Chapitre 3

Séries numériques et vectorielles

A linstar du chapitre précédent, on présente ici les séries dans le cadre plus général
des espaces vectoriels normés, puis on aborde le cas particulier des séries numériques
pour lesquelles on aura de mombeuxr outils de comparaison pour en déterminer la

nature.
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Pour aller plus loin

Encore une fois, on revient sur les théorémes de premiere année en cherchant & aller plus loin, puisqu’au dela de la nature
d’une série, on cherche souvent a en préciser la fagon dont elle converge ou diverge : c¢’est méme l'intérét de tous ces théoremes
de comparaison. Par contre, on prétera une attention particuliere aux séries absolument convergentes car elles fournissent
deux théorémes essentiels : le théoréeme de Fubini pour manipuler les sommes doubles et le résultat relatif au produit de
Cauchy de deux séries absolument convergentes.
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Les espaces vectoriels considérés ici sont réels ou complexes et K désignera le corps R ou C.

1 Séries d’éléments d’un espace vectoriel normé

Définition Soit (E,||.]|) un espace vectoriel normé et considérons (u,) € EN. On appelle série de terme général u, la suite
des sommes partielles (S,) définie par :

YneN, S, = Zuk
k=0

On note cette série Y u, ou Y, < Un.

Définition Soit (E,||.||) un espace vectoriel normé et considérons (u,) € E™. On dit que la série 3" u, converge si la suite (Sy,)
converge dans E et dans ce cas, on appelle encore :

e somme de la série la limite dans E de la suite (S,) et celle-ci sera encore notée : S = Z:;’E U.

e suite des restes partiels la suite (R,,) de E" définie par :

+oo
VneN, Ry =S5—S.= Y w

k=n+1

Sinon, si elle ne converge pas, on dit que la série Y u, est divergente.

Remarques

1. La relation entre suites et séries est tres étroite, puisqu’étudier une série revient finalement & étudier la suite des sommes
partielles (Sy) associées : on retrouvera donc les résultats précédents sur les suites d’un espace vectoriel normé.

Réciproquement, si on considére une suite (un), alors on peut écrire :

n n n
Vnzl,unzg Uk_g Uk71:U0+E Uk — Uk—1
k=0 k=1 k=1

—— N——
Sn Sn—1

et ainsi, la suite (un) est de méme nature que la série télescopique Y un, —un—1. C’est méme un résultat fort pratique
qu’il faudra retenir.

2. Le reste partiel tend évidemment vers 0, et il nous permet de mesurer l'erreur entre la somme S = Zzzof) ur et son
approximation S,.

{Propriété 1 (linéarité de la somme).]

Soit (E, ||.||) un espace vectoriel normé et considérons (u»), (v,) € EN. Si les séries 3 un, et 3 v, convergent, alors pour tout
A €K, > (Aun + v,) converge et on a :

+oo +oo +oo
Z)\uk + v, = )\Zuk +ka
k=0 k=0 k=0

» C’est immédiat : on revient & la somme partielle et on passe a la limite par opérations sur les limites dans un espace
vectoriel normé.

En effet, pour tout n € N,

i: Aup + v = /\i Ui + i Ve — /\i Uk + i Vi
k=0 k=0

k=0 k=0 k=0

Propriété 2 (condition nécessaire de convergence).]

Soit (E, ||.||) un espace vectoriel normé et considérons (u,) € E". Si la série 3 u,, converge, alors u, — 0.
Dans le cas contraire, la série diverge et on dit méme qu’elle diverge grossiérement.

» C’est immédiat, il suffit d’écrire u, en fonction de (Sy).

En effet, pour tout n > 1, up, = S, — Sp—1 — S — 5 =0.
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Remarque On fera tres attention : il s’agit seulement d’'une condition nécessaire, et il faudra étre capable de justifier
que le sens réciproque est faux. On pourra citer ’exemple fondamental de la série harmonique :

Exemple 1 On se place dans (R, |.|) et on définit la série harmonique » 1 par :
n
1
Vn e N*, H, = =

1. (a) Etablir rapidement que pour tout n € N*, In(n) < H, < In(n) + 1.

(b) En déduire un équivalent de H,, et préciser la nature de la série Y 1/n.
2. On pose pour tout n € N*, u,, = H, — In(n). Montrer que (u,) est convergente et en notant ~ sa limite, justifier que :

H,=In(n)+v+ o (1)

n—-+oo

La constante v ~ 0,577 est appelée constante d’Euler et cette égalité nous donne le développement asymptotique de la
série harmonique en o(1).

2 Séries numériques a valeurs dans R ou C

Comme au premier chapitre, (R,]|.]) et (C,|.|) étant des espaces vectoriels normés, les résultats précédents sont vraies.
D’ailleurs, on apprendra a reconnaitre quelques exemples de référence.

2.1 Exemples de référence

{Propriété 3 (nature des séries géométriques).]

Soit g € C. On appelle série géométrique toute série de la forme ) ¢", et on a :

an converge < |g| <1

De plus, on a dans ce cas :

+oo 1 oLl
S:qu: et pour tout n € N, R, = 4
k=0 1_q 1_q

» On écrit la somme partielle et on reconnait la somme des termes consécutifs d’une suite géométrique.

En effet, on a pour tout n € N,
n IlJrl, S/(]ZI

*SVH - Z (]k - 1— (]”71

=0 [ q , stnon

u+l)

et ainsi, pour q = 1, la série diverge immédiatement. Sinon, la suite (Sn) converge si et seulement si (q converge, c’est

a dire si et seulement si |q| < 1. Dans ce cas, on retrouve par passage a la limite, S, puis on en déduit R, .

{Propriété 4 (nature des séries exponentielles).}

n
Soit z € C. On appelle série exponentielle toute série de la forme > Z—' et on a :
n!

n +oo kg

z z p
Vz € C, E — converge avec E — =€
n! P k!

» Pour z fixé, on pose f : x € R —— e** de classe C°° sur R. On peut alors appliquer la formule de Taylor avec reste intégral
en 0, avant de l’évaluer en x = 1 pour reconnaitre la somme partielle.
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{Propriété 5 (nature des séries de Riemann de parametre réel).]

1
Soit € R. On appelle série de Riemann toute série de la forme > —etona:
n

1
E — converge & x > 1
nfl)

1

z . . . +

Et dans ce cas, on définit la fonction zeta de Riemann sur ]1,4o0[ par {(z) = > ;> T

» On raisonne par disjonction des cas en écartant rapidement les cas * < 0 et © = 0 pour lesquels la série diverge

grossierement. Le reste tombe alors par comparaison série-intégrale.

Remarque On ne confondra pas avec les sommes de Riemann qui permettent d’approcher l'intégrale d’une fonction
continue sur un segment :

Z f(0k) H/f,oupourtoutke[[Onflﬂ xr <0 < Tpy1
k=0

avec (zy) la subdivision & pas constant sur le segment [a, b].

{Théoréme 6 (de Césaro).]

Soit (un) € CY qu’on suppose convergente de limite £. Alors, la moyenne de Césaro associée est convergente de sorte que:

n Zw
n~>+oo

» On revient & la définition de la limite et on cherche & contréler la différence |(1/n)>"7_, ur — €| en séparant la somme
obtenue.

Remarques
1. La réciproque est fausse : on peut considérer la suite u, = (—1)" dont les sommes partielles associées sont bornées, et

1
donc — 377, ur — 0, mais (un) est divergente.
n

2. En fait, ce résultat peut étre intéressant pour des séries divergentes car il nous livre un équivalent de la somme partielle.
En particulier, si u, —> ¢ # 0, on a :

1
— g ur — £ et par conséquent : S, ~ nt
n

k=1

2.2 Cas particulier des séries a termes positifs

{Propriété 7 (caractérisation de la convergence par majoration).]

Soit (ur,) une suite réelle & termes positifs. Alors, la suite des sommes partielles (S,) est croissante et on a :
(Sn) converge < (Sp) est majorée

et dans ce cas, la série converge vers S = Z;:% ux = sup Sp. Sinon, elle diverge vers +oo.

» C’est immédiat : pour tout n € N, Spt1 — Sp = un+1 > 0. Ainsi, (S,,) est croissante et on retrouve le théoréme de la
limite monotone.

{Corollaire 8 (comparaison pour les séries & termes positifs).]

Soient (ur) et (v,) deux suites réelles & termes positifs telles que pour tout n € N, u, < vy,.

1. Sila série Y vy est convergente, alors la série Y un est convergente.

2. Si la série > un est divergente, alors la série > v, est divergente.
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» [l suffit de sommer les inégalités pour comparer les sommes partielles.

En effet, en sommant celles-ci, on peut écrire :

n

Z Uk S i Vi

k=0 k=0

Si la série Y vn a4 termes positifs converge, alors pour tout n € N, o Uk < Y gur < Z/“:) v € R et le résultat
précédent nous permet de conclure.

De la méme fagon, pour le second point, en tant que série & termes positifs, la suite des sommes partielles (D) _, ur)
diverge nécessairement vers +oo. Par comparatson, la suite (Y, _, vk) diverge aussi vers 4+oo.

Remarque On peut méme supposer que l'inégalité n’est vraie qu’a partir d’un certain rang N € N.
En effet, dans ce cas, on obtient des résultats analogues pour les séries an N Un €t an ~ Un, mais la nature d’une série ne
dépendant pas des premiers termes, on récupere quand méme les mémes conclusions :

1. si )" vn est convergente, alors > - - Un converge = > - Un CONVEIge = ) U, CONVerge.

2. si ) un est divergente, alors la série > -\ un diverge = > vn>n diverge = > v, diverge.

{Propriété 9 (comparaison pour les séries & termes positifs).]

Soient (un,) et (vn) deux suites réelles & termes strictement positifs telles que u, = o(vy).
1. Si la série > v, est convergente, alors la série Y u, est convergente et on a : Z;:ZH up = O(ZZEZH V).
2. Si la série ) un est divergente, alors la série > vn est divergente et on a: >} ur = o(3 p_, vk)-

Et de la méme fagon, si u, = O(v,), on peut aussi comparer les restes ou sommes partielles des deux séries.

» On traduit simplement la relation de comparaison et on invoque la propriété précédente. Pour la comparaison sur les restes
ou sommes partielles, on reviendra a la définition de la limite avant de sommer les inégalités a partir du rang donné.

Ces résultats sont tres utiles, car ils nous permettent souvent de conclure par comparaison a nos séries de référence. Par exemple,
il peut étre malin de trouver a > 1 tel que n“u, — 0. Dans ce cas, pour des séries a termes positifs, il vient :

1 . - .
un = o(—) et par comparaison aux séries de Riemann, E Un CONVErge
nOL

Exemple 2 Les questions sont indépendantes.
1. Déterminer la nature des séries dont on donne ici le terme général :

_ sinl/n)

. arctan(n) _,2 1 1
e ]_ s = s n= —F— 0, n— —————— ]_
v = nsin(l/n), w ol © x T Y 2P In(n) avec f§ >

2. En utilisant le théoreme de sommation des o, retrouver une preuve plus rapide du théoreme de Césaro.

{Théoréme 10 (de sommation des équivalents pour les séries & termes positifs).]

Soient (un) et (v,) deux suites réelles & termes strictement positifs telles que up, ~ v,. Alors, les séries > u, et Y v, sont
de méme nature et on a encore :

1. si les deux séries convergent, on peut comparer les restes partiels : 3, 41 Uk~ Sl 41 Uk

2. si les deux séries divergent, on peut comparer les sommes partielles : Y 7' ur ~ > 1 _ Vk-

» On traduit encore la relation de comparaison et on invoque la propriété sur les inégalités entre termes généraux. Pour la
comparaison sur les restes ou sommes partielles, il suffit d’adapter la preuve précédente et sommer l’encadrement fourni par
la relation.
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{Propriété 11 (technique de comparaison série-intégrale).]

Soit f : Ry — R4 qu’on suppose motonotone. Alors,

1. si f est croissante sur Ry, on a pour tout n € N,
n+1
sy < [ s de< fn+ )

2. si f est décroissante sur R4, on a pour tout n € N,
n+1

fn+1) < / £(8) dt < f(n)

n

et sous réserve d’existence, on peut obtenir un encadrement des restes partiels ou sommes partielles de la série > f(n).

» C’est immédiat, puisque la monotonie de f nous donne des ingéalités sur [k,k + 1] et par croissance de lintégrale, on
retrouve l’encadrement attendu.

Remarque Cette méthode de comparaison série-intégrale est trés pratique et il nous faudra, a chaque fois, reconstruire
I’encadrement en toute rigueur. D’ailleurs, elle nous permet d’encadrer la somme partielle ou le reste partiel, & condition de
pouvoir calculer l'intégrale associée.

C’est notamment le cas des séries de Riemann qu’il faudra savoir refaire rapidement.

{Propriété 12 (équivalents du reste partiel ou de la somme partielle associée aux séries de Riemann).]

On consideére la série de Riemann — avec a > 0. Alors, on rappelle que la série converge si et seulement si o > 1.
n

De plus,

1. si @ =1, alors la série diverge et on a : S, ~ In(n).

11—«
n
2. si 0 < a < 1, alors la série diverge et on a : S, ~ 1 .
-«
1

3. si > 1, alors la série converge et on a : Ry ~ ——————.
(= 1)no—

» Le premier point a déja €té traité : c’est 'exemple de la série harmonique. Pour les deux autres points, on travaille par
comparaison série-intégrale avec f :t — 1/t* strictement décroissante sur ]0,+ool.

On applique le résultat précédent pour préciser le développement asymptotique de la série harmonique, mais on retiendra d’abord
comment on ruse pour étudier les quantités négligeables (un), (v,) : on se raméne simplement a I’étude de la série télescopique
associée avant d’invoquer le théoreme de sommation des équivalents.

1
Exemple 3 On considére la série harmonique Y — et on rappelle que pour tout n € N*, H,, = In(n) + v + o(1).
n

1. Pour tout n € N*, on pose u, = H, —In(n) — +.

1

(a) Montrer que un — Un41 ~ oz

1
(b) En déduire le développement asymptotique de H,, en o(—).
n

1
2. Pour tout n € N*, on pose v, = H, —In(n) — v — o
n
M 1
(a) Montrer que vn41 — vy ~ et

(b) En déduire que :
1 1 1
Hn=In(n) +7+ 50 — 3902 +o(53)

1
Cette égalité nous donne le développement asymptotique de la série harmonique en o(—2).
n
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2.3 Cas plus général des séries a valeurs quelconques

{Théor‘eme 13 (condition suffisante de convergence).]

Soit (u,) € K.

1. Dans R, si la série Y |u,| converge, alors Y u, converge et on a :

“+oo —+o0 “+ oo

+ —_

S = E ur = E Uy — E U,
k=0 k=0 k=0

+oo +oo +oo
S=> ur =Y Re(ug)+i»  Im(ux)
k=0 k=0 k=0

Autrement dit, pour des séries a valeurs réelles ou complexes, la convergence absolue entraine la convergence.

» On traite d’abord le cas réel pour lequel on introduit les suites (u)}) et (uy) telle que un, = u} — u;,, puis on montre par
comparaison qu’elles désignent des termes généraux de séries convergentes avant de conclure par linéarité. On procéde alors
de la méme fagon dans C en utilisant cette fois les suites (Re(ur)) et (Im(uy)).

Remarques

1. C’est un théoréme efficace : en passant ainsi en valeur absolue ou en module, on est alors ramené aux cas des séries a
termes positifs pour lesquelles on a tous les théoréemes de comparaison.

2. Cependant, on fera attention, car il s’agit cette fois d’'une condition suffisante de convergence. En particulier, la
réciproque est fausse et on pourra exhiber des séries semi-convergentes, c’est a dire qui convergent alors qu’elles
divergent en valeur absolue.

(_1)n—1 (_1)k—1

A

1. En appliquant la formule de Taylor avec reste intégral en 0 & f : x — In(1 + z), établir que la série harmonique alternée
est convergente, puis préciser sa limite.

Exemple 4 On considére la série harmonique alternée > et on note pour tout n € N*, A, =37,

2. Justifier alors que la série est semi-convergente, au sens ou elle n’est pas absolument convergente.

{Propriété 14 (regle de D’Alembert).]

Soit (un) € K" telle que pour tout n € N, u,, # 0. On définit le rapport de D’Alembert |1‘Ln+‘1| et on suppose que :
Un
|u'fl+1‘ s/
|un|

1. Si £ < 1, alors la série > u, converge absolument, et donc elle est convergente.
2. Si £ > 1, alors la série Y u, diverge grossiérement.

3. Si £ =1, alors on ne peut rien dire.

» On raisonne par disjonction des cas, et on cherche dans les deux premiers cas & comparer |un| au terme général d’une
série géométrique. Pour le dernier cas, on propose quelques séries de Riemann dont le rapport tend vers 1 et pour lesquelles
tout est possible.

La régle de D’Alembert est tres pratique, surtout lorsque le terme général est donné sous la forme d’un produit, de puissances ou
avec des termes en factorielle... D’ailleurs, on pourra aussi utiliser la formule de Stirling qui livre un équivalent de n! :

n! ~ (Z)n 2mn

s (s . 2n)! . . " :
Exemple 5 On considere la série de terme général u, = (7)”, a > 0. Déterminer la nature de la série en fonction de a.

nla™n
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{Propriété 15 (critere spécial des séries alternées).j

Soit (un) € RY une série alternée, c’est & dire que pour tout n € N, unun+1 < 0. On suppose de plus que la suite (Jun|) est
décroissante avec |un| — 0. Alors,

1. la série Y u, est convergente.

2. on peut controler le reste partiel en valeur absolue et ainsi, pour tout n € N,

—+oo

|Bal =1 D el < Junta]

k=n+1

» Pour le premier point, il suffit de montrer que les suites extraites (San) et (Sant1) sont adjacentes, avant d’invoquer le
théoréme de convergence des suites adjacentes. Pour le second point, on distingue alors les casm = 2p et n = 2p+ 1 a partir
de l’encadrement fourni par le théoréme de convergence des suites adjacentes.

Remarques

1. Ce second résultat est fondamental. D’une part, il nous donne une information sur la vitesse de convergence de (S,,)
vers sa limite S, et d’autre part, cette majoration pourra nous donner un mode de convergence tres satisfaisant dans
le cas des séries de fonctions.

2. On peut aussi prolonger cette derniére inégalité a la somme de la série, en effet la série étant alternée, on peut par
exemple supposer que pour tout p € N, uap, > 0 et ugp+1 < 0, et ainsi,

—+oo
S = Zuk = ug + Ro
k=0

avec Ry =S — Sp < 0. Or d’apres le résultat précédent, |Ro| < |u1| < |uo| et donc,
0 S S S uo

On peut procéder de la méme fagon si les termes d’indices pairs sont négatifs et on obtiendrait up < S < 0. Ainsi, on
retiendra que, sous les hypotheses du critere spécial :
e la somme S est toujours du signe de ug,

e on peut toujours prolonger la majoration donné par le critére de sorte que : |S| = | Z;:S uk| < |uol

De nombreuses séries se présentent directement sous la forme > (—1)"u, avec (un) de signe constant, et il suffira de vérifier les
deux hypotheses du critere spécial pour en obtenir la convergence. Mais il y en a d’autres pour lesquelles ’alternance des signes
est moins évidente... on restera donc vigilant et en cas de difficultés, il ne faudra pas hésiter a aller chercher un développement
asymptotique du terme général pour faire apparaitre des termes plus simples & manipuler.

Exemple 6 Déterminer la nature des séries dont on donne ici le terme général :

Up = ﬂ, Up = % avec x € ]R’ Wy = ln(]_ + %)7 Tn = Sil’l(ﬂ'\/m% Yn = \/ﬁ(%)—l)n

3 Cas particulier des espaces vectoriels normés de dimension finie

Définition Soit (E,||.||) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (ei,...,e,) une base de E.
Alors, pour toute suite (u,) € EV, il existe des suites composantes (u1.,), ..., (up.) € K" telles que pour tout n € N,

Up = UL,n€l + ...+ Upn€p

et ainsi, la série > u, est définie par la combinaison des sommes partielles associées :

n n n
E U = E uigker +...+ E Up, kEp
k=0 k=0 k=0

—— N——
S1,n Sp,n

Remarque Etant en dimension finie, on peut affirmer que la série vectorielle > w, converge si et seulement si les suites
(Si,n),-.., (Sp,n) convergent. Et ainsi, 'étude de ces séries revient a I’étude des séries composantes associées.

Définition Soit (E, ||.||) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (ey,...,e,) une base de E.
On dit encore que la série > u, est absolument convergente si la série > ||u,|| est convergente.
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Théoréme 16 (condition suffisante de convergence en dimension ﬁnie).]

Soit (E,||.||) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (e1,...,ep) une base de E. Si la
série Y u, converge absolument, alors la série ) u, est convergente.

» On revient a l’étude des séries composantes, et en dimension finie, on pourra se ramener a4 la norme infinie et utiliser le
résultat de la convergence absolue sur les composantes.

Pour cela, on rappelle qu’il existe o, B > 0 tels que :
Vo € E, afz]] < ||zl < Bz

En particulier, on a par définition : u, = uine1 + ...+ upnep, et donc, pour tout i € [1,p], |tin| < [|tnlloo < Bllun]-
Or la série > uy, €étant absolument convergente, il vient par comparaison pour les séries d termes positifs,

g |win| converge = E Ui,n CONUVETGE

Finalement, toutes les séries composantes convergent et on en déduit que la série converge dans E.

Exemple 7 On se place dans E = M, (K). On définit application ||.|| : E — Ry par ||A]| = max >_j=1 laij|, et on rappelle
que ||.|| désigne une norme d’algebre sur M, (K), c’est & dire qu’en particulier, elle est sous-multiplicative :

IAB]| < Al Bl
Fixons A € E.

1. Etablir que pour tout k € N, ||A*| < || A"

. s A"
2. En déduire que la série ) T est convergente.
Remarques
Ak
1. Pour toute matrice A € M, (K), la série vectorielle Y T est donc toujours convergente. Sa limite sera notée exp(A)

ou e, et définit 'exponentielle de la matrice A.

2. Attention, si celle-ci existe, son calcul n’est pas toujours facile et on préferera plus tard réduire la matrice A avant de
déterminer 'exponentielle associée : c’est la un des intéréts de la décomposition de Dunford.

4 Notion de familles sommables

On prolonge enfin la notation ) aux familles sommables indexées sur un ensemble dénombrable, mais cette notion est plus
délicate a manipuler.

4.1 Ensembles dénombrables et opérations

Définition Soit A un ensemble non vide.

e On dit que A est dénombrable s’il est en bijection avec N, c’est a dire qu’il existe u : N — A telle que :

Vae A, An e N, a=u(n)

e On dit que A est au plus dénombrable s’il est fini ou en bijection avec N.

Remarques

1. Concretement, cela signifie qu’on peut numéroter tous les éléments distincts de A. En effet, si A = {uo,u1, ...}, alors
A est fini ou bien lapplication u : N — u,, € A définit une bijection naturelle de N sur A, et A est dénombrable.

2. On n’exige pas d’expliciter les bijections sous-jacentes, mais il faudra étre capable d’expliquer comment numéroter les
éléments distincts d’un ensemble pour justifier que celui-ci est bien dénombrable. En particulier, on retiendra que :

e toute partie de N est évidemment au plus dénombrable, et plus généralement toute partie d’un ensemble dénombrable
est aussi au plus dénombrable.

e 7 est dénombrable, car on peut numéroter tous les entiers relatifs de la fagon suivante :
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o N? est dénombrable, car on peut numéroter tous les couples d’entiers de la facon suivante :

{Propriété 17 (opérations sur les ensembles dénombrables).}

On admet enfin que :
e le produit cartésien d’'un nombre fini d’ensembles dénombrables est encore dénombrable.

e la réunion finie ou dénombrable d’ensembles dénombrables est encore dénombrable.

Remarques
1. On en déduit immédiatement que Q = ZxN* est dénombrable comme produit cartésien de deux ensembles dénombrables.

2. Attention, toutes les parties de R ne sont pas dénombrables : on peut montrer par I'absurde que [0,1] n’est pas
dénombrable et donc, R lui-méme n’est pas dénombrable.
Pour cela, on raisonne par 1’absurde en supposant que [0, 1[= {un, n € N*}. En particulier, ces nombres u, s’écrivent :

ulzo,dl’l...del...
UQZO,dQJ...dQ,kZ”.

avec d; ; les décimales associées a u;
us :O,d371 ...d3,k3

Mais dans ce cas, on peut construire un réel © = 0,71 ...7% ... en choisissant des décimales qui différent des nombres
(un), c’est a dire :

ri#dii, T2 £ dao. ..

et ainsi, pour tout n € N, x # u,. Ce qui est contradictoire car z € [0, 1[= {un, n € N}.

4.2 Familles sommables et théorémes de sommation par paquets

Définition Soit I un ensemble fini ou dénombrable, et considérons (a;)ic; une famille de nombres réels positifs. On dit que laj
famille est sommable si ’ensemble des sommes finies :

{> ay, J fini, J C I} est majoré.

jeJ

Dans ce cas, on appelle somme de la famille la borne supérieure et on note >, ; a; =sup{>_,.;a;, J fini, J C I}.

Remarques

1. Dans le cas particulier ou I = N, on retrouve évidemment le cas des séries et ainsi, pour une famille de réels positifs,
(an) est sommable si et seulement si la série > a, converge et on a :

—+oo
D an=) an
neN n=0

2. Si une famille de réels positifs (a;)ier est sommable, alors toute sous-famille (a;);cr/c; est sommable et on a la

majoration :
Z a; < Z a;

iel’ iel
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{Propriété 18 (cas particulier de la réunion d’indices).]

Soient I, J deux ensembles dénombrables qu’on suppose disjoints. Alors, la famille de réels positifs (a;)icrus est sommable
si et seulement si les sous-familles (a;)icr et (a;)ies sont sommables.

Et dans ce cas, on a :
Z a; :Zai+zai

ieIuJ iel i€J

» On raisonne par double implication et on veillera a se ramener a la définition de ces familles sommables de réels positifs.

En effet, on a :
e si on suppose que (a;)icrug est sommable, alors pour toutes parties finies I' C I, J' C J, on a :
E a; < g a; et g a; < E a;
iel’ eIuJ icJ’ ieluJg
On en déduit que (ai)icr et (a;)icy sont sommables. De plus, il vient :
E a; + g a; < E a;
iel’ ieJ’ ieIuJg
y 0 enm e loc tioe T s, . - ie e lpe tine T/ L .
En passant au sup sur les parties I' d’une part, puis sur les parties J°, on obtient : qu a; + Z;@/ a; < ngm./ a;.

e réciproquement, si les familles (a;)icr et (a;)ics sont sommables, alors on notant K’ une partie finie incluse dans I'1J,
. ! ! ! ! ! ) . .
alors on peut voir K' =1"J" avec I' C I et J° C J. En particulier,

E a; = g a; + E a; < g a,+§ a;
ieK’ iel’ ieJ’ i€l ieJ

On en déduit que (a;)icrugs est sommable et par passage au sup sur les parties K, Z[F” g i < ZM, a; + Z[e/ ;.

{Théoréme 19 (de sommation par paquets pour une famille de réels positifs).]

Soit (Ix)rea une famille dénombrable d’ensembles dénombrables deux & deux disjoints et tels que I = |_|AeA I,. On admet
qu’on peut généraliser le résultat précédent, et ainsi la famille de réels positifs (a;)i;er est sommable si et seulement si :

les sous-familles (a;)icr, sont sommables de somme Sy

la famille des paquets (Sx)xea est sommable

Et dans ce cas, on a :

——
Sx

Définition Soit I un ensemble fini ou dénombrable, et considérons (a;)ier une famille de nombres réels ou complexes. On dit plus

généralement que la famille est sommable si la famille des réels positifs (|ai|)icr) est sommable, et on définit la somme associée
par linéarité :

e dans le cas réel,

Zai:ZaZLfZa;

i€l i€l i€l

e dans le cas complexe,

Zak = ZRe(ak) —|—iZIm(ak)

kel kel kel

Remarques

1. Dans cette derniere définition, on peut remarquer que c’est la sommabilité de la famille (|a;|)icr) qui entraine par
comparaison la sommabilité des familles de réels positifs (a;), (a;), (|Re(ax)|), ([Im(ax)| et donc, par définition des
familles (Re(ax)), (Im(ax)).

2. Par linéarité, on peut alors prolonger le théoréme de sommation par paquets d’abord & une famille sommable de
réels quelconques, puis dans un second temps, & une famille sommable de nombres complexes. Ainsi, on retiendra que
pour une famille sommable au sens ou (Ja;|)icr) est sommable, alors on peut toujours sommer par paquets et voir :

D =) (3 a)

iel NEA i€l
——
Sx
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4.3 Cas particulier des sommes doubles

Dans le cas particulier ol la famille (ap,q) est indexée sur N2, on pourra considérer différentes partitions de N? avant d’invoquer
le théoréme de sommation par paquets :

N ={(pg) eN} = | [{p} xN=| [Nx{g}=| |{(pa) €N’ p+q=n}

€N eN €N
P Vp 1 Hy, " Dn

et ainsi, on obtient les théorémes suivants :

{Théoréme 20 (de Fubini pour une famille de réels positifs).]

Soit (ap,q)(p,q)enz une famille de réels positifs indexée sur N2. Alors, la famille est sommable si et seulement si I'une des
assertions suivantes est vérifiée :

e pour tout p € N, la série 3 \ap,q est convergente et la série de terme général S, = Z:j’) ap,q €st convergente.

—+ o0

e pour tout g € N, la série 3\ ap,q est convergente et la série de terme général Sq = > 7" ap,q est convergente.

Et dans ce cas, on a alors :

Ftoo too +o00 +oo
Z Ap,qg = Z(Z Up,q) = Z(Z ap,q)
(p,q)€N? p=0 ¢=0 q=0 p=0

Exemple 8 On note encore ( la fonction de Riemann. Montrer que la série >°_-,(¢(g) — 1) est convergente et préciser sa limite.

{Théoréme 21 (de Fubini pour une famille & valeurs quelconques).]

Soit (ap,q)(p,q)enz une famille de nombres réels ou complexes indexée sur N2. On suppose de plus que la famille est sommable.
Alors, on peut échanger les symboles de sorte que :

+oo +oo +o00 400
2 wa =D ana) =3 (> )
(p,q)€N? p=0 ¢g=0 q=0 p=0

Remarque Pour une telle famille de nombres réels ou complexes donnée, on procedera donc en deux temps :

1. on vérifie la sommabilité en se ramenant & I’étude de la convergence absolue, c’est & dire qu’on vérifie si (|ap,q|) est
sommable a ’aide du théoréme de Fubini pour les familles de réels positifs,

2. puis, on peut appliquer ce second théoréme de Fubini et échanger les sommes en p et ¢ pour calculer la somme double.

{Théor‘eme 22 (produit de Cauchy).]

Soient (un), (vn) deux suites & valeurs réelles ou complexes. On suppose de plus que les séries Y un et Y v, convergent
absolument. Alors, la famille (upvq) est sommable et on a :

+oo +oo +o00 +o00 +oo n
Q_un)Q_va) =D upva =3 > usvn-s
p=0 q=0 p=0 ¢=0 n=0 k=0

» On se raméne a la famille (Jupvg|) et on applique le théoréme de Fubini pour les familles de réels positifs. Une fois la
famille sommable, on peut invoquer le théoréme de sommation par paquets et sommer suivant les diagonales (Dy).

Remarque En notant pour tout n € N, ¢n = > 7 urvn_k, on en déduit que le produit de deux séries absolument
convergentes nous donne encore une série absolument convergente telle que :

~+o0 ~+o0 ~+o0
(Z UP)(Z vg) = Z Cn

et ceci définit alors le produit de Cauchy des deux séries.

Exemple 9 Etablir que pour tout z € C,|2| < 1, on a :
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