Chapitre 4

Intégrales sur un intervalle quelconque

Dans ce chapitre, on revient sur l’intégrale des fonctions continues par morceaux sur
un segment, puis on généralise cette notion aux intervalles quelconques de R. On peut
alors montrer que de nombreuses propriétés peuvent étre prolongées, mais il faudra a
chaque fois s’assurer d’abord de l’existence des intégrales.
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Pour aller plus loin
Ce chapitre reprend la méme construction que celui sur les séries numériques, et il faudra aussi en maitriser les subtilités car

on y trouve des résultats essentiels pour I’étude des suites et séries de fonctions : c’est d’ailleurs dans ce contexte qu’on fera
souvent tourner les théoremes de Lebesgue.
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1 Intégrale d’une fonction continue par morceaux sur un segment

1.1 Rappel sur sa construction par les fonctions en escalier

Définition Soit f une fonction définie sur un segment [a, b] & valeurs dans R.

e On dit que f est en escalier §'il existe (z;) une subdivision de [a, b] telle que pour tout i € [0,n — 1], f est constante sur
}a:i,a:Hl[ et ainsi :

o T T2 In

Et on note &([a, b], R) I'espace vectoriel des fonctions en escalier sur [a, b].

e On dit que f est continue par morceaux s’il existe (z;) une subdivision de [a, b] telle que pour tout ¢ € [0,n — 1], f est
continue sur |z;, z;+1[, prolongeable par continuité sur [x;, zi+1], et ainsi :

o T1 T2 Tn

Et on note CM([a, b],R) l'espace vectoriel des fonctions continues par morceaux sur [a, b].

Remarques
1. Pour un segment donné [a, b], on travaillera souvent avec la subdivision & pas constant définie par :

b—a)

Vi e [0,n—1], z; = a+(
ou (b — a)/n désigne le pas de la subdivision.

2. Pour une fonction en escalier f, on peut noter f; la hauteur des paliers sur chaque intervalle de la subdivision, et ainsi

en posant :
n—1

I(f) =D (w1 — ) fi
i=0
I(f) représente laire algébrique associée a f et est appelée intégrale de f sur le segment [a,b]. On montre d’ailleurs
en premiere année qu’elle satisfait les propriétés de 'intégrale : linéarité, croissance, inégalité triangulaire et relation
de Chasles.

{Théoréme 1 (d’approximation uniforme par des fonctions en escalier).]

Soit f : [a,b] — R qu’on suppose continue sur [a, b].
1. Pour tout € > 0, il existe ¢ une fonction en escalier sur [a, b] telle que ||¢ — f|loo < €.

2. En particulier, il existe (¢n) € &([a, b], R)N, une suite de fonctions en escalier, qui converge uniformément vers f, c’est
a dire telle que :

[¢n = fllc — 0
On dit aussi que &([a, b], R) est dense dans C°([a, b],R) et on note : £([a,b],R) = C°([a, b], R).

» Pour le premier point, on invoque le théoréme de Heine afin de pouvoir contréler la distance entre f et les paliers retenus.
Pour le second point, il suffit de discrétiser le premier point avec € = 1/n.
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Remarques

1. Au lieu de prendre le point milieu, on peut aussi considérer les min et max de f sur les intervalles fermés de la
subdivision, et ainsi on peut construire deux suites de fonctions en escalier (¢,) et (1) telles que :

[¢n = fllc — 0, [[¢n = flloo — 0

2. Si f est continue par morceaux, alors elle peut étre prolongée par continuité sur chaque intervalle fermé de la subdi-
vision et en appliquant le théoréme sur chaque intervalle [z;, z;11], on peut étendre ce théoréme d’approximation
uniforme aux fonctions continues par morceaux.

3. Ce théoreme d’approximation est fondamental, car c’est lui qui nous permet de justifier la définition suivante :

—[Propriété 2 (définition de I'intégrale d’une fonction continue par morceaux).}

Soit f : [a,b] — R qu’on suppose continue par morceaux sur [a,b]. Alors, on a :

sup  {I(¢), < fy= _inf {I(®), v >
¢65([a1,)b],R){ @) ¢ < f} weE([a,b],R){ ®), ¥ > f}
b
Cette valeur commune est appelée intégrale de f sur [a,b] et est notée / f(t) dt.

» On montre d’abord une premiére inégalité : la borne supérieure du premier ensemble est inférieure a la borne inférieure du
second ensemble. Puis, s’il n’y a pas égalité, on introduit des suites de fonctions en escalier qui convergent de part et d’autres
vers f avant d’obtenir une contradiction.

En considérant les fonctions en escalier situées de part et d’autre de f, on a immédiatement que :
V(¢,9) € E([a,b],R)?, ¢ < f < b= 1(¢) < I(¥)

et ainsi, d’aprés les ariomes de R, les bornes sup et inf données existent et elles vérifient :

sup  {I(¢), p < f} < inf  {I(y), v > f}
peE([a,b],R) pe&([ab]R) i

Reste a montrer qu’il y a égalité. Pour cela, on note M = sup(ﬁg(»a:b]_ﬁ){](Qﬁ). o< f},m= illfucf([um]ﬁ){]<l~’)~ > f}, et
on raisonne par l'absurde en supposant que M < m avec e =m — M > 0.

Or le théoréme d’approximation uniforme nous donne l'existence de deux suites de fonctions en escalier (¢n) et (1) telles
que :

{on < f <t

16 = Flloe — 0, [l — flleo — 0

Ainsi, avec € = ¢/3(b—a) > 0, AN € N,Vn > N, |l¢n — flloo < € et |
'l‘i“‘/‘n - On‘

tYn — flloo < €, et donc par inégalité triangulaire,

s < 2€¢'. En particulier, il vient pour tout n > N :

€ < I(Pn) —I(pn) = I(thn — ¢n) < I(2€') =2¢/3 = 1<2/3

CONTRADICTION, et ainsi, M = m. Ce qui nous permet de définir lintégrale d’une telle fonction f continue par morceaux
sur [a, b].

—[Propriété 3 (de l'intégrale d’une fonction continue par morceaux sur un segment).}

Soient f, g : [a,b] — R qu’on suppose continue par morceaux sur [a, b]. On peut alors montrer par caractérisation séquentielle
des bornes sup et inf que :

b b b
. Pttty i Facki = W @R / M(E) + g(t) dt = A / £(t) dt + / o(t) dt
b b
2. lintégrale est croissante : f < g = / f(t) dt < / g(t) dt
b b
3. l'intégrale vérifie I'inégalité triangulaire : |/ f@t) dt] < / |f(t)] dt

c b b
4. Dintégrale vérifie la relation de Chasles : Ve € [a, b], / f(t) de +/ f(t) dt = / f@t) dt
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Remarque Cette derniére propriété nous permet de retrouver les deux conventions :

/aaf(t)dt:O ot /baf(t)dt:—/abf(t)dt

Définition Soit f une fonction définie sur un segment [a, b] & valeurs complexes. On dit encore que f est continue par morceaux|
sur [a,b] §'il existe des fonctions (Re(f), Im(f)) € CM([a,b],R)? telles que :

Vo € [a,b], f(z) = Re(f)(x) +ilm(f)(x)

Dans ce cas, on définit I'intégrale de f sur [a, b] par :

b b b
/f(t) dt:/ Re(f)(t) dt+i/ Im(f)(t) dt

de sorte que : Re(/ f(t) dt) = / Re(f)(t) dt et Im(/ ft) dt) = / Im(f)(¢t) dt.

Remarque Cela nous permet en outre de prolonger les propriétés de l'intégrale aux fonctions a valeurs complexes et ainsi,
on aura encore :

b b b
1. lintégrale est linéaire : A\ € (C,/ Af(t) +g(t) dt = )\/ f(t) dt +/ g(t) dt
b b
2. Dintégrale vérifie 'inégalité triangulaire : |/ F@) dt] < / |f(t)| dt
c b b
3. lintégrale vérifie la relation de Chasles : Ve € [a, b], / f(t) dt +/ f(t) dt = / f(t) dt

1.2 Calcul intégral pour les fonctions continues

{Théoréme 4 (existence et unicité d’une primitive qui s’annule en un point).]

Soit f une fonction continue sur un intervalle I & valeurs complexes et notons a € I. Alors, la fonction :
xT
F:zelr— / f(f) dt désigne 'unique primitive de f qui s’annule en a.
a

Elle est parfois appelée intégrale dépendant de sa borne supérieure.

» On procéde par existence et unicité. Pour ’existence, on revient au taux d’accroisement et on montre que l’intégrale définie
par sa borne supérieure est bien dérivable en un point xo € I.

{Théoréme 5 (fondamental de l’analyse).}

Soit f une fonction continue sur [a,b] & valeurs complexes et notons F une primitive quelconque de f sur [a,b]. Alors,

b
/ (1) dt = F(b) — F(a)

» [l suffit de rappeler que toutes les primitives sont égales a une constante pres et on utilise le résultat précédent.
En effet, il existe alors C € K telle que :
Vx € [a,b], F(z) = / fit)ydt+C

On en déduit : F(b) — F(a) = (/(f' f@)dt+C)—(0+4+C)= [‘j' f(@t) dt.

Corollaire 6 (inégalité des accroissements finis pour une fonction de classe Cl).]

Soit f une fonction qu’on suppose de classe C' sur [a,b] & valeurs complexes. On a I'inégalité :

1£(®) = F(@)] < ' loclb —al

www.cpgemp-troyes.fr 4


http://www.cpgemp-troyes.fr/

Chapitre 4
MP - Lycée Chrestien de Troyes Intégrales sur un intervalle quelconque

» C’est immédiat : cela découle du théoréme fondamental de l’analyse appliqué a la fonction dérivée.

En effet,
b b b
f®) = fl@)l=| [ f(t)adt] < / |f'()] at < / 1 llee dt = [|f'lloc]b — al

Ja

{Propriété 7 (intégrale nulle d’une fonction continue et de signe constant).]

Soit f une fonction continue sur [a,b]. Si de plus, f est & valeurs réelles et de signe constant, alors :

/bf(t)dt:O@f:Osur [a, b]

» Le sens réciproque est trivial. Pour le sens direct, on invoque encore l'unique primitive de f qui s’annule en a.

En effet, si par exemple, f > 0, alors F' : x — / f(t) dt est croissante et vérifie pour tout x € [a,b] :

T b
og/ Ft) dtg/ f(t)dt =0

Ainsi, la fonction F est constante sur [a,b] et sa dérivée F' = f est nulle.

Remarque On fera attention, car la continuité est essentielle ici et il ne faut pas oublier de la mentionner. En effet, dans le
cas contraire, on peut avoir une aire algébrique nulle sans que la fonction soit nulle :

| e 2

{Propriété 8 (formule d’intégration par parties).]

Soient f, g deux fonctions qu’on suppose de classe C* sur [a, b] & valeurs complexes. On a :

/ﬂm@ﬁﬂmMW—/ﬂmmﬁ

» C’est immédiat, puisqu’on intégre bétement la formule de dérivation du produit (fg) = f'g+ fg'.

Exemple 1 On considére f une fonction de classe C! sur [a,b] & valeurs réelles, et on définit pour tout A € R,

I0) = / " F)sin(h) di

1. Montrer que I(A) — 0.

A—+oo

2. On suppose désormais que f est seulement continue sur le segment [a, b].
b
(a) Soit ¢ € &([a,b],R). Etablir que / ¢(t) sin(At) dt Ny 0.
a — 100
(b) Justifier alors qu’on a encore :

/ " ) sinM) &t — 0

A—+oco

Bien entendu, on pourra retenir ce lemme de Riemann-Lebesgue et ainsi, pour toute fonction f continue sur [a, ] :

A— 400 A— 400 A—+4o00

lim /bf(t) sin(At) dt = lim /b f(t) cos(At) dt = lim /b f@)e™ dt =0
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{Propriété 9 (formule de changement de Variable).]

Soit f une fonction continue sur [a,b] & valeurs complexes et considérons ¢ de classe C* telle que ¢(a) = a, ¢p(8) =
En posant le chagement de variable ¢t = ¢(u), on a :

/ " fy e = / " 0 6(u). (1)

» Dans l’expression f o ¢(u).¢'(u), on reconnait encore une formule de dérivées composées.

En effet, on peut alors invoquer le théoreme fondamental de ’analyse pour retrouver :

b
/ fod(u).¢ (u) du=[Fo¢(u)]i = F(b) — Fla) = / f(t) dt

Remarques

1. 1l s’agit d’un résultat tres pratique, mais les hypotheses associées peuvent étre plus ou moins fortes. On sera donc
vigilant plus tard avec les intégrales généralisées, car on devra imposer des hypotheses plus fortes sur I’application ¢.

2. De plus, on rappelle que cette formule nous permet de transformer des intégrales données sur un domaine symétrique,
lorsque les fonctions sont paires ou impaires :

f paire = f dtf2/f

f impaire :>/ f)ydt=0

—a
On aborde encore un exemple classique et on pourra, a l'oral, citer ’équivalent obtenu et expliquer comment le retrouver.

Exemple 2 On définit les intégrales de Wallis pour tout n € N par :

Iy = /5 cos” (t) dt et J, = /E sin” (t) dt
0 0
1. Justifier que pour tout n € N, I,, = J,,, puis établir que pour tout n € N, n > 2, on a la relation : nl, = (n — 1)I,—2 (x).
2. Etablir que la suite (nInflfn)nzl est constante et préciser la valeur de cette constante.
3. Déterminer un équivalent de la suite I, au voisinage de I'infini et préciser la nature de la suite (I5,).

4. Soit n € N. Retrouver alors la forme explicite de Iz, et I2,+1 en fonction de n.

1.3 Théoréme de convergence des sommes de Riemann

{Théor‘eme 10 (de convergence des sommes de Riemann).}

Soit f une fonction définie sur [a, ] & valeurs dans C et considérons (z;) la subdivision & pas constant (b — a)/n. On appelle
somme de Riemann associée toute somme de la forme :

Sa(f) = (@ — )7 @) = 3 (P76

ou pour tout i € [0,n — 1], 0; € [xs, Tit1].
1. Si f est de classe C* sur [a, b], alors Sy, ( + / f @)
n—-+oo

2. De la méme fagon, si f est seulement continue sur [a, b], alors on a encore :

b
N | 10

g iy b ; N .y ) .
» Dans les deuz cas, on étudie la différence |Sn(f) — fa f| et il faudra contréler la différence entre deux images que ce soit
a Uaide de l'inégalité des accroissements finis ou en invoquant 'uniforme continuité.
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Remarques

1. Cela nous donne un moyen trés pratique d’approcher 'intégrale d’une fonction continue sur un segment. D’ailleurs,
c’est ce théoreme qui justifie la convergence des méthodes numeériques d’intégration classiques : méthode des
rectangles, du point milieu, des trapezes, de Simpson...

2. Il faut essayer de connaitre ce résultat sous les deux hypotheses de régularité, et on vous demandera trés souvent de
refaire la preuve au tableau dans le cas C.

Concretement, il faut apprendre a reconnaitre des sommes d’aires algébriques, et on retiendra deux cas particuliers pour une
fonction f continue sur [0, 1] :

L =SR2 f(k/n) —>/ f(t) dt : c’est la méthode des rectangles gauches
n

L = >, f(k/n) — / f(t) dt : c’est la méthode des rectangles droites
n

Exemple 3 Déterminer les limites des suites (un) et (vn) définies pour tout n € N* par :

n+k 1 2 1/n
un—zn2+k2 etvnzﬁ H (k+mn))

k=1 k=1

2 Intégrales généralisées

Dans cette seconde partie, on cherche a généraliser la notion d’intégrale qui a été définie pour des fonctions continues
par morceaux sur un segment. Ainsi, pour des intervalles quelconques de la forme [a,b[, ]a,b] ou encore ]a,b[, on parle
généralement d’intégrales impropres ou d’intégrales généralisées.

2.1 Premieéres définitions et exemples de référence

Définition Soit f une fonction définie sur un intervalle I & valeurs réelles ou complexes. On dit encore que f est continue par
morceaux sur [ si sa restriction a tout segment inclus dans I est continue par morceaux.

On se place alors dans le cas ol f est continue par morceaux sur I = [a,b] avec a < b, b € RU {400}, et on introduit
F l'intégrale dépendant de sa borne supérieure définie par :

F:mE[a,b[l—)/If(t)dt

b
e On dit que l'intégrale généralisée (ou impropre) / f(t) dt est convergente si F(z) admet une limite finie quand|

r — b, et dans ce cas, on note :

z—b

f(t) dt ou bien /bf(t) dt = hmF = hm/ f@)

[a,b]

e Sinon, on dit que I'intégrale est divergente.

Remarques

1. On peut aussi adapter la définition précédente & une fonction continue par morceaux sur ]a,b] ou sur un intervalle
ouvert |a,b]. Autrement dit :

b b
e si f € CM(a,b],K) avec —oco < a < b < 400, l'intégrale généralisée / f(t) dt est convergente si / f(t) dt

admet une limite finie quand = — a et dans ce cas :

b
F(1) dt ou bien / (1) dt = lim f() dt

]a,b] rT—a
Y
e si f € CM(la,b,K) avec —oo < a < b < 400, 'intégrale généralisée / f(t) dt est convergente si / F@t) dt

x
admet une limite finie quand  — a et y — b et dans ce cas pour tout ¢ €]a, b :

b c b Y
£(0) dtoubien/ £(1) dt:/ (1) dt+/ (1) dt = lim f( dt+iig}7/ F) di

Ja,b] r—a

2. Ces définitions nous donnent un moyen naturel de calculer une intégrale généralisée : on se ramene d’abord & cran
fini pour calculer l'intégrale sur un segment de la forme [a, 2], [z, b] ou [z, y], puis on passe & la limite.
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3. Lorsque a et b sont réels, on sera tres vigilant car la notation fab f(t) dt peut désigner l'intégrale d’une fonction continue
par morceaux sur un segment, mais aussi une intégrale généralisée que ce soit sur |a, b], [a, b[ ou encore ]a, b[. On veillera
donc a identifier rapidement les singularités et on retiendra que ’aire sous un point étant négligeable, on a quand
celles-ci ont un sens :

fOdi= | fwa=| fwya=[ g a

[a,b] la,b] [a,b] la,b]

Propriété 11 (exponentielle d’exposant réel).]

+o0o
Soit a € R. Alors, I'intégrale / e®" dt converge si et seulement si o < 0.
0

» On introduit f : t — e®* continue sur [0, +o0o|, puis on se raméne a cran fini avant de discuter de l’existence de la limite.

{Propriété 12 (intégrales de Riemann de parametre réel).}

Soit « € R.

—+o0
1. L’intégrale / e dt converge si et seulement si o > 1.
1

1
1
2. L’intégrale / P dt converge si et seulement si o < 1.
0

» Dans les deuz cas, on introduit la fonction f :t — 1/t* et on se rameéne a cran fini pour discuter de l’ezistence de la
limite.

{Corollaire 13 (intégrales de Riemann translatées en un point).}

Soit a € R et considérons a, b deux réels tels que a < b. On peut adapter la preuve précédente et montrer que :

b
1
1. L’intégrale / W dt converge si et seulement si a < 1.

b
2. L’intégrale / — di converge si et seulement si o < 1.

.
a (t_a)

» Par exemple, pour le second point, on introduit f :t —> 1/(t —a)® et on se raméne & cran fini.

En effet, la fonction f est ici continue sur ]a,b]. Considérons alors x €la,b], il vient :

o dt = (t —a) ! (b—a) Tt (z—a) oM
(t —a)~ 1 - b — —
) @ # [ J2 —a+1 —a+1

/‘b 1 a=1 :[In(t—a)) =In0b-a) —In(z —a) — +o0

—a+1

or quand T — a, cette derniére expression posséde une limite finie si et seulement si —a+1>0< a < 1. Ce qui nous livre
la condition attendue.

Propriété 14 (cas particulier des fonctions prolongeables par continuité sur un intervalle borné).]

Soit f une fonction continue sur [a,b] (ou ]a,b]), avec a,b deux réels tels que a < b. Si de plus f est prolongeable par

b
continuité sur [a, b], alors / f(t) dt est convergente et on dit que l'intégrale est faussement impropre.

» On note f le prolongement par continuité de f sur le segment [a,b] et on introduit F : x € [a,b] — Ir f(t) dt, lunique
primitive de f qui s’annule en a, avant de se ramener a cran fini.

En particulier, F' est continue en b et ainsi, pour tout x € [a,b],

/ f) dt = / f(t) dt = F(z) — F(b) € R et par conséquent, lintégrale de f sur [a,b| est convergente.

z—b
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Ce dernier résultat est tres efficace, car il nous permet de traiter rapidement certaines singularités et cela, sans méme revenir au
calcul d’une primitive.

Exemple 4 Les intégrales suivantes sont-elles convergentes ?

1 +oo i1 =
/ln(t) dt,/ cos(t) dt,/ sin®) 4
0 0 0 13

2.2 Cas particulier des fonctions a valeurs positives

{Propriété 15 (caractérisation de la convergence par majoration).]

x
Soit f une fonction continue par morceaux sur [a,b[ & valeurs dans Ry. Alors, la fonction F : = € [a, b[—> / F(t) dt est
a

croissante et on a :

b x
/ f(t) dt converge < F est majorée : IM € R, Vx € [a, b], / fit)ydt< M

b x b
et dans ce cas, / f(t) dt = sup / f(t) dt. Sinon, l'intégrale diverge et on peut noter : / f(t) dt = +o0.
a [Ja a

z€(a,b

» La fonction f étant a valeurs dans Ry, on montre que F est croissante et on conclut a l'aide du théoréme de la limite
monotone.

En effet, si (z,y) € |a, 1){2, avec x <y, alors d’aprés la relation de Chasles :

Yy "z "y "y
F(y) = / f(t) dt = / f@t) dt+ / ft) dt = F(x) + / ft) dt = F(z) < F(y)
Ja Ja J T J
>0
Ainsi, F est croissante sur [a,b] : d’aprés le théoréme de la limite monotone, elle admet une limite finie en b si et seulement
st elle est majorée. Sinon, elle tend vers +o0.

Remarques

1. On peut trouver une caractérisation identique pour une fonction f € CM(Ja,b],R+) et ceci en montrant d’abord que
la fonction F : z €la,b] — ff f(t) dt est décroissante sur |a,b]. En effet, d’apres le théoreme de la limite monotone,
une telle fonction F' posséde une limite finie en a si et seulement si F' est aussi majorée !

2. Dans la suite du chapitre, on décide donc de travailler sur un intervalle de la forme [a, b] et on adaptera si besoin les
différentes propriétés obtenues.

{Corollaire 16 (comparaison pour les fonctions a valeurs positives).]

Soient f et g deux fonctions continues par morceaux sur [a, b[ & valeurs dans Ry telles que f(x) < g(z).

b b
1. Si / g(t) dt est convergente, alors / f(t) dt est convergente.
a a

b b
2. Si / f(t) dt est divergente, alors / g(t) dt est divergente.

» On se raméne & cran fini et on compare les intégrales sur [a, x].

Par croissance de lintégrale, on peut écrire pour tout x € [a,b] :

/ f(t)dt < / g(t) dt

Si lintégrale [”’7 g(t) dt converge, alors pour tout x € [a,b], j“' f@) dt < jul g(t) dt < j“b g(t) dt € R et le résultat précédent
nous permet de conclure.

De la méme fagon, pour le second point, en tant que fonctions a valeurs positives, la fonction F : x —— /n' f(t) dt tend
nécessairement vers +0o et par comparaison, [ g(t) dt tend aussi vers +oc.
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Remarque En fait, on peut méme supposer que l'inégalité n’est vraie qu’au voisinage de b, de la forme [c, b[.
Dans ce cas, on obtient des résultats analogues pour les intégrales fcb f(t) dt et fcb g(t) dt, mais la nature des intégrales sur
[a, b] ne dépendent, par la relation de Chasles, que de la nature des intégrales sur [c, b[ puisque :

b c b
/{Lf(t)dt—/aefR(t)dtJr/c f) dt

Ainsi, on récupere quand méme les mémes conclusions :

1. si f; g(t) dt est convergente, alors fcb g(t) dt converge = fcb f(t) dt converge = ff f(t) dt converge.

2. si fab f(t) dt est divergente, alors la série fcb f(t) dt diverge = fcb g(t) dt diverge = fab g(t) dt diverge.

{Propriété 17 (comparaison pour les fonctions & valeurs positives).]

Soient f et g deux fonctions continues par morceaux sur [a,b[ & valeurs dans R telles que f(z) = o (g(z)).

b b
1. Si / g(t) dt est convergente, alors / f(t) dt est convergente et on peut comparer les restes partiels :
a a

[ 1= o ([ o) v

b b
2. Si / f(t) dt est divergente, alors / g(t) dt est divergente et on peut comparer les intégrales partielles :

[ swa= o ([ s ay

Et de la méme facon, si f(z) = Ob(g(x)), on peut aussi comparer les restes ou intégrales partielles des deux fonctions.
xr—r

» On traduit simplement la relation de comparaison et on invoque la propriété précédente. Pour la comparaison sur les restes

ou intégrales partielles, c’est plus fin car on reviendra a la définition de la limite avant d’intégrer les inégalités au voisinage
de b.

Ces résultats sont tres utiles, car encore une fois, ils nous permettent de conclure par comparaison a nos intégrales de référence.
Exemple 5 On définit pour tout n € N, la fonction f, : t € Ry — t"e™ " dt.
—+o0
1. Montrer que / fn(t) dt est convergente.
0

2. Etablir alors que pour tout n € N,

“+oo
/ t"e "t dt =n!
0

{Théoréme 18 (de sommation des équivalents pour les fonctions & valeurs positives).]

Soient f et g deux fonctions continues par morceaux sur [a, b[ & valeurs dans R telles que f(z)
b b
/ f(t) dt et / g(t) dt sont de méme nature et on a encore :

~ g(z). Alors, les intégrales
z—b

1. si les deux intégrales convergent, on peut comparer les restes partiels :

/:f(t) dt ~ /zbg(t) dt

2. si les deux intégrales divergent, on peut comparer les intégrales partielles :

/:f(t) dt ~ /:g(t) dt

» On traduit encore la relation de comparaison et on invoque la propriété sur les inégalités entre termes généraux. Pour
la comparaison sur les restes ou intégrales partielles, il suffit d’adapter la preuve précédente et sommer l’encadrement obtenu.
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Exemple 6 Soit a € R. En discutant suivant les valeurs de «, préciser la nature de I'intégrale :

+oo _—t
e
/ o @
0 t
Remarque On peut observer ici que de nombreux résultats sont analogues au chapitre des séries numériques. Pourtant,
si les preuves des résultats sur les séries ont pu nous inspirer, il y a quelques différences et notamment : si une intégrale

généralisée est convergente, alors le terme général ne tend pas forcément vers 0.
Par exemple,

1
/ —In(¢) dt = 1 mais on a en 0, —In(t) — 400
0

2.3 Cas plus général des fonctions a valeurs quelconques

Définition Soit f une fonction continue par morceaux sur [a,b[ & valeurs réelles ou complexes. On dit que f est intégrable sur|
[a, b] si Pintégrale fab f(t) dt converge absolument, c’est & dire que :

b
/ |f(t)] dt converge

Remarque Dans le cas particulier ou f désigne une fonction a valeurs positives, alors on a évidemment :

b b
f est intégrable sur [a, b] < / |f(t)] dt = / f(t) dt converge

Ces deux notions sont donc équivalentes et ainsi, pour les fonctions positives, on pourra dire au choix, que 'intégrale converge
ou bien que la fonction est intégrable. Mais plus généralement, cela nous donnera une condition suffisante de convergence :

{Théoréme 19 (condition suffisante de convergence).]

Soit f une fonction continue par morceaux sur [a,b[ & valeurs dans K.

1. Pour K =R, si 171ntegrale/ |f(t)] dt converge, alors/ f(t) dt converge et on a :

/f chf/f+ dt*/f

2. Pour K = C, si 'intégrale / |f(t)| dt converge, alors / f(t) dt converge et on a :

/f ) dt = /Re dt—i—z/ablm(f)(t)dt

Autrement dit, pour des fonctions & valeurs réelles ou complexes, la convergence absolue entraine la convergence.

» On traite d’abord le cas réel pour lequel on introduit les fonctions fT et f~ telle que f = f* — f~, puis on montre par
comparaison que ce sont des fonctions intégrables avant de se ramener & cran fini. On procéde alors de la méme facon dans
C en utilisant cette fois les fonctions Re(f) et Im(f).

Remarques

1. En passant au module, on est ainsi ramené aux fonctions & valeurs positives pour lesquelles nous avons de nombreux
théoremes de comparaison. Mais il s’agit la encore que d’une condition suffisante et comme pour les séries numériques,
la réciproque est fausse : il existe des fonctions dont 'intégrale généralisée converge, mais pour lesquelles 'intégrale ne
converge pas absolument.

On pourra évoquer le cas de I'intégrale de Dirichlet, semi-convergente puisqu’elle vérifie :

+oo s +oo
/ sin(t) dt = I, mais / |sm( )| dt =
0 t 2 0

2. De plus, on fera attention : la convergence absolue nous donne un moyen de justifier I’existence d’une intégrale
généralisée, mais le calcul de I'intégrale devra se faire de toute fagon sans module. On pourra alors :

e se ramener rigoureusement a cran fini pour mener le calcul avant de passer a la limite.

e dans certains exercices d’oraux, et si I'existence a déja été prouvée, travailler sur les intervalles donnés en ayant
conscience qu’il y a une limite cachée.
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Exemple 7 Pour tout n € N*, on pose f,(z) = xsin(x)e"*.

1. Soit n € N*, montrer que la fonction f, est intégrable sur [0, +oo].

+oo
2. On pose I, :/ fn(z)dz
0

(a) Calculer I,,.

(b) Préciser alors la nature de la série Y I,,.

{Propriété 20 (de l'intégrale pour les fonctions intégrables).]

Soient f et g deux fonctions continues par morceaux sur [a, b et qu’on suppose intégrables sur [a, b[. Alors,

b b b
1. Dintégrale est linéaire : VA € K, \f + g est intégrable et on a encore : / M)+ g(t) dt = )\/ f(t) dt +/ g(t) dt
b b
2. lintégrale est croissante : si f, g sont & valeurs réelles avec f < g, alors / ft)dt < / g(t) dt
b b
3. lintégrale vérifie I'inégalité triangulaire : |/ ft) dt] < / |f(t)] dt

@ b b
4. lintégrale vérifie la relation de Chasles : Vc € [a, b, / ft) dt +/ f@t) dt = / ft)dt

» C’est immédiat : & chaque fois, Uintégrabilité nous donne lexistence de l'intégrale sur [a, b, puis on se raméne & cran fini.

Par exemple, pour le premier point, le seul a étre un peu délicat, il vient par inégalité triangulaire :
IAf+ gl < [Af]+ gl

or le membre de droite désigne une fonction intégrable puisque f, g étant intégrables :

s s T b b
[ 1o =1+ [l =1+ [ el e

Ainsi, |\||f|+|g| est intégrable et donc, par comparaison pour les fonctions a valeurs positives : /“ INf+g| converge de sorte
que Af + g est bien intégrable.
Par suite, on se raméne & cran fini. On a pour tout x € [a,b[ et par linéarité de l'intégrale sur un segment :

/a /\/+(1*/\/ /+/ r1—>/\/j+/

et on retrouve la linéarité attendue.

{Corollaire 21 (espace L' et forme linéaire).]

En notant L'([a,b[,K) I’ensemble des fonctions continues et intégrables sur [a,b[, on en déduit que L'([a,b[,K) est un
sous-espace vectoriel de C°([a, b[,K), appelé espace L' et application :

6: 1 €L ((a bl K) — [ 7(0)de

désigne une forme linéaire.

Remarques

1. On peut méme introduire 'application ||.||; définie par :

b
||-H1:f6L1([a7b[,K)H/ £(8)] dt

et on peut vérifier qu’il s’agit d’une norme sur 'espace L' de sorte qu’il s’agit en fait d’un espace vectoriel normé.

2. Plus généralement, pour tout p > 1, on note L([a,b],K) 'ensemble des fonctions continues sur [a,b] telles que
f; |f()|? dt converge, et en posant :

Iy < £ € L7([a, bl K) s ( / PP dt)/

on obtient les espaces L?, des espaces vectoriels normés de référence.
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3 Prolongement des propriétés et calcul intégral

{Propriété 22 (intégrale nulle d’une fonction continue et de signe constant).]

Soit f une fonction continue sur [a,b[. Si de plus, f est & valeurs réelles et de signe constant, alors :

/bf(t)dt=O<:>f:Osur [a, b]

» Le sens réciproque est trivial. Pour le sens direct, on montre d’abord que pour tout x € [a,b], faz f(t) dt est nulle et on
invoque la propriété obtenue sur un segment.

{Propriété 23 (formule d’intégration par parties pour les intégrales généralisées).}

Soient f, g deux fonctions qu’on suppose de classe C* sur [a,b[ & valeurs réelles ou complexes. Si de plus lim, s, f(z)g(z)

est finie, alors les intégrales ff f(Wg(t) dt et f: f(®)g'(t) dt sont de méme nature et si les deux intégrales convergent, on a
encore :

| £ @9® dt = lim 1)9(6) - F@)g(@) ~ [ 10 @) dt = 90" - [ s/ 1)

» C’est immédiat : on se raméne a cran fini et on applique la formule d’intégration par parties sur [a,x] avant de passer a
la limite.

Remarque Encore une fois, on pourra donc procéder de deux fagons :

e 3 cran fini pour mener le calcul sur un segment avant de passer a la limite.

e si l'existence de la premiere intégrale a été prouvée, on pourra aussi travailler directement sur l'intervalle donné a
condition de vérifier que le crochet renvoie bien une valeur finie... c’est ce qui justifiera I'utilisation de la formule
d’intégration par parties.

+oo 1
Exemple 8 On définit pour tout n € N*, I,, = / v dt
o (@4

1. Justifier que ces intégrales sont bien convergentes.

2. Soit n € N*. Déterminer une relation de récurrence entre I, et I41.

3. En déduire I’expression de I,, pour tout n € N*.

{Propriété 24 (formule de changement de variable pour les intégrales généralisées).]

Soit f une fonction continue sur ]a, b[ & valeurs réelles ou complexes et considérons ¢ :]a, S[—]a, b qu’on suppose de classe
C? et strictement croissante sur ]a, 3[. Alors, les intégrales f; F(t) dt et faﬂ foo(u).¢'(u) du sont de méme nature, et si les
deux intégrales convergent, on a encore :

/ab £t) dt = /j f 0 6(w).¢ (w) du

et ainsi, on retiendra que le changement ¢ = ¢(u) nous donne :

ft) dt = fod(u).d'(u) du

Ja,b[ Jo,8(

» Dans lezpression f o ¢(u).¢'(u), on reconnait encore une formule de dérivées composées, mais on veillera a se ramener a
cran fini a Vaide de ¢ et ¢~ 1.

En effet,

Ty e e /“b f(t) dt converge, alors on fize x €|a, B] afin de travailler sur les intégrales ,,) foo(u).d' (u) du et
[ fop(u).¢'(u) du.

Par exemple, pour tout y € |x, B[, on a par changement de variable t = p(u) :
I Yy g )

Yy " (y) b
/ fodu).¢ (u) du = / ft) dt — ft)dt eR

y—p3

¢ (x) Jop(x)
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Ce qui assure l’ezistence de la premiére intégrale sur [x, B[ et donne sa valeur.
De méme, on montre 'existence et la valeur de la seconde intégrale sur o, x| et ainsi :

z ¢(x)
/ foo(u).¢'(u) du = / ft) dt
Finalement, j: foo(u).¢' (u) du converge et on a bien :
b

/lﬁ fop(u).d (u) du = /i fop(u).d (v) du+ /1: fop(u).¢ (u) du = / f(t) dt

x

. B “ . . . . I ,
e Si on suppose que jn fod(u).¢'(u) du converge, alors on procéde de la méme facon en découpant I’intégrale d’une part,
et en posant le changement de variable v = ¢~ (t) d’autre part, ot ¢~ 1 vérifie les mémes propriétés que ¢.

Remarques

1. Comme les intégrales ne changent pas quand on ajoute une borne, ce résultat est encore valable pour des intégrales
définies sur les intervalles [a, b] ou ]a, b].

2. Dans le cas particulier ot ¢ est C! et strictement décroissante, alors on montre avec la méme preuve que :

/ " rt) di = / " o o(w)-6'(u) du

c’est & dire qu’on pourra toujours appliquer le changement de variable ¢t = ¢(u) dés lors que ¢ est de classe C' et
strictement monotone sur |a, 8[. Attention, dans le cadre du programme et pour des ”changements de variable usuels”,
on pourra parfois appliquer ces résultats ”sans justification”.

Exemple 9 Justifier que I'intégrale suivante est convergente, puis déterminer sa valeur :

—+oo
I:/ Int) g
o 1412
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