions continues par morceaux sur [a, b[ à valeurs dans R∗+ telles que f(x) ∼
x→b

g(x). Alors, les intégrales∫ b

a

f(t) dt et

∫ b

a

g(t) dt sont de même nature et on a encore :

1. si les deux intégrales convergent, on peut comparer les restes partiels :∫ b

x

f(t) dt ∼
x→b

∫ b

x

g(t) dt

2. si les deux intégrales divergent, on peut comparer les intégrales partielles :∫ x

a

f(t) dt ∼
x→b

∫ x

a

g(t) dt

Théorème 18 (de sommation des équivalents pour les fonctions à valeurs positives).

I On traduit encore la relation de comparaison et on invoque la propriété sur les inégalités entre termes généraux. Pour
la comparaison sur les restes ou intégrales partielles, il suffit d’adapter la preuve précédente et sommer l’encadrement obtenu.
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Exemple 6 Soit α ∈ R. En discutant suivant les valeurs de α, préciser la nature de l’intégrale :∫ +∞

0

e−t

tα
dt

Remarque On peut observer ici que de nombreux résultats sont analogues au chapitre des séries numériques. Pourtant,
si les preuves des résultats sur les séries ont pu nous inspirer, il y a quelques différences et notamment : si une intégrale
généralisée est convergente, alors le terme général ne tend pas forcément vers 0.
Par exemple, ∫ 1

0

− ln(t) dt = 1 mais on a en 0, − ln(t) −→ +∞

2.3 Cas plus général des fonctions à valeurs quelconques

Définition Soit f une fonction continue par morceaux sur [a, b[ à valeurs réelles ou complexes. On dit que f est intégrable sur

[a, b[ si l’intégrale
∫ b
a
f(t) dt converge absolument, c’est à dire que :∫ b

a

|f(t)| dt converge

Remarque Dans le cas particulier où f désigne une fonction à valeurs positives, alors on a évidemment :

f est intégrable sur [a, b[ ⇔
∫ b

a

|f(t)| dt =

∫ b

a

f(t) dt converge

Ces deux notions sont donc équivalentes et ainsi, pour les fonctions positives, on pourra dire au choix, que l’intégrale converge
ou bien que la fonction est intégrable. Mais plus généralement, cela nous donnera une condition suffisante de convergence :

Soit f une fonction continue par morceaux sur [a, b[ à valeurs dans K.

1. Pour K = R, si l’intégrale

∫ b

a

|f(t)| dt converge, alors

∫ b

a

f(t) dt converge et on a :

∫ b

a

f(t) dt =

∫ b

a

f+(t) dt−
∫ b

a

f−(t) dt

2. Pour K = C, si l’intégrale

∫ b

a

|f(t)| dt converge, alors

∫ b

a

f(t) dt converge et on a :

∫ b

a

f(t) dt =

∫ b

a

Re(f)(t) dt+ i

∫ b

a

Im(f)(t) dt

Autrement dit, pour des fonctions à valeurs réelles ou complexes, la convergence absolue entraine la convergence.

Théorème 19 (condition suffisante de convergence).

I On traite d’abord le cas réel pour lequel on introduit les fonctions f+ et f− telle que f = f+ − f−, puis on montre par
comparaison que ce sont des fonctions intégrables avant de se ramener à cran fini. On procède alors de la même façon dans
C en utilisant cette fois les fonctions Re(f) et Im(f).

Remarques

1. En passant au module, on est ainsi ramené aux fonctions à valeurs positives pour lesquelles nous avons de nombreux
théorèmes de comparaison. Mais il s’agit là encore que d’une condition suffisante et comme pour les séries numériques,
la réciproque est fausse : il existe des fonctions dont l’intégrale généralisée converge, mais pour lesquelles l’intégrale ne
converge pas absolument.
On pourra évoquer le cas de l’intégrale de Dirichlet, semi-convergente puisqu’elle vérifie :∫ +∞

0

sin(t)

t
dt =

π

2
, mais

∫ +∞

0

| sin(t)

t
| dt = +∞

2. De plus, on fera attention : la convergence absolue nous donne un moyen de justifier l’existence d’une intégrale
généralisée, mais le calcul de l’intégrale devra se faire de toute façon sans module. On pourra alors :

• se ramener rigoureusement à cran fini pour mener le calcul avant de passer à la limite.

• dans certains exercices d’oraux, et si l’existence a déjà été prouvée, travailler sur les intervalles donnés en ayant
conscience qu’il y a une limite cachée.
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Exemple 7 Pour tout n ∈ N∗, on pose fn(x) = x sin(x)e−nx.

1. Soit n ∈ N∗, montrer que la fonction fn est intégrable sur [0,+∞[.

2. On pose In =

∫ +∞

0

fn(x)dx.

(a) Calculer In.

(b) Préciser alors la nature de la série
∑
In.

Soient f et g deux fonctions continues par morceaux sur [a, b[ et qu’on suppose intégrables sur [a, b[. Alors,

1. l’intégrale est linéaire : ∀λ ∈ K, λf + g est intégrable et on a encore :

∫ b

a

λf(t) + g(t) dt = λ

∫ b

a

f(t) dt+

∫ b

a

g(t) dt

2. l’intégrale est croissante : si f, g sont à valeurs réelles avec f ≤ g, alors

∫ b

a

f(t) dt ≤
∫ b

a

g(t) dt

3. l’intégrale vérifie l’inégalité triangulaire : |
∫ b

a

f(t) dt| ≤
∫ b

a

|f(t)| dt

4. l’intégrale vérifie la relation de Chasles : ∀c ∈ [a, b[,

∫ c

a

f(t) dt+

∫ b

c

f(t) dt =

∫ b

a

f(t) dt

Propriété 20 (de l’intégrale pour les fonctions intégrables).

I C’est immédiat : à chaque fois, l’intégrabilité nous donne l’existence de l’intégrale sur [a, b[, puis on se ramène à cran fini.

Par exemple, pour le premier point, le seul à être un peu délicat, il vient par inégalité triangulaire :

|λf + g| ≤ |λ||f |+ |g|

or le membre de droite désigne une fonction intégrable puisque f, g étant intégrables :∫ x

a

|λ||f |+ |g| = |λ|
∫ x

a

|f |+
∫ x

a

|g| −→
x→b
|λ|

∫ b

a

|f |+
∫ b

a

|g| ∈ R

Ainsi, |λ||f |+ |g| est intégrable et donc, par comparaison pour les fonctions à valeurs positives :
∫ b
a
|λf + g| converge de sorte

que λf + g est bien intégrable.
Par suite, on se ramène à cran fini. On a pour tout x ∈ [a, b[ et par linéarité de l’intégrale sur un segment :∫ x

a

λf + g = λ

∫ x

a

f +

∫ x

a

g −→
x→b

λ

∫ b

a

f +

∫ b

a

g

et on retrouve la linéarité attendue.

En notant L1([a, b[,K) l’ensemble des fonctions continues et intégrables sur [a, b[, on en déduit que L1([a, b[,K) est un
sous-espace vectoriel de C0([a, b[,K), appelé espace L1 et l’application :

φ : f ∈ L1([a, b[,K) 7−→
∫ b

a

f(t) dt

désigne une forme linéaire.

Corollaire 21 (espace L1 et forme linéaire).

Remarques

1. On peut même introduire l’application ‖.‖1 définie par :

‖.‖1 : f ∈ L1([a, b[,K) 7−→
∫ b

a

|f(t)| dt

et on peut vérifier qu’il s’agit d’une norme sur l’espace L1 de sorte qu’il s’agit en fait d’un espace vectoriel normé.

2. Plus généralement, pour tout p ≥ 1, on note Lp([a, b[,K) l’ensemble des fonctions continues sur [a, b[ telles que∫ b
a
|f(t)|p dt converge, et en posant :

‖.‖p : f ∈ Lp([a, b[,K) 7−→ (

∫ b

a

|f(t)|p dt)1/p

on obtient les espaces Lp, des espaces vectoriels normés de référence.

www.cpgemp-troyes.fr 12/14

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 4
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3 Prolongement des propriétés et calcul intégral

Soit f une fonction continue sur [a, b[. Si de plus, f est à valeurs réelles et de signe constant, alors :∫ b

a

f(t) dt = 0⇔ f = 0 sur [a, b[

Propriété 22 (intégrale nulle d’une fonction continue et de signe constant).

I Le sens réciproque est trivial. Pour le sens direct, on montre d’abord que pour tout x ∈ [a, b[,
∫ x
a
f(t) dt est nulle et on

invoque la propriété obtenue sur un segment.

Soient f, g deux fonctions qu’on suppose de classe C1 sur [a, b[ à valeurs réelles ou complexes. Si de plus limx→b f(x)g(x)

est finie, alors les intégrales
∫ b
a
f ′(t)g(t) dt et

∫ b
a
f(t)g′(t) dt sont de même nature et si les deux intégrales convergent, on a

encore : ∫ b

a

f ′(t)g(t) dt = lim
t→b

f(t)g(t)− f(a)g(a)−
∫ b

a

f(t)g′(t) dt = [f(t)g(t)]t→ba −
∫ b

a

f(t)g′(t) dt

Propriété 23 (formule d’intégration par parties pour les intégrales généralisées).

I C’est immédiat : on se ramène à cran fini et on applique la formule d’intégration par parties sur [a, x] avant de passer à
la limite.

Remarque Encore une fois, on pourra donc procéder de deux façons :

• à cran fini pour mener le calcul sur un segment avant de passer à la limite.

• si l’existence de la première intégrale a été prouvée, on pourra aussi travailler directement sur l’intervalle donné à
condition de vérifier que le crochet renvoie bien une valeur finie... c’est ce qui justifiera l’utilisation de la formule
d’intégration par parties.

Exemple 8 On définit pour tout n ∈ N∗, In =

∫ +∞

0

1

(1 + t2)n
dt.

1. Justifier que ces intégrales sont bien convergentes.

2. Soit n ∈ N∗. Déterminer une relation de récurrence entre In et In+1.

3. En déduire l’expression de In pour tout n ∈ N∗.

Soit f une fonction continue sur ]a, b[ à valeurs réelles ou complexes et considérons φ :]α, β[−→]a, b[ qu’on suppose de classe

C1 et strictement croissante sur ]α, β[. Alors, les intégrales
∫ b
a
f(t) dt et

∫ β
α
f ◦ φ(u).φ′(u) du sont de même nature, et si les

deux intégrales convergent, on a encore : ∫ b

a

f(t) dt =

∫ β

α

f ◦ φ(u).φ′(u) du

et ainsi, on retiendra que le changement t = φ(u) nous donne :∫
]a,b[

f(t) dt =

∫
]α,β[

f ◦ φ(u).φ′(u) du

Propriété 24 (formule de changement de variable pour les intégrales généralisées).

I Dans l’expression f ◦ φ(u).φ′(u), on reconnâıt encore une formule de dérivées composées, mais on veillera à se ramener à
cran fini à l’aide de φ et φ−1.

En effet,

• si on suppose que
∫ b
a
f(t) dt converge, alors on fixe x ∈]α, β[ afin de travailler sur les intégrales

∫ β
x
f ◦ φ(u).φ′(u) du et∫ x

α
f ◦ φ(u).φ′(u) du.

Par exemple, pour tout y ∈ [x, β[, on a par changement de variable t = φ(u) :∫ y

x

f ◦ φ(u).φ′(u) du =

∫ φ(y)

φ(x)

f(t) dt −→
y→β

∫ b

φ(x)

f(t) dt ∈ R
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Ce qui assure l’existence de la première intégrale sur [x, β[ et donne sa valeur.
De même, on montre l’existence et la valeur de la seconde intégrale sur ]α, x] et ainsi :∫ x

α

f ◦ φ(u).φ′(u) du =

∫ φ(x)

a

f(t) dt

Finalement,
∫ β
α
f ◦ φ(u).φ′(u) du converge et on a bien :∫ β

α

f ◦ φ(u).φ′(u) du =

∫ β

x

f ◦ φ(u).φ′(u) du+

∫ x

α

f ◦ φ(u).φ′(u) du =

∫ b

a

f(t) dt

• si on suppose que
∫ β
α
f ◦φ(u).φ′(u) du converge, alors on procède de la même façon en découpant l’intégrale d’une part,

et en posant le changement de variable u = φ−1(t) d’autre part, où φ−1 vérifie les mêmes propriétés que φ.

Remarques

1. Comme les intégrales ne changent pas quand on ajoute une borne, ce résultat est encore valable pour des intégrales
définies sur les intervalles [a, b[ ou ]a, b].

2. Dans le cas particulier où φ est C1 et strictement décroissante, alors on montre avec la même preuve que :∫ a

b

f(t) dt =

∫ β

α

f ◦ φ(u).φ′(u) du

c’est à dire qu’on pourra toujours appliquer le changement de variable t = φ(u) dès lors que φ est de classe C1 et
strictement monotone sur ]α, β[. Attention, dans le cadre du programme et pour des ”changements de variable usuels”,
on pourra parfois appliquer ces résultats ”sans justification”.

Exemple 9 Justifier que l’intégrale suivante est convergente, puis déterminer sa valeur :

I =

∫ +∞

0

ln(t)

1 + t2
dt
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