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Programmes 2022

Pour aller plus loin
Encore une fois, on revient sur les théorèmes de première année en cherchant à aller plus loin, puisqu’au delà de la nature
d’une série, on cherche souvent à en préciser la façon dont elle converge ou diverge : c’est même l’intérêt de tous ces théorèmes
de comparaison. Par contre, on prêtera une attention particulière aux séries absolument convergentes car elles fournissent
deux théorèmes essentiels : le théorème de Fubini pour manipuler les sommes doubles et le résultat relatif au produit de
Cauchy de deux séries absolument convergentes.
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Les espaces vectoriels considérés ici sont réels ou complexes et K désignera le corps R ou C.

1 Séries d’éléments d’un espace vectoriel normé

Définition Soit (E, ‖.‖) un espace vectoriel normé et considérons (un) ∈ EN. On appelle série de terme général un la suite
des sommes partielles (Sn) définie par :

∀n ∈ N, Sn =

n∑
k=0

uk

On note cette série
∑
un ou

∑
n≥0 un.

Définition Soit (E, ‖.‖) un espace vectoriel normé et considérons (un) ∈ EN. On dit que la série
∑
un converge si la suite (Sn)

converge dans E et dans ce cas, on appelle encore :

• somme de la série la limite dans E de la suite (Sn) et celle-ci sera encore notée : S =
∑+∞
k=0 uk.

• suite des restes partiels la suite (Rn) de EN définie par :

∀n ∈ N, Rn = S − Sn =

+∞∑
k=n+1

uk

Sinon, si elle ne converge pas, on dit que la série
∑
un est divergente.

Remarques

1. La relation entre suites et séries est très étroite, puisqu’étudier une série revient finalement à étudier la suite des sommes
partielles (Sn) associées : on retrouvera donc les résultats précédents sur les suites d’un espace vectoriel normé.

Réciproquement, si on considère une suite (un), alors on peut écrire :

∀n ≥ 1, un =

n∑
k=0

uk︸ ︷︷ ︸
Sn

−
n∑
k=1

uk−1︸ ︷︷ ︸
Sn−1

= u0 +

n∑
k=1

uk − uk−1

et ainsi, la suite (un) est de même nature que la série télescopique
∑
un−un−1. C’est même un résultat fort pratique

qu’il faudra retenir.

2. Le reste partiel tend évidemment vers 0, et il nous permet de mesurer l’erreur entre la somme S =
∑+∞
k=0 uk et son

approximation Sn.

Soit (E, ‖.‖) un espace vectoriel normé et considérons (un), (vn) ∈ EN. Si les séries
∑
un et

∑
vn convergent, alors pour tout

λ ∈ K,
∑

(λun + vn) converge et on a :
+∞∑
k=0

λuk + vk = λ

+∞∑
k=0

uk +

+∞∑
k=0

vk

Propriété 1 (linéarité de la somme).

I C’est immédiat : on revient à la somme partielle et on passe à la limite par opérations sur les limites dans un espace
vectoriel normé.

En effet, pour tout n ∈ N,
n∑
k=0

λuk + vk = λ

n∑
k=0

uk +

n∑
k=0

vk −→ λ

+∞∑
k=0

uk +

+∞∑
k=0

vk

Soit (E, ‖.‖) un espace vectoriel normé et considérons (un) ∈ EN. Si la série
∑
un converge, alors un −→ 0.

Dans le cas contraire, la série diverge et on dit même qu’elle diverge grossièrement.

Propriété 2 (condition nécessaire de convergence).

I C’est immédiat, il suffit d’écrire un en fonction de (Sn).

En effet, pour tout n ≥ 1, un = Sn − Sn−1 −→ S − S = 0.
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Remarque On fera très attention : il s’agit seulement d’une condition nécessaire, et il faudra être capable de justifier
que le sens réciproque est faux. On pourra citer l’exemple fondamental de la série harmonique :

Exemple 1 On se place dans (R, |.|) et on définit la série harmonique
∑ 1

n
par :

∀n ∈ N∗, Hn =

n∑
k=1

1

k

1. (a) Etablir rapidement que pour tout n ∈ N∗, ln(n) ≤ Hn ≤ ln(n) + 1.

(b) En déduire un équivalent de Hn et préciser la nature de la série
∑

1/n.

2. On pose pour tout n ∈ N∗, un = Hn − ln(n). Montrer que (un) est convergente et en notant γ sa limite, justifier que :

Hn = ln(n) + γ + o
n→+∞

(1)

La constante γ ' 0, 577 est appelée constante d’Euler et cette égalité nous donne le développement asymptotique de la
série harmonique en o(1).

2 Séries numériques à valeurs dans R ou C

Comme au premier chapitre, (R, |.|) et (C, |.|) étant des espaces vectoriels normés, les résultats précédents sont vraies.
D’ailleurs, on apprendra à reconnâıtre quelques exemples de référence.

2.1 Exemples de référence

Soit q ∈ C. On appelle série géométrique toute série de la forme
∑
qn, et on a :∑

qn converge ⇔ |q| < 1

De plus, on a dans ce cas :

S =

+∞∑
k=0

qk =
1

1− q et pour tout n ∈ N, Rn =
qn+1

1− q

Propriété 3 (nature des séries géométriques).

I On écrit la somme partielle et on reconnâıt la somme des termes consécutifs d’une suite géométrique.

En effet, on a pour tout n ∈ N,

Sn =

n∑
k=0

qk =

n+ 1, si q = 1

1− qn+1

1− q , sinon

et ainsi, pour q = 1, la série diverge immédiatement. Sinon, la suite (Sn) converge si et seulement si (qn+1) converge, c’est
à dire si et seulement si |q| < 1. Dans ce cas, on retrouve par passage à la limite, S, puis on en déduit Rn.

Soit z ∈ C. On appelle série exponentielle toute série de la forme
∑ zn

n!
et on a :

∀z ∈ C,
∑ zn

n!
converge avec

+∞∑
k=0

zk

k!
= ez

Propriété 4 (nature des séries exponentielles).

I Pour z fixé, on pose f : x ∈ R 7−→ ezx de classe C∞ sur R. On peut alors appliquer la formule de Taylor avec reste intégral
en 0, avant de l’évaluer en x = 1 pour reconnâıtre la somme partielle.
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Soit x ∈ R. On appelle série de Riemann toute série de la forme
∑ 1

nx
et on a :

∑ 1

nx
converge ⇔ x > 1

Et dans ce cas, on définit la fonction zeta de Riemann sur ]1,+∞[ par ζ(x) =
∑+∞
k=1

1

kx
.

Propriété 5 (nature des séries de Riemann de paramètre réel).

I On raisonne par disjonction des cas en écartant rapidement les cas x < 0 et x = 0 pour lesquels la série diverge
grossièrement. Le reste tombe alors par comparaison série-intégrale.

Remarque On ne confondra pas avec les sommes de Riemann qui permettent d’approcher l’intégrale d’une fonction
continue sur un segment :

n−1∑
k=0

(b− a)

n
f(θk) −→

∫ b

a

f, où pour tout k ∈ J0, n− 1K, xk ≤ θk ≤ xk+1

avec (xk) la subdivision à pas constant sur le segment [a, b].

Soit (un) ∈ CN qu’on suppose convergente de limite `. Alors, la moyenne de Césaro associée est convergente de sorte que:

1

n

n∑
k=1

uk −→
n→+∞

`

Théorème 6 (de Césaro).

I On revient à la définition de la limite et on cherche à contrôler la différence |(1/n)
∑n
k=1 uk − `| en séparant la somme

obtenue.

Remarques

1. La réciproque est fausse : on peut considérer la suite un = (−1)n dont les sommes partielles associées sont bornées, et

donc
1

n

∑n
k=1 uk −→ 0, mais (un) est divergente.

2. En fait, ce résultat peut être intéressant pour des séries divergentes car il nous livre un équivalent de la somme partielle.
En particulier, si un −→ ` 6= 0, on a :

1

n

n∑
k=1

uk −→ ` et par conséquent : Sn ∼ n`

2.2 Cas particulier des séries à termes positifs

Soit (un) une suite réelle à termes positifs. Alors, la suite des sommes partielles (Sn) est croissante et on a :

(Sn) converge ⇔ (Sn) est majorée

et dans ce cas, la série converge vers S =
∑+∞
k=0 uk = supSn. Sinon, elle diverge vers +∞.

Propriété 7 (caractérisation de la convergence par majoration).

I C’est immédiat : pour tout n ∈ N, Sn+1 − Sn = un+1 ≥ 0. Ainsi, (Sn) est croissante et on retrouve le théorème de la
limite monotone.

Soient (un) et (vn) deux suites réelles à termes positifs telles que pour tout n ∈ N, un ≤ vn.

1. Si la série
∑
vn est convergente, alors la série

∑
un est convergente.

2. Si la série
∑
un est divergente, alors la série

∑
vn est divergente.

Corollaire 8 (comparaison pour les séries à termes positifs).
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I Il suffit de sommer les inégalités pour comparer les sommes partielles.

En effet, en sommant celles-ci, on peut écrire :
n∑
k=0

uk ≤
n∑
k=0

vk

Si la série
∑
vn à termes positifs converge, alors pour tout n ∈ N,

∑n
k=0 uk ≤

∑n
k=0 vk ≤

∑+∞
k=0 vk ∈ R et le résultat

précédent nous permet de conclure.

De la même façon, pour le second point, en tant que série à termes positifs, la suite des sommes partielles (
∑n
k=0 uk)

diverge nécessairement vers +∞. Par comparaison, la suite (
∑n
k=0 vk) diverge aussi vers +∞.

Remarque On peut même supposer que l’inégalité n’est vraie qu’à partir d’un certain rang N ∈ N.
En effet, dans ce cas, on obtient des résultats analogues pour les séries

∑
n≥N un et

∑
n≥N vn, mais la nature d’une série ne

dépendant pas des premiers termes, on récupère quand même les mêmes conclusions :

1. si
∑
vn est convergente, alors

∑
n≥N vn converge ⇒

∑
n≥N un converge ⇒

∑
un converge.

2. si
∑
un est divergente, alors la série

∑
n≥N un diverge ⇒

∑
vn≥N diverge ⇒

∑
vn diverge.

Soient (un) et (vn) deux suites réelles à termes strictement positifs telles que un = o(vn).

1. Si la série
∑
vn est convergente, alors la série

∑
un est convergente et on a :

∑+∞
k=n+1 uk = o(

∑+∞
k=n+1 vk).

2. Si la série
∑
un est divergente, alors la série

∑
vn est divergente et on a :

∑n
k=0 uk = o(

∑n
k=0 vk).

Et de la même façon, si un = O(vn), on peut aussi comparer les restes ou sommes partielles des deux séries.

Propriété 9 (comparaison pour les séries à termes positifs).

I On traduit simplement la relation de comparaison et on invoque la propriété précédente. Pour la comparaison sur les restes
ou sommes partielles, on reviendra à la définition de la limite avant de sommer les inégalités à partir du rang donné.

Ces résultats sont très utiles, car ils nous permettent souvent de conclure par comparaison à nos séries de référence. Par exemple,
il peut être malin de trouver α > 1 tel que nαun −→ 0. Dans ce cas, pour des séries à termes positifs, il vient :

un = o(
1

nα
) et par comparaison aux séries de Riemann,

∑
un converge

Exemple 2 Les questions sont indépendantes.

1. Déterminer la nature des séries dont on donne ici le terme général :

un =
sin(1/n)

n2
, vn = n sin(1/n), wn =

arctan(n)

n+ 1
e−n

2

, xn =
1√

n ln(n)
, yn =

1

nβ ln(n)
avec β > 1

2. En utilisant le théorème de sommation des o, retrouver une preuve plus rapide du théorème de Césaro.

Soient (un) et (vn) deux suites réelles à termes strictement positifs telles que un ∼ vn. Alors, les séries
∑
un et

∑
vn sont

de même nature et on a encore :

1. si les deux séries convergent, on peut comparer les restes partiels :
∑+∞
k=n+1 uk ∼

∑+∞
k=n+1 vk.

2. si les deux séries divergent, on peut comparer les sommes partielles :
∑n
k=0 uk ∼

∑n
k=0 vk.

Théorème 10 (de sommation des équivalents pour les séries à termes positifs).

I On traduit encore la relation de comparaison et on invoque la propriété sur les inégalités entre termes généraux. Pour la
comparaison sur les restes ou sommes partielles, il suffit d’adapter la preuve précédente et sommer l’encadrement fourni par
la relation.

www.cpgemp-troyes.fr 5/12

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 3
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Soit f : R+ −→ R+ qu’on suppose motonotone. Alors,

1. si f est croissante sur R+, on a pour tout n ∈ N,

f(n) ≤
∫ n+1

n

f(t) dt ≤ f(n+ 1)

2. si f est décroissante sur R+, on a pour tout n ∈ N,

f(n+ 1) ≤
∫ n+1

n

f(t) dt ≤ f(n)

et sous réserve d’existence, on peut obtenir un encadrement des restes partiels ou sommes partielles de la série
∑
f(n).

Propriété 11 (technique de comparaison série-intégrale).

I C’est immédiat, puisque la monotonie de f nous donne des ingéalités sur [k, k + 1] et par croissance de l’intégrale, on
retrouve l’encadrement attendu.

Remarque Cette méthode de comparaison série-intégrale est très pratique et il nous faudra, à chaque fois, reconstruire
l’encadrement en toute rigueur. D’ailleurs, elle nous permet d’encadrer la somme partielle ou le reste partiel, à condition de
pouvoir calculer l’intégrale associée.
C’est notamment le cas des séries de Riemann qu’il faudra savoir refaire rapidement.

On considère la série de Riemann
∑ 1

nα
avec α > 0. Alors, on rappelle que la série converge si et seulement si α > 1.

De plus,

1. si α = 1, alors la série diverge et on a : Sn ∼ ln(n).

2. si 0 < α < 1, alors la série diverge et on a : Sn ∼
n1−α

1− α .

3. si α > 1, alors la série converge et on a : Rn ∼
1

(α− 1)nα−1
.

Propriété 12 (équivalents du reste partiel ou de la somme partielle associée aux séries de Riemann).

I Le premier point a déjà été traité : c’est l’exemple de la série harmonique. Pour les deux autres points, on travaille par
comparaison série-intégrale avec f : t 7−→ 1/tα strictement décroissante sur ]0,+∞[.

On applique le résultat précédent pour préciser le développement asymptotique de la série harmonique, mais on retiendra d’abord
comment on ruse pour étudier les quantités négligeables (un), (vn) : on se ramène simplement à l’étude de la série télescopique
associée avant d’invoquer le théorème de sommation des équivalents.

Exemple 3 On considère la série harmonique
∑ 1

n
et on rappelle que pour tout n ∈ N∗, Hn = ln(n) + γ + o(1).

1. Pour tout n ∈ N∗, on pose un = Hn − ln(n)− γ.

(a) Montrer que un − un+1 ∼
1

2n2
.

(b) En déduire le développement asymptotique de Hn en o(
1

n
).

2. Pour tout n ∈ N∗, on pose vn = Hn − ln(n)− γ − 1

2n
.

(a) Montrer que vn+1 − vn ∼
1

6n3
.

(b) En déduire que :

Hn = ln(n) + γ +
1

2n
− 1

12n2
+ o(

1

n2
)

Cette égalité nous donne le développement asymptotique de la série harmonique en o(
1

n2
).
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2.3 Cas plus général des séries à valeurs quelconques

Soit (un) ∈ KN.

1. Dans R, si la série
∑
|un| converge, alors

∑
un converge et on a :

S =

+∞∑
k=0

uk =

+∞∑
k=0

u+
k −

+∞∑
k=0

u−k

2. Dans C, si la série
∑
|un| converge, alors

∑
un converge et on a :

S =

+∞∑
k=0

uk =

+∞∑
k=0

Re(uk) + i

+∞∑
k=0

Im(uk)

Autrement dit, pour des séries à valeurs réelles ou complexes, la convergence absolue entraine la convergence.

Théorème 13 (condition suffisante de convergence).

I On traite d’abord le cas réel pour lequel on introduit les suites (u+
n ) et (u−n ) telle que un = u+

n − u−n , puis on montre par
comparaison qu’elles désignent des termes généraux de séries convergentes avant de conclure par linéarité. On procède alors
de la même façon dans C en utilisant cette fois les suites (Re(un)) et (Im(un)).

Remarques

1. C’est un théorème efficace : en passant ainsi en valeur absolue ou en module, on est alors ramené aux cas des séries à
termes positifs pour lesquelles on a tous les théorèmes de comparaison.

2. Cependant, on fera attention, car il s’agit cette fois d’une condition suffisante de convergence. En particulier, la
réciproque est fausse et on pourra exhiber des séries semi-convergentes, c’est à dire qui convergent alors qu’elles
divergent en valeur absolue.

Exemple 4 On considère la série harmonique alternée
∑ (−1)n−1

n
et on note pour tout n ∈ N∗, An =

∑n
k=1

(−1)k−1

k
.

1. En appliquant la formule de Taylor avec reste intégral en 0 à f : x 7−→ ln(1 + x), établir que la série harmonique alternée
est convergente, puis préciser sa limite.

2. Justifier alors que la série est semi-convergente, au sens où elle n’est pas absolument convergente.

Soit (un) ∈ KN telle que pour tout n ∈ N, un 6= 0. On définit le rapport de D’Alembert
|un+1|
|un|

et on suppose que :

|un+1|
|un|

−→ `

1. Si ` < 1, alors la série
∑
un converge absolument, et donc elle est convergente.

2. Si ` > 1, alors la série
∑
un diverge grossièrement.

3. Si ` = 1, alors on ne peut rien dire.

Propriété 14 (règle de D’Alembert).

I On raisonne par disjonction des cas, et on cherche dans les deux premiers cas à comparer |un| au terme général d’une
série géométrique. Pour le dernier cas, on propose quelques séries de Riemann dont le rapport tend vers 1 et pour lesquelles
tout est possible.

La règle de D’Alembert est très pratique, surtout lorsque le terme général est donné sous la forme d’un produit, de puissances ou
avec des termes en factorielle... D’ailleurs, on pourra aussi utiliser la formule de Stirling qui livre un équivalent de n! :

n! ∼ (
n

e
)n
√

2πn

Exemple 5 On considère la série de terme général un =
(2n)!

n!annn
, a > 0. Déterminer la nature de la série en fonction de a.
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Soit (un) ∈ RN une série alternée, c’est à dire que pour tout n ∈ N, unun+1 ≤ 0. On suppose de plus que la suite (|un|) est
décroissante avec |un| −→ 0. Alors,

1. la série
∑
un est convergente.

2. on peut contrôler le reste partiel en valeur absolue et ainsi, pour tout n ∈ N,

|Rn| = |
+∞∑

k=n+1

uk| ≤ |un+1|

Propriété 15 (critère spécial des séries alternées).

I Pour le premier point, il suffit de montrer que les suites extraites (S2n) et (S2n+1) sont adjacentes, avant d’invoquer le
théorème de convergence des suites adjacentes. Pour le second point, on distingue alors les cas n = 2p et n = 2p+ 1 à partir
de l’encadrement fourni par le théorème de convergence des suites adjacentes.

Remarques

1. Ce second résultat est fondamental. D’une part, il nous donne une information sur la vitesse de convergence de (Sn)
vers sa limite S, et d’autre part, cette majoration pourra nous donner un mode de convergence très satisfaisant dans
le cas des séries de fonctions.

2. On peut aussi prolonger cette dernière inégalité à la somme de la série, en effet la série étant alternée, on peut par
exemple supposer que pour tout p ∈ N, u2p ≥ 0 et u2p+1 ≤ 0, et ainsi,

S =

+∞∑
k=0

uk = u0 +R0

avec R0 = S − S0 ≤ 0. Or d’après le résultat précédent, |R0| ≤ |u1| ≤ |u0| et donc,

0 ≤ S ≤ u0

On peut procéder de la même façon si les termes d’indices pairs sont négatifs et on obtiendrait u0 ≤ S ≤ 0. Ainsi, on
retiendra que, sous les hypothèses du critère spécial :

• la somme S est toujours du signe de u0,

• on peut toujours prolonger la majoration donné par le critère de sorte que : |S| = |
∑+∞
k=0 uk| ≤ |u0|

De nombreuses séries se présentent directement sous la forme
∑

(−1)nun avec (un) de signe constant, et il suffira de vérifier les
deux hypothèses du critère spécial pour en obtenir la convergence. Mais il y en a d’autres pour lesquelles l’alternance des signes
est moins évidente... on restera donc vigilant et en cas de difficultés, il ne faudra pas hésiter à aller chercher un développement
asymptotique du terme général pour faire apparâıtre des termes plus simples à manipuler.

Exemple 6 Déterminer la nature des séries dont on donne ici le terme général :

un =
(−1)n

n2
, vn =

(−1)n

nx
avec x ∈ R, wn = ln(1 +

(−1)n

n
), xn = sin(π

√
n2 + 1), yn =

(−1)n√
n+ (−1)n

3 Cas particulier des espaces vectoriels normés de dimension finie

Définition Soit (E, ‖.‖) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (e1, . . . , ep) une base de E.
Alors, pour toute suite (un) ∈ EN, il existe des suites composantes (u1,n), . . . , (up,n) ∈ KN telles que pour tout n ∈ N,

un = u1,ne1 + . . .+ up,nep

et ainsi, la série
∑
un est définie par la combinaison des sommes partielles associées :

n∑
k=0

uk =
n∑
k=0

u1,k︸ ︷︷ ︸
S1,n

e1 + . . .+

n∑
k=0

up,k︸ ︷︷ ︸
Sp,n

ep

Remarque Etant en dimension finie, on peut affirmer que la série vectorielle
∑
un converge si et seulement si les suites

(S1,n), . . . , (Sp,n) convergent. Et ainsi, l’étude de ces séries revient à l’étude des séries composantes associées.

Définition Soit (E, ‖.‖) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (e1, . . . , ep) une base de E.
On dit encore que la série

∑
un est absolument convergente si la série

∑
‖un‖ est convergente.
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Soit (E, ‖.‖) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (e1, . . . , ep) une base de E. Si la
série

∑
un converge absolument, alors la série

∑
un est convergente.

Théorème 16 (condition suffisante de convergence en dimension finie).

I On revient à l’étude des séries composantes, et en dimension finie, on pourra se ramener à la norme infinie et utiliser le
résultat de la convergence absolue sur les composantes.

Pour cela, on rappelle qu’il existe α, β > 0 tels que :

∀x ∈ E, α‖x‖ ≤ ‖x‖∞ ≤ β‖x‖

En particulier, on a par définition : un = u1,ne1 + . . .+ up,nep, et donc, pour tout i ∈ J1, pK, |ui,n| ≤ ‖un‖∞ ≤ β‖un‖.
Or la série

∑
un étant absolument convergente, il vient par comparaison pour les séries à termes positifs,∑

|ui,n| converge ⇒
∑

ui,n converge

Finalement, toutes les séries composantes convergent et on en déduit que la série converge dans E.

Exemple 7 On se place dans E = Mn(K). On définit l’application ‖.‖ : E −→ R+ par ‖A‖ = max
1≤i≤n

∑n
j=1 |aij |, et on rappelle

que ‖.‖ désigne une norme d’algèbre sur Mn(K), c’est à dire qu’en particulier, elle est sous-multiplicative :

‖AB‖ ≤ ‖A‖‖B‖

Fixons A ∈ E.

1. Etablir que pour tout k ∈ N, ‖Ak‖ ≤ ‖A‖k.

2. En déduire que la série
∑ Ak

k!
est convergente.

Remarques

1. Pour toute matrice A ∈ Mn(K), la série vectorielle
∑ Ak

k!
est donc toujours convergente. Sa limite sera notée exp(A)

ou eA, et définit l’exponentielle de la matrice A.

2. Attention, si celle-ci existe, son calcul n’est pas toujours facile et on préfèrera plus tard réduire la matrice A avant de
déterminer l’exponentielle associée : c’est là un des intérêts de la décomposition de Dunford.

4 Notion de familles sommables

On prolonge enfin la notation
∑

aux familles sommables indexées sur un ensemble dénombrable, mais cette notion est plus
délicate à manipuler.

4.1 Ensembles dénombrables et opérations

Définition Soit A un ensemble non vide.

• On dit que A est dénombrable s’il est en bijection avec N, c’est à dire qu’il existe u : N −→ A telle que :

∀a ∈ A, ∃!n ∈ N, a = u(n)

• On dit que A est au plus dénombrable s’il est fini ou en bijection avec N.

Remarques

1. Concrètement, cela signifie qu’on peut numéroter tous les éléments distincts de A. En effet, si A = {u0, u1, . . .}, alors
A est fini ou bien l’application u : N 7−→ un ∈ A définit une bijection naturelle de N sur A, et A est dénombrable.

2. On n’exige pas d’expliciter les bijections sous-jacentes, mais il faudra être capable d’expliquer comment numéroter les
éléments distincts d’un ensemble pour justifier que celui-ci est bien dénombrable. En particulier, on retiendra que :

• toute partie de N est évidemment au plus dénombrable, et plus généralement toute partie d’un ensemble dénombrable
est aussi au plus dénombrable.

• Z est dénombrable, car on peut numéroter tous les entiers relatifs de la façon suivante :

0
•
u0

−1
•
u1

−2
•
u3

1
•
u2

2
•
u4

www.cpgemp-troyes.fr 9/12

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 3
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• N2 est dénombrable, car on peut numéroter tous les couples d’entiers de la façon suivante :

0
•u0

1
•
u1

2
•
u3

3
•
u6

1•u2

2•u5

•u4 •u7

•u8

•u9

On admet enfin que :

• le produit cartésien d’un nombre fini d’ensembles dénombrables est encore dénombrable.

• la réunion finie ou dénombrable d’ensembles dénombrables est encore dénombrable.

Propriété 17 (opérations sur les ensembles dénombrables).

Remarques

1. On en déduit immédiatement que Q = Z×N∗ est dénombrable comme produit cartésien de deux ensembles dénombrables.

2. Attention, toutes les parties de R ne sont pas dénombrables : on peut montrer par l’absurde que [0, 1[ n’est pas
dénombrable et donc, R lui-même n’est pas dénombrable.
Pour cela, on raisonne par l’absurde en supposant que [0, 1[= {un, n ∈ N∗}. En particulier, ces nombres un s’écrivent :

u1 = 0, d1,1 . . . d1,k1 . . .

u2 = 0, d2,1 . . . d2,k2 . . .

u3 = 0, d3,1 . . . d3,k3 . . .

. . .

avec di,j les décimales associées à ui

Mais dans ce cas, on peut construire un réel x = 0, r1 . . . rk . . . en choisissant des décimales qui différent des nombres
(un), c’est à dire :

r1 6= d1,1, r2 6= d2,2 . . .

et ainsi, pour tout n ∈ N, x 6= un. Ce qui est contradictoire car x ∈ [0, 1[= {un, n ∈ N}.

4.2 Familles sommables et théorèmes de sommation par paquets

Définition Soit I un ensemble fini ou dénombrable, et considérons (ai)i∈I une famille de nombres réels positifs. On dit que la
famille est sommable si l’ensemble des sommes finies :

{
∑
j∈J

aj , J fini, J ⊂ I} est majoré.

Dans ce cas, on appelle somme de la famille la borne supérieure et on note
∑
i∈I ai = sup{

∑
j∈J aj , J fini, J ⊂ I}.

Remarques

1. Dans le cas particulier où I = N, on retrouve évidemment le cas des séries et ainsi, pour une famille de réels positifs,
(an) est sommable si et seulement si la série

∑
an converge et on a :

∑
n∈N

an =

+∞∑
n=0

an

2. Si une famille de réels positifs (ai)i∈I est sommable, alors toute sous-famille (ai)i∈I′⊂I est sommable et on a la
majoration : ∑

i∈I′
ai ≤

∑
i∈I

ai
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Soient I, J deux ensembles dénombrables qu’on suppose disjoints. Alors, la famille de réels positifs (ai)i∈ItJ est sommable
si et seulement si les sous-familles (ai)i∈I et (ai)i∈J sont sommables.
Et dans ce cas, on a : ∑

i∈ItJ

ai =
∑
i∈I

ai +
∑
i∈J

ai

Propriété 18 (cas particulier de la réunion d’indices).

I On raisonne par double implication et on veillera à se ramener à la définition de ces familles sommables de réels positifs.

En effet, on a :

• si on suppose que (ai)i∈ItJ est sommable, alors pour toutes parties finies I ′ ⊂ I, J ′ ⊂ J , on a :∑
i∈I′

ai ≤
∑
i∈ItJ

ai et
∑
i∈J′

ai ≤
∑
i∈ItJ

ai

On en déduit que (ai)i∈I et (ai)i∈J sont sommables. De plus, il vient :∑
i∈I′

ai +
∑
i∈J′

ai ≤
∑
i∈ItJ

ai

En passant au sup sur les parties I ′ d’une part, puis sur les parties J ′, on obtient :
∑
i∈I ai +

∑
i∈J ai ≤

∑
i∈ItJ ai.

• réciproquement, si les familles (ai)i∈I et (ai)i∈J sont sommables, alors on notant K′ une partie finie incluse dans ItJ ,
alors on peut voir K′ = I ′ t J ′ avec I ′ ⊂ I et J ′ ⊂ J . En particulier,∑

i∈K′
ai =

∑
i∈I′

ai +
∑
i∈J′

ai ≤
∑
i∈I

ai +
∑
i∈J

ai

On en déduit que (ai)i∈ItJ est sommable et par passage au sup sur les parties K′,
∑
i∈ItJ ai ≤

∑
i∈I ai +

∑
i∈J ai.

Soit (Iλ)λ∈Λ une famille dénombrable d’ensembles dénombrables deux à deux disjoints et tels que I =
⊔
λ∈Λ Iλ. On admet

qu’on peut généraliser le résultat précédent, et ainsi la famille de réels positifs (ai)i∈I est sommable si et seulement si :{
les sous-familles (ai)i∈Iλ sont sommables de somme Sλ

la famille des paquets (Sλ)λ∈Λ est sommable

Et dans ce cas, on a : ∑
i∈I

ai =
∑
λ∈Λ

(
∑
i∈Iλ

ai︸ ︷︷ ︸
Sλ

)

Théorème 19 (de sommation par paquets pour une famille de réels positifs).

Définition Soit I un ensemble fini ou dénombrable, et considérons (ai)i∈I une famille de nombres réels ou complexes. On dit plus
généralement que la famille est sommable si la famille des réels positifs (|ai|)i∈I) est sommable, et on définit la somme associée
par linéarité :

• dans le cas réel, ∑
i∈I

ai =
∑
i∈I

a+
i −

∑
i∈I

a−i

• dans le cas complexe, ∑
k∈I

ak =
∑
k∈I

Re(ak) + i
∑
k∈I

Im(ak)

Remarques

1. Dans cette dernière définition, on peut remarquer que c’est la sommabilité de la famille (|ai|)i∈I) qui entraine par
comparaison la sommabilité des familles de réels positifs (a+

i ), (a−i ), (|Re(ak)|), (|Im(ak)| et donc, par définition des
familles (Re(ak)), (Im(ak)).

2. Par linéarité, on peut alors prolonger le théorème de sommation par paquets d’abord à une famille sommable de
réels quelconques, puis dans un second temps, à une famille sommable de nombres complexes. Ainsi, on retiendra que
pour une famille sommable au sens où (|ai|)i∈I) est sommable, alors on peut toujours sommer par paquets et voir :∑

i∈I

ai =
∑
λ∈Λ

(
∑
i∈Iλ

ai︸ ︷︷ ︸
Sλ

)

www.cpgemp-troyes.fr 11/12

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 3
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4.3 Cas particulier des sommes doubles

Dans le cas particulier où la famille (ap,q) est indexée sur N2, on pourra considérer différentes partitions de N2 avant d’invoquer
le théorème de sommation par paquets :

N2 = {(p, q) ∈ N2} =
⊔
p∈N

{p} × N︸ ︷︷ ︸
Vp

=
⊔
q∈N

N× {q}︸ ︷︷ ︸
Hq

=
⊔
n∈N

{(p, q) ∈ N2, p+ q = n}︸ ︷︷ ︸
Dn

et ainsi, on obtient les théorèmes suivants :

Soit (ap,q)(p,q)∈N2 une famille de réels positifs indexée sur N2. Alors, la famille est sommable si et seulement si l’une des
assertions suivantes est vérifiée :

• pour tout p ∈ N, la série
∑
q∈N ap,q est convergente et la série de terme général Sp =

∑+∞
q=0 ap,q est convergente.

• pour tout q ∈ N, la série
∑
p∈N ap,q est convergente et la série de terme général Sq =

∑+∞
p=0 ap,q est convergente.

Et dans ce cas, on a alors : ∑
(p,q)∈N2

ap,q =

+∞∑
p=0

(

+∞∑
q=0

ap,q) =

+∞∑
q=0

(

+∞∑
p=0

ap,q)

Théorème 20 (de Fubini pour une famille de réels positifs).

Exemple 8 On note encore ζ la fonction de Riemann. Montrer que la série
∑
q≥2(ζ(q)− 1) est convergente et préciser sa limite.

Soit (ap,q)(p,q)∈N2 une famille de nombres réels ou complexes indexée sur N2. On suppose de plus que la famille est sommable.
Alors, on peut échanger les symboles de sorte que :

∑
(p,q)∈N2

ap,q =

+∞∑
p=0

(

+∞∑
q=0

ap,q) =

+∞∑
q=0

(

+∞∑
p=0

ap,q)

Théorème 21 (de Fubini pour une famille à valeurs quelconques).

Remarque Pour une telle famille de nombres réels ou complexes donnée, on procèdera donc en deux temps :

1. on vérifie la sommabilité en se ramenant à l’étude de la convergence absolue, c’est à dire qu’on vérifie si (|ap,q|) est
sommable à l’aide du théorème de Fubini pour les familles de réels positifs,

2. puis, on peut appliquer ce second théorème de Fubini et échanger les sommes en p et q pour calculer la somme double.

Soient (un), (vn) deux suites à valeurs réelles ou complexes. On suppose de plus que les séries
∑
un et

∑
vn convergent

absolument. Alors, la famille (upvq) est sommable et on a :

(

+∞∑
p=0

up)(

+∞∑
q=0

vq) =

+∞∑
p=0

+∞∑
q=0

upvq =

+∞∑
n=0

n∑
k=0

ukvn−k

Théorème 22 (produit de Cauchy).

I On se ramène à la famille (|upvq|) et on applique le théorème de Fubini pour les familles de réels positifs. Une fois la
famille sommable, on peut invoquer le théorème de sommation par paquets et sommer suivant les diagonales (Dn).

Remarque En notant pour tout n ∈ N, cn =
∑n
k=0 ukvn−k, on en déduit que le produit de deux séries absolument

convergentes nous donne encore une série absolument convergente telle que :

(

+∞∑
p=0

up)(

+∞∑
q=0

vq) =

+∞∑
n=0

cn

et ceci définit alors le produit de Cauchy des deux séries.

Exemple 9 Etablir que pour tout z ∈ C, |z| < 1, on a :

1

(1− z)2
=

+∞∑
n=0

(n+ 1)zn
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