
Suites d’éléments d’un espace vectoriel normé

Chapitre 2
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Pour aller plus loin
Ce chapitre n’est pas difficile, puisqu’il reprend au fond les principaux résultats de première année, mais l’objectif est de
comprendre comment, au travers des démonstrations, on manipule ces normes. C’est d’ailleurs un premier pas vers le chapitre
de topologie qui sera abordé plus tard.
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Suites d’éléments d’un espace vectoriel normé

Les espaces vectoriels considérés ici sont réels ou complexes et K désignera le corps R ou C.

1 Normes et espaces vectoriels normés

1.1 Premières définitions

Définition Soit (E,+, .) un K-espace vectoriel.

• On appelle norme sur E toute application ‖.‖ : E −→ R+ vérifiant :
∀x ∈ E, ‖x‖ = 0⇔ x = 0 (séparation)

∀λ ∈ K, ∀x ∈ E, ‖λx‖ = |λ|‖x‖ (homogénéité)

∀(x, y) ∈ E2, ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (inégalité triangulaire)

• Dans ce cas, E muni de la norme ‖.‖ est appelé espace vectoriel normé.

Remarques

1. Une telle norme sur un espace vectoriel nous permet en fait de définir une distance et donc, de prolonger naturellement
nos problèmes d’analyse asymptotique : convergence, divergence, limite... et ainsi, pour tout (x, y) ∈ E2,

‖x− y‖ désigne tout simplement la distance entre x et y

2. Pour la séparation, on se contentera de ne vérifier que le sens direct puisque le sens réciproque est immédiat par
homogénéité.

Définition Soit (E, ‖.‖) un espace vectoriel normé.

• On dit que x ∈ E est unitaire ou normé si ‖x‖ = 1.

• Plus généralement, si x 6= 0, alors
1

‖x‖x désigne l’unique vecteur unitaire associé à x.

Soit (E, ‖.‖) un espace vectoriel normé. Alors, on a pour tout (x, y) ∈ E2,

|‖x‖ − ‖y‖| ≤ ‖x± y‖ ≤ ‖x‖+ ‖y‖

Propriété 1 (inégalités triangulaires).

I On travaille en deux temps : l’inégalité triangulaire classique découle immédiatement des propriétés de la norme. Pour
l’inégalité triangulaire inversée, il suffit de partir de la norme de l’un et d’ajouter ± le suivant.

En effet, on a par exemple :
‖x‖ = ‖x+ y − y‖ ≤ ‖x+ y‖+ ‖ − y‖ = ‖x+ y‖+ ‖y‖

et ainsi, ‖x‖ − ‖y‖ ≤ ‖x+ y‖. De la même façon, en partant de y, il vient ‖y‖ − ‖x‖ ≤ ‖x+ y‖ de sorte que :

±(‖x‖ − ‖y‖) ≤ ‖x+ y‖ ⇒ |‖x‖ − ‖y‖| ≤ ‖x+ y‖

1. Dans R, on rappelle qu’on définit la valeur absolue d’un nombre réel x par :

|x| =

{
x, si x ≥ 0

−x, sinon

de sorte que (R, |.|) désigne un espace vectoriel normé.

2. Dans C, on rappelle qu’on définit le module d’un nombre complexe z par :

|z| =
√
zz

de sorte que (C, |.|) désigne un espace vectoriel normé.

Propriété 2 (deux exemples à connâıtre).

I On revient à la définition d’une norme sur un espace vectoriel. Dans les deux cas, les premières propriétés sont immédiates.
Seule l’inégalité triangulaire nécessite d’être développée et pour cela, on travaille avec la norme au carré :
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Suites d’éléments d’un espace vectoriel normé

1. Pour tout (x, y) ∈ R2,

|x+ y|2 = (x+ y)2 = x2 + 2xy + y2 ≤ x2 + 2|x||y|+ y2 = (|x|+ |y|)2

On compose alors par la fonction x 7−→
√
x croissante sur R+ pour retrouver l’inégalité triangulaire.

2. Pour tout (z, z′) ∈ C2,

|z + z′|2 = (z + z′)(z + z′) = |z|2 + zz′ + zz′ + |z′|2 = |z|2 + 2Re(zz′) + |z′|2

or on peut majorer la partie réelle obtenue : 2Re(zz′) ≤ 2|zz′| = 2|z||z′| = 2|z||z′|.
Ainsi, on a :

|z + z′|2 ≤ |z|2 + 2|z||z′|+ |z′|2 = (|z|+ |z′|)2

et on conclut encore par croissance de la fonction racine carrée sur R+.

Définition Soit (E, ‖.‖) un espace vectoriel normé, et considérons a ∈ E et r > 0.

• On appelle boule ouverte de centre a et de rayon r l’ensemble B(a, r) = {x ∈ E, ‖x− a‖ < r}.

• On appelle boule fermée de centre a et de rayon r l’ensemble Bf (a, r) = {x ∈ E, ‖x− a‖ ≤ r}.

• On appelle sphère de centre a et de rayon r l’ensemble S(a, r) = {x ∈ E, ‖x− a‖ = r}.

Remarques

1. On choisit d’avoir un rayon r strictement positif, car sinon on a trivialement :

B(a, 0) = ∅, et Bf (a, 0) = S(a, 0) = {a}

2. Par inégalité triangulaire, on vérifie aisément que pour tout λ ∈ [0, 1], et pour tout (x, y) ∈ Bf (a, r)2 (ou bien B(a, r)2),

‖λx+ (1− λ)y︸ ︷︷ ︸−a‖ = ‖λ(x− a) + (1− λ)(y − a)‖ ≤ λ‖x− a‖+ (1− λ)‖y − a‖ ≤ r

c’est à dire que les boules fermées et ouvertes sont stables par combinaison convexe. Ce sont des parties convexes
de E, et ainsi on pourra les représenter näıvement de la façon suivante :

r
a

r
a

Par contre, elles dépendront réellement du choix de la norme retenue.

Définition Soit (E, ‖.‖) un espace vectoriel normé et considérons A une partie de E. On dit que A est bornée s’il existe M ∈ R+

tel que :
∀x ∈ A, ‖x‖ ≤M

En particulier,

• si (un) désigne une suite d’éléments de E, c’est à dire (un) ∈ EN, alors on dit que la suite est bornée s’il existe M ∈ R+ tel
que :

∀n ∈ N, ‖un‖ ≤M

• si f désigne une application définie sur un ensemble X à valeurs dans E, c’est à dire f ∈ F (X,E), alors on dit que
l’application est bornée s’il existe M ∈ R+ tel que :

∀x ∈ X, ‖f(x)‖ ≤M

Exemple 1 On se place dans E = C1([0, 1],R), l’espace des fonctions de classe C1 sur [0, 1] à valeurs dans R, et on définit
l’application ‖.‖ sur E par :

‖f‖ = |f(0)|+ sup
x∈[0,1]

|f ′(x)|

1. Justifier que l’application ‖.‖ est bien définie sur E.

2. Montrer que ‖.‖ désigne bien une norme sur E.

3. L’espace E désigne t-il une partie bornée ?
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On considère E1, . . . , Ep des espaces vectoriels normés et on choisit de noter N1, . . . , Np des normes associées. On rappelle
que E = E1 × . . .× Ep défini par :

E = {x = (x1, . . . , xp) ∈ E1 × . . .× Ep}

constitue un espace vectoriel pour lequel :{
∀(x, y) ∈ E2, x+ y = (x1 + y1, . . . , xp + yp)

∀(λ, x) ∈ K× E, λx = (λx1, . . . , λxp)

En notant N∞ : E −→ R+ l’application définie par :

N∞(x) = max(N1(x1), . . . , Np(xp))

alors (E,N∞) désigne un espace vectoriel normé, appelé espace vectoriel produit muni de la norme produit.

Propriété 3 (produit fini d’espaces vectoriels normés).

I On revient à la définition d’une norme sur un espace vectoriel et on s’appliquera pour retrouver l’inégalité triangulaire.

1.2 Norme associée à un produit scalaire sur un espace préhilbertien

Définition Soit E un K-espace vectoriel.

• Si K = R, on appelle produit scalaire sur E toute forme bilinéaire symétrique définie positive, c’est à dire une application
φ : E −→ R vérifiant :

∀(x, y) ∈ E2, φ(x, y) ∈ R
∀(x, x′, y, y′) ∈ E4, ∀ λ ∈ R, φ(λx+ x′, y) = λφ(x, y) + φ(x′, y) et φ(x, λy + y′) = λφ(x, y) + φ(x, y′)

∀(x, y) ∈ E2, φ(y, x) = φ(x, y) (symétrie classique)

∀x ∈ E, φ(x, x) ≥ 0 et φ(x, x) = 0⇔ x = 0

et dans ce cas, (E, φ) définit un espace préhilbertien réel.

• Si K = C, on appelle produit scalaire sur E toute forme sesquilinéaire hermitienne définie positive, c’est à dire une
application φ : E −→ C vérifiant :

∀(x, y) ∈ E2, φ(x, y) ∈ C
∀(x, x′, y, y′) ∈ E4, ∀ λ ∈ C, φ(λx+ x′, y) = λφ(x, y) + φ(x′, y) et φ(x, λy + y′) = λφ(x, y) + φ(x, y′)

∀(x, y) ∈ E2, φ(y, x) = φ(x, y) (symétrie hermitienne)

∀x ∈ E, φ(x, x) ≥ 0 et φ(x, x) = 0⇔ x = 0

et dans ce cas, (E, φ) définit un espace préhilbertien complexe.

On appelle alors norme associée à ce produit scalaire l’application notée ‖.‖2 : E −→ R+ et définie par :

‖x‖2 =
√
φ(x, x)

Remarque Les propriétés du produit scalaire nous donnent immédiatement que ‖.‖2 vérifie les axiomes de séparation et
l’homogénéité : par exemple avec K = C,

‖λx‖2 =
√
φ(λx, λx) =

√
λλφ(x, x) =

√
|λ|2φ(x, x) = |λ|‖x‖2

mais attention, à ce stade, il ne s’agit pas encore d’une norme : il reste à vérifier l’inégalité triangulaire.

Soit E un K-espace vectoriel et notons φ un produit scalaire sur E. Alors, pour tout (x, y) ∈ E2,

|φ(x, y)| ≤ ‖x‖2.‖y‖2

Théorème 4 (inégalité de Cauchy-Schwarz).

I Si x est nul, c’est immédiat. Sinon, on distingue les cas réel et complexe. Ainsi, si K = R, on peut introduire la fonction
polynôme P (λ) = ‖λx+ y‖22 et invoquer le signe de cette fonction sur R. Si K = C, on montre d’abord qu’il existe un unique
couple (λ, z) ∈ C× x⊥ tel que y = λx+ z, puis on en déduit l’inégalité à l’aide du théorème de Pythagore.
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Soit E un K-espace vectoriel et notons φ un produit scalaire sur E. Alors, la norme associée ‖.‖2 est une norme sur E.
On parle plus précisément de norme euclidienne associée si K = R ou de norme hermitienne associée si K = C.

Propriété 5 (norme associée à un produit scalaire).

I Il suffit de revenir à la définition d’une norme. Encore une fois, seule l’inégalité triangulaire nécessite une attention
particulière puisqu’il faudra alors discuter les cas réel et complexe.

De cette dernière propriété, on peut en déduire des normes usuelles, toutes associées aux produits scalaires que vous avez pu
rencontrer l’an dernier.

Exemple 2

1. (a) On se place dans E = Rn et on définit φ : E × E −→ R par :

φ(x, y) =

n∑
i=1

xiyi

Etablir que φ définit un produit scalaire sur E.

(b) On se place dans E = Cn et on définit φ : E × E −→ C par :

φ(x, y) =

n∑
i=1

xiyi

Etablir que φ définit un produit scalaire sur E.

Ainsi, dans E = Kn, on pourra retenir que ‖.‖2 : x 7−→
√∑n

i=1 |xi|2 définit la norme associée au poduit scalaire canonique.

2. (a) On se place dans E = C0([a, b],R) et on définit φ : E × E −→ R par :

φ(f, g) =

∫ b

a

fg

Etablir que φ définit un produit scalaire sur E.

(b) On se place dans E = C0([a, b],C) et on définit φ : E × E −→ C par :

φ(f, g) =

∫ b

a

fg

Etablir que φ définit un produit scalaire sur E.

Ainsi, dans E = C0([a, b],K), on pourra retenir que ‖.‖2 : f 7−→
√∫ b

a
|f |2 définit la norme associée au poduit scalaire

canonique.

3. (a) On se place dans E =Mn(R) et on définit φ : E × E −→ R par :

φ(A,B) = tr(AT .B) =

n∑
i=1

n∑
k=1

akibki

Etablir que φ définit un produit scalaire sur E.

(b) On se place dans E =Mn(C) et on définit φ : E × E −→ C par :

φ(A,B) = tr(A
T
.B) =

n∑
i=1

n∑
k=1

akibki

Etablir que φ définit un produit scalaire sur E.

Ainsi, dans E =Mn(K), on pourra retenir que ‖.‖2 : A 7−→
√∑n

i=1

∑n
k=1 |aki|2 définit la norme associée au poduit scalaire

canonique.
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1.3 Quelques exemples fondamentaux

On se place dans E = Kn et on définit les applications :

‖.‖1 : x ∈ E 7−→
n∑
i=1

|xi|, ‖.‖2 : x ∈ E 7−→

√√√√ n∑
i=1

|xi|2, ‖.‖∞ : x ∈ E 7−→ max
1≤i≤n

|xi|

Alors, on vérifie que ces applications définissent bien des normes sur Kn. Elles sont respectivement appelées norme-1,
norme-2 et norme infinie.

Propriété 6 (normes usuelles sur l’espace des n-uplets).

I Le cas de la norme ‖.‖2 a déjà été abordé. Pour les deux autres applications, on revient à la définition d’une norme sur
un tel espace vectoriel.

Remarque Il s’agira donc de faire attention aux normes utilisées dans les espaces vectoriels considérés. Par exemple, dans
le cas particulier du plan euclidien R2, on peut représenter la boule unité, de centre (0, 0) et de rayon 1.

Par définition, on a donc en fonction de la norme retenue :

• Bf (0R2 , 1) = {u = (x, y) ∈ R2, ‖u‖1 ≤ 1} = {u = (x, y) ∈ R2, |x|+ |y| ≤ 1}

0R2

• Bf (0R2 , 1) = {u = (x, y) ∈ R2, ‖u‖2 ≤ 1} = {u = (x, y) ∈ R2, x2 + y2 ≤ 1}

0R2

• Bf (0R2 , 1) = {u = (x, y) ∈ R2, ‖u‖∞ ≤ 1} = {u = (x, y) ∈ R2, max(|x|, |y|) ≤ 1}

0R2

On se place dans E = C0([a, b],K) et on définit les applications :

‖.‖1 : f ∈ E 7−→
∫ b

a

|f |, ‖.‖2 : f ∈ E 7−→

√∫ b

a

|f |2, ‖.‖∞ : f ∈ E 7−→ sup
x∈[a,b]

|f(x)|

Alors, on vérifie que ces applications définissent bien des normes sur C0([a, b],K). Elles sont respectivement appelées norme-
1, norme-2 et norme infinie.

Propriété 7 (normes usuelles sur l’espace des fonctions continues sur un segment).

I Le cas de la norme ‖.‖2 a déjà été abordé. Pour les deux autres applications, on revient à la définition d’une norme sur
un tel espace vectoriel.
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Suites d’éléments d’un espace vectoriel normé

Remarques

1. Ces trois normes sur l’espace des fonctions continues sur un segment sont importantes, car elles représentent des normes
associées à des modes de convergence différents. Ainsi, ‖.‖1 est aussi appelée norme pour la convergence en moyenne,
‖.‖2 est aussi appelée norme pour la convergence en moyenne quadratique et ‖.‖∞ norme pour la convergence uniforme.

2. En fait, on peut généraliser ces résultats et montrer que pour tout p ≥ 1 :

• ‖.‖p : x ∈ Kn 7−→ (
∑n
i=1 |xi|

p)1/p désigne encore une norme sur Kn.

• ‖.‖p : f ∈ C0([a, b],K) 7−→ (
∫ b
a
|f |p)1/p désigne encore une norme sur C0([a, b],K).

On se place dans E =Mn(K) et on définit les applications :

‖.‖1 : A ∈ E 7−→
∑

1≤i,k≤n

|aki|, ‖.‖2 : A ∈ E 7−→
√ ∑

1≤i,k≤n

|aki|2, ‖.‖∞ : A ∈ E 7−→ max
1≤i,k≤n

|aki|

Alors, on vérifie que ces applications définissent bien des normes sur Mn(K). Elles sont respectivement appelées norme-1,
norme-2 et norme infinie.

Propriété 8 (normes usuelles sur l’espace des marices carrées).

I Le cas de la norme ‖.‖2 a déjà été abordé. Pour les deux autres applications, on revient à la définition d’une norme sur
un tel espace vectoriel.

2 Suites d’éléments d’un espace vectoriel normé

2.1 Notion de suite convergente

Définition Soit (E, ‖.‖) un espace vectoriel normé et considérons (un) ∈ EN.

• On dit que la suite (un) est convergente dans E s’il existe ` ∈ E tel que :

∀ε > 0, ∃N ∈ N, ∀n ≥ N, ‖un − `‖ ≤ ε

• Si la suite (un) n’est pas convergente, alors on dit qu’elle est divergente.

Remarques

1. Bien entendu, la convergence d’une telle suite (un) dépend de la norme considérée sur E et il n’est pas rare de trouver
des suites d’un même espace convergentes pour une norme, mais pas pour une autre norme. C’est même tout l’enjeu
de ce premier chapitre.
Ainsi, s’il n’y a pas d’ambigüıté sur la norme utilisée, on notera : un −→ `, sinon on veillera à préciser la norme associée
pour cette limite :

un
‖.‖−→ `

2. La convergence de la suite (un) vers ` revient en fait à montrer que la distance ‖un − `‖ −→ 0. Ainsi, si la limite est
connue, on cherchera le plus souvent à déterminer une suite (αn) ∈ RN telle que :

0 ≤ ‖un − `‖ ≤ αn , avec αn −→ 0

Le théorème d’encadement nous permettra alors de conclure que la suite (un) est convergente de limite `.

Soit (E, ‖.‖) un espace vectoriel normé et considérons (un) ∈ EN qu’on suppose convergente. Alors, la limite est unique et
elle est encore notée lim

n→+∞
un ou simplement limun.

Théorème 9 (unicité de la limite).

I On raisonne encore par l’absurde en adaptant la preuve vue en première année.

En effet, si on suppose que la suite (un) converge vers deux limites distinctes `1 et `2 dans E. Alors, pour ε = ‖`1−`2‖/3 > 0,
il vient : {

∃N1 ∈ N, ∀n ≥ N1, ‖un − `1‖ ≤ ε
∃N2 ∈ N, ∀n ≥ N1, ‖un − `2‖ ≤ ε

et ainsi, pour tout n ≥ max(N1, N2), on peut écrire à l’aide de l’inégalité triangulaire :

‖`1 − `2‖ = ‖`1 − un + un − `2‖ ≤ ‖un − `1‖+ ‖un − `2‖ ≤ 2ε = 2‖`1 − `2‖/3

d’où, en simplifiant de part et d’autre de l’inégalité : 1 ≤ 2/3. Ce qui est contradictoire et ainsi, la limite est unique.
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Soit (E, ‖.‖) un espace vectoriel normé. Alors, toute suite convergente est bornée.

Propriété 10 (convergente donc bornée).

I On traduit la convergence d’une telle suite pour ε = 1 > 0, puis on majore ‖un‖ = ‖un− `+ `‖ à partir d’un certain rang.

Remarque On fera attention : la réciproque est fausse et on pourra évoquer la suite réelle ((−1)n).

Soit (E, ‖.‖) un espace vectoriel normé et considérons (un), (vn) ∈ EN telle que

{
un −→ `1

vn −→ `2
. On a :

1. ‖un‖ −→ ‖`1‖

2. pour tout λ ∈ K, λun + vn −→ λ`1 + `2

3. si de plus la norme sur E désigne une norme d’algèbre, c’est à dire qu’elle vérifie ‖xy‖ ≤ ‖x‖‖y‖, alors :

unvn −→ `1`2

Propriété 11 (opérations sur les limites).

I La limite étant connue, on cherchera à chaque fois à contrôler la différence entre la suite et sa limite.

Exemple 3 On se place dans E =Mn(K) et on définit l’application N : E −→ R+ par :

N(A) = max
1≤i≤n

n∑
j=1

|aij |

Montrer que N désigne une norme d’algèbre sur Mn(K).

2.2 Suites extraites et valeurs d’adhérence

Définition Soit (E, ‖.‖) un espace vectoriel normé et considérons (un) ∈ EN.

• On appelle suite extraite ou sous-suite de (un) toute suite (vn) pour laquelle il existe φ : N −→ N strictement croissante
telle que pour tout n ∈ N,

vn = uφ(n)

Auutrement dit, la suite (vn) est constituée de termes de la suite (un) avec des indices pris de façon croissante.

• On appelle alors valeur d’adhérence toute limite d’une suite convergente extraite de la suite (un).

Remarque Une telle application φ est aussi appelée application extractrice et on peut montrer par récurrence que pour
tout n ∈ N, φ(n) ≥ n.

Soit (E, ‖.‖) un espace vectoriel normé et considérons (un) ∈ EN, ` ∈ E.

1. Si (un) est convergente de limite `, alors toute suite extraite converge nécessairement vers `.

2. Toute suite convergente possède donc une seule valeur d’adhérence, sa limite elle même. Et ainsi, toute suite possédant
au moins deux valeurs d’adhérence, est nécessairement divergente.

Propriété 12 (valeur d’adhérence d’une suite convergente).

I Pour une sous-suite donnée, on se ramène à la définition de la limite et on utilise la remarque précédente pour montrer
qu’elle converge vers `. Le second point découle alors immédiatement du premier.

Remarque On fera très attention avec cette notion délicate. Par exemple, ce n’est pas parce qu’une suite possède une seule
valeur d’adhérence qu’elle est convergente. On pourra considérer la suite (n(−1)n) et pour laquelle on vérifie facilement :u2n = 2n −→ +∞

u2n+1 =
1

2n+ 1
−→ 0

www.cpgemp-troyes.fr 8/17

http://www.cpgemp-troyes.fr/


MP - Lycée Chrestien de Troyes
Chapitre 2
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Soit (E, ‖.‖) un espace vectoriel normé et considérons (un) ∈ EN, ` ∈ E. Alors,

(un) converge vers ` ⇔

{
u2n −→ `

u2n+1 −→ `

Propriété 13 (caractérisation de la convergence à l’aide des suites extraites (u2n) et (u2n+1)).

I On procède par double implication. Le sens direct est immédiat et seul le sens réciproque nécessite de revenir à la définition
de la limite.

En effet, si les deux suites extraites convergent, alors pour tout ε > 0 fixé, on a :{
∃N1 ∈ N, ∀n ≥ N1, ‖u2n − `‖ ≤ ε
∃N2 ∈ N, ∀n ≥ N2, ‖u2n+1 − `‖ ≤ ε

Posons alors N = max(2N1, 2N2 + 1), et on vérifie que pour tout n ≥ N , on a :

• 1er cas : si n = 2p, alors n ≥ N ⇒ 2p ≥ 2N1 ⇒ p ≥ N1 et il vient ‖u2p − `‖ ≤ ε

• 2ème cas : si n = 2p+ 1, alors n ≥ N ⇒ 2p+ 1 ≥ 2N2 + 1⇒ p ≥ N2 et il vient ‖u2p+1 − `‖ ≤ ε
c’est à dire dans ces deux : ‖un − `‖ ≤ ε. Ainsi, on reconnâıt la définition de la limite et donc, un −→ `.

2.3 Comparaison des normes

Définition Soit E un K-espace vectoriel et notons N1, N2 deux normes quelconques sur E. On dit que ces normes sont
équivalentes s’il existe α, β > 0 tels que :

∀x ∈ E, αN1(x) ≤ N2(x) ≤ βN1(x)

On se place dans E = Kn et on rappelle que les applications suivantes définissent des normes usuelles :

‖.‖1 : x ∈ E 7−→
n∑
i=1

|xi|, ‖.‖2 : x ∈ E 7−→

√√√√ n∑
i=1

|xi|2, ‖.‖∞ : x ∈ E 7−→ max
1≤i≤n

|xi|

De plus, on a pour tout x ∈ E, {
‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞

⇒ 1√
n
‖x‖2 ≤ ‖x‖1 ≤ n‖x‖2

et ainsi, ces trois normes sont équivalentes.

Propriété 14 (comparaison des normes usuelles sur l’espace des n-uplets).

I Pour les premières inégalités, il suffit d’encadrer la norme-1 ou 2. La dernière est obtenue par simple transitivité.

Remarques

1. On montre facilement que l’équivalence sur les normes désigne une relation d’équivalence, au sens où elle est réflexive,
symétrique et transitive.

2. En adaptant les inégalités précédentes à la norme ‖.‖p, on a encore : ‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞, et ainsi, le théorème
d’encadrement nous livre ‖.‖p −→

p→+∞
‖.‖∞, ce qui justifie ici la notation utilisée.

Malheureusement, l’équivalence des normes usuelles sur Kn ne peut pas être prolongée à l’espace des fonctions continuues sur un
segment.

Exemple 4 Soit E = C0([0, 1],R), on considère ‖.‖1, ‖.‖2 et ‖.‖∞ les normes usuelles sur E et on définit pour tout n ∈ N∗ la
fonction fn par :

1/n 1

1

de sorte que fn(t) =


2nt, si t ∈ [0, 1/2n]

−2nt+ 2, si t ∈ [1/2n, 1/n]

0, si t ∈ [1/n, 1]

.

Montrer alors que ces trois normes sont deux à deux non équivalentes.
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Soit E un K-espace vectoriel et notons N1, N2 deux normes qu’on suppose équivalentes, ` ∈ E.

1. Toute suite (un) ∈ EN bornée pour la norme N1 est aussi bornée pour la norme N2.

2. Si de plus, (un) est convergente, alors :

un
N1−→ ` ⇔ un

N2−→ `

Propriété 15 (invariance du caractère borné et de la convergence).

I A chaque fois, on traduit l’équivalence des normes : c’est même le théorème d’encadrement qui nous donne le second point.

3 Cas particulier des suites réelles

On a vu que (R, |.|) était un espace vectoriel normé de référence, et ainsi toutes les propriétés sur les suites d’éléments d’un
espace vectoriel normé sont encore vraies. De plus, il constitue un corps commutatif totalement ordonné qui vérifie les
axiomes d’existence des bornes supérieure et inférieure :

• toute partie A non vide et majorée de R possède une borne supérieure notée M = supA telle que :{
∀x ∈ A, x ≤M (M est un majorant de A)

∀ ε > 0, ∃xε ∈ A, xε > M − ε (M est le plus petit des majorants de A, au sens où on ne majore plus si on diminue M)

• toute partie A non vide et minorée de R possède une borne inférieure notée m = inf A telle que :{
∀x ∈ A, x ≥ m (m est un minorant de A)

∀ ε > 0, ∃xε ∈ A, xε < m+ ε (m est le plus grand des minorants de A, au sens où on ne minore plus si on augmente m)

3.1 Inégalités et passage à la limite

Définition Soit (un) ∈ RN. On rappelle que :

• (un) est convergente s’il existe ` ∈ R tel que :

∀ε > 0, ∃N ∈ N, ∀n ≥ N, |un − `| ≤ ε⇔ `− ε ≤ un ≤ `+ ε

• (un) est divergente si elle ne converge pas ou si elle diverge vers ±∞ :{
un −→ +∞ : ∀M ∈ R, ∃N ∈ N, ∀n ≥ N, un ≥M
un −→ −∞ : ∀m ∈ R, ∃N ∈ N, ∀n ≥ N, un ≤ m

Remarque En fait, c’est la traduction de ces limites en termes d’inégalités qui nous donnent en première année des résultats
fort pratiques.

Soient (un), (vn) ∈ RN pour lesquelles on suppose qu’il existe N ∈ N tel que pour tout n ≥ N , un ≤ vn, et notons (`1, `2) ∈ R2.

1. Si un −→ `1 et vn −→ `2, alors par passage à la limite `1 ≤ `2.

2. Si un −→ +∞, alors vn −→ +∞.

3. Si vn −→ −∞, alors un −→ −∞.

Théorème 16 (de comparaison).

I On revient à la définition de la limite, mais seul le premier point est délicat, puisque les deux autres s’obtiennent par simple
transitivité de la relation d’ordre.

En effet,

1. On raisonne par l’absurde en supposant que `1 > `2. Avec ε = (`1 − `2)/3 > 0, il vient :{
∃N1 ∈ N, ∀n ≥ N1, `1 − ε ≤ un ≤ `1 + ε

∃N2 ∈ N, ∀n ≥ N2, `2 − ε ≤ vn ≤ `2 + ε

or ici, le choix de ε nous donne : `2+ε < `1−ε et ainsi, pour tout n ≥ max(N,N1, N2), on a : vn ≤ `2+ε < `1−ε ≤ un.
En contradiction avec l’hypothèse un ≤ vn. D’où, l’inégalité `1 ≤ `2.
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2. Pour tout M ∈ R fixé, on a : ∃N1 ∈ N, ∀n ≥ N1, un ≥M . Ainsi, pour tout n ≥ max(N,N1),

vn ≥ un ≥M

Finalement, on a trouvé un rang à partir duquel vn est supérieur à n’importe quelle constante M : on a bien vn −→ +∞.

3. Pour tout m ∈ R fixé, on a : ∃N1 ∈ N, ∀n ≥ N1, vn ≤ m. Ainsi, pour tout n ≥ max(N,N1),

un ≤ vn ≤ m

Finalement, on a trouvé un rang à partir duquel un est inférieur à n’importe quelle constante m : on a bien un −→ −∞.

Remarque On fera attention : les passages à la limite sont donc compatibles avec les inégalités larges, mais pas avec les
inégalités strictes... c’est une erreur courante à ne pas négliger.

Soient (un), (vn), (wn) ∈ RN pour lesquelles on suppose qu’il existe N ∈ N tel que pour tout n ≥ N , un ≤ vn ≤ wn, et notons
` ∈ R. Alors, on a : {

un −→ `

wn −→ `
⇒ vn −→ `

Théorème 17 (d’encadrement).

I On revient encore à la définition de la limite : on veillera à se placer à un rang suffisament grand pour avoir toutes les
inégalités souhaitées.

Définition Soient (un), (vn) ∈ RN dont on suppose tous les termes non nuls à partir d’un certain rang N . On rappelle que :

• un = o
n→+∞

(vn) ⇔ ∃(an) ∈ RN, ∀n ≥ N, un = anvn avec an −→ 0 ⇔ un/vn −→ 0

et dans ce cas, on dit que (un) est négligeable devant (vn).

• un = O
n→+∞

(vn) ⇔ ∃(an) ∈ RN, ∀n ≥ N, un = anvn avec (an) bornée ⇔ (un/vn) est bornée.

et dans ce cas, on dit que (un) est dominée par (vn).

• un ∼
n→+∞

vn ⇔ ∃(an) ∈ RN, ∀n ≥ N, un = anvn avec an −→ 1 ⇔ un/vn −→ 1

et dans ce cas, on dit que (un) et (vn) sont équivalentes.

Remarques

1. Ces relations de comparaisons son très pratiques, ne serait-ce que pour déterminer la limite d’une suite mais elles
cachent avant tout des inégalités et on pourra plus tard apprendre à sommer, sous certaines conditions, ces relations
de comparaison. D’ailleurs, s’il n’y a pas d’ambigüıté, on pourra noter simplement :

un = o(vn), un = O(vn), un ∼ vn

2. La relation ∼ doit être maniée avec précaution, car elle est compatible avec la multiplication et donc les puissances,
mais n’est pas compatible avec l’addition et certaines compositions. Par exemple,

n ∼ n+ 1 mais en 6∼ en+1

Soient (un), (vn) ∈ RN dont on suppose tous les termes non nuls à partir d’un certain rang N , et ` ∈ R. Alors, on a
immédiatement :

1. un ∼ vn ⇔ un = vn + o(vn)

2.

{
un ∼ vn
vn −→ `

⇒ un −→ `

Corollaire 18 (immédiat).
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3.2 Des théorèmes de convergence très utiles

Soit (un) ∈ RN qu’on suppose croissante.

1. Si (un) est majorée, alors la suite est convergente et on a limun = sup
n∈N

un, qu’on peut aussi noter supun.

2. Sinon, la suite (un) est divergente et limun = +∞.

Théorème 19 (de la limite monotone pour une suite croissante).

I Pour le premier point, on montre que {un, n ∈ N} possède une borne supérieure dont on prouvera qu’elle désigne tout
simplement la limite de la suite. Pour le second point, il suffit de nier l’hypothèse de majoration et d’invoquer la monotonie...
on retrouvera alors la définition d’une suite divergente.

Soit (un) ∈ RN qu’on suppose décroissante.

1. Si (un) est minorée, alors la suite est convergente et on a limun = inf
n∈N

un, qu’on peut aussi noter inf un.

2. Sinon, la suite (un) est divergente et limun = −∞.

Théorème 20 (de la limite monotone pour une suite décroissante).

I On adapte la démonstration précédente et on prouvera d’abord l’existence de la borne inférieure.

Exemple 5 On considère (un) une suite réelle bornée et on pose pour tout n ∈ N,

vn = sup{up, p ≥ n} et wn = inf{up, p ≥ n}

1. Montrer que les suites (vn) et (wn) sont convergentes.

2. On note alors lim vn = lim supun et limwn = lim inf un. Etablir que ces deux limites représentent en fait des valeurs
d’adhérence pour la suite (un).

3. Soit ` une valeur d’adhérence de la suite (un). Montrer que : lim inf un ≤ ` ≤ lim supun.

Ainsi, on pourra retenir que les limites lim inf et lim sup désignent respectivement la plus petite et la plus grande des valeurs
d’adhérence d’une suite.

Soient (un), (vn) ∈ RN qu’on suppose adjacentes, c’est à dire que par exemple :


(un) est croissante

(vn) est décroissante

vn − un −→ 0

. Alors, on a :

1. les deux suites sont convergentes et de même limite `.

2. de plus, on peut encadrer cette limite de sorte que pour tout n ∈ N, un ≤ ` ≤ vn.

Théorème 21 (de convergence des suites adjacentes).

I On introduit la suite auxiliaire wn = vn−un et on prouve que pour tout n ∈ N, wn ≥ 0. On peut alors exploiter la monotonie
des suites données pour exhiber un encadrement de celles-ci et conclure à l’aide du théorème de la limite monotone.

Remarque On essaiera de retenir cet encadrement, car il peut être utile. D’ailleurs, si les suites données sont strictement
motonones, on peut même préciser que pour tout n ∈ N,

un < un+1 ≤ ` ≤ vn+1 < vn ⇒ un < ` < vn

et ainsi, l’encadrement de la limite est strict.

Exemple 6 On définit les suites (un) et (vn) par :

∀n ∈ N∗, un =

n∑
k=0

1

k!
et vn = un +

1

n.n!

1. Montrer que ces deux suites sont adjacentes.

2. On peut montrer que e = limun = lim vn. Prouver alors que e est un nombre irrationnel.
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Toute suite réelle bornée admet au moins une valeur d’adhérence, c’est à dire qu’elle admet au moins une suite extraite
convergente.

Théorème 22 (de Bolzano-Weierstrass).

I On va procéder par encadrement et on construit par récurrence des segments emboités In = [an, bn] de sorte que pour tout
n ∈ N, In possède une infinité de termes de la suite (un).

Pour cela, considérons une suite réelle (un) qu’on suppose bornée et posons :{
a0 = inf un

b0 = supun
et ainsi, I0 = [a0, b0] contient une infinité de termes.

Puis, par récurrence, ayant construit un tel segment In = [an, bn] contenant une infinité de termes, on calcule le point milieu
cn+1 = (an + bn)/2 et on pose :{

an+1 = an

bn+1 = cn+1

si [an, cn+1] possède une infinité de termes, ou bien.

{
an+1 = cn+1

bn+1 = bn
sinon

Et dans les deux cas, In+1 = [an+1, bn+1] contient une infinité de termes de la suite (un).
Pour finir, on choisit alors des termes extraits de la suite (un) en veillant à chaque fois à piocher d’une part dans les segments
In et en veillant d’autre part à prendre des indices croissants. On a alors une suite extraite (uφ(n)) vérifiant pour tout n ∈ N,

an ≤ uφ(n) ≤ bn
Or les segments In étant emboités, on a : (an) croissante, (bn) décroissante et bn − an = (b0 − a0)/2n −→ 0. Ces suites
étant adjacentes, elles convergent donc vers une même limite `.
Le théorème d’encadrement nous permet de conclure que la suite extraite (uφ(n)) ainsi construite est bien convergente et on
en déduit le théorème de Bolzano-Weierstrass.

Remarques

1. On aurait pu aussi revenir à un exemple rencontré plus tôt : en effet, les limites lim sup et lim inf fournissent des
valeurs d’adhérence d’une telle suite bornée, ce qui prouve le théorème de Bolzano-Weierstrass et nous livre un exemple
explicite de valeur d’adhérence.

2. Ce théorème a de nombreuses applications : c’est notamment grâce à lui qu’on peut prouver en première année le
théorème de Heine pour les fonctions continues d’une variable réelle, ou encore que l’image continue d’un segment est
un segment.

Soit (un) ∈ RN qu’on suppose bornée. Si de plus, (un) possède une unique valeur d’adhérence `, alors la suite est convergente
et on a :

un −→ `

Corollaire 23 (critère de convergence pour les suites bornées).

I On raisonne par l’absurbe en supposant que un 6−→ ` et on construit une suite extraite qui ne peut pas tendre vers `.

Remarques

1. Ce résultat est assez pratique, car pour prouver la convergence d’une telle suite bornée, cela revient à résoudre un
problème d’unicité. Bien entendu, c’est le genre de résultat théorique qu’on réservera aux exercices les plus difficiles.

2. D’ailleurs, si la suite est bornée et divergente, c’est donc que nécessairement elle admet au moins deux valeurs
d’adhérence distinctes.

3.3 Application à l’étude des suites à valeurs complexes

Encore une fois, (C, |.|) est un espace vectoriel normé de référence et on retrouvera les propriétés générales de ces espaces.
Malheureusement, il ne possède pas de relation d’ordre naturel et l’étude des suites complexes nécessitera souvent de se
ramener aux suites réelles qui les constituent.

Soit (un) ∈ CN telle que pour tout n ∈ N, un = an + ibn, et notons ` = α+ iβ, (α, β) ∈ R2. Alors, on a l’équivalence :

un −→ ` ⇔

{
an −→ α

bn −→ β

Propriété 24 (convergence d’une suite complexe).
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I On procède par double implication. Le sens direct est immédiat, car on peut majorer les différences par le module |un− `|.
Pour le sens réciproque, on calculera simplement le module avant de passer à la limite.

Remarque Finalement, l’étude d’une suite à valeurs complexes se ramène à l’étude de deux suites réelles, les suites partie
réelle (an) et partie imaginaire (bn).
D’ailleurs, il peut aussi être utile de faire appel à la forme exponentielle et ainsi, si un = ρne

iθn avec ρn −→ α et θn −→ β,
alors :

un = ρne
iθn = ρn cos(θn) + iρn sin(θn) −→ α cos(β) + iα sin(β) = αeiβ

Exemple 7 Fixons λ ∈ R et on définit la suite (zn) pour tout n ∈ N∗ par :

zn = (1 + i
λ

n
)n

Montrer que (zn) converge et préciser sa limite.

Toute suite complexe bornée admet au moins une valeur d’adhérence, c’est à dire qu’elle admet au moins une suite extraite
convergente.

Théorème 25 (de Bolzano-Weierstrass).

I On se ramène aux suites partie réelle et imaginaire, puis on invoque le théorème dans le cas réel... attention, on veillera
à faire une extraction diagonale des termes afin d’exhiber une seule application extractrice.

Soit (un) ∈ CN qu’on suppose bornée. Si de plus, (un) possède une unique valeur d’adhérence `, alors la suite est convergente
et on a :

un −→ `

Corollaire 26 (critère de convergence pour les suites bornées).

3.4 Quelques rappels sur les suites récurrentes classiques

On rappelle qu’une suite (un) ∈ KN est arithmétique s’il existe r ∈ K tel que : ∀n ∈ N, un+1 = un + r.
Et dans ce cas, on montre par récurrence que :

1. ∀n ∈ N, un = u0 + n.r et plus généralement, avec p fixé dans N, ∀n ≥ p, un = up + (n− p).r

2. ∀n ∈ N,
∑n
k=0 uk = (n+ 1).

(u0 + un)

2

Propriété 27 (suite arithmétique).

Remarque On apprendra à utiliser cette dernière formule, car elle nous permet d’aller plus vite pour déterminer l’expression
de sommes classiques :

n∑
k=0

k =
n(n+ 1)

2
,

n−1∑
k=2

k =
(n− 2)(n+ 1)

2
. . .

On rappelle qu’une suite (un) ∈ KN est géométrique s’il existe q ∈ K tel que : ∀n ∈ N, un+1 = q.un.
Et dans ce cas, on montre par récurrence que :

1. ∀n ∈ N, un = u0.q
n et plus généralement, avec p fixé dans N, ∀n ≥ p, un = up.q

n−p

2. ∀n ∈ N,
∑n
k=0 uk =

u0.
1− qn+1

1− q , si q 6= 1

u0.(n+ 1), si q = 1

Propriété 28 (suite géométrique).
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Remarques

1. On apprendra encore à utiliser cette dernière formule, car elle nous permet d’aller plus vite, mais surtout d’éviter des
erreurs grossières. Ainsi, si q 6= 1, on fera attention à ce que :

n∑
k=0

qk =
1− qn+1

1− q ,

n∑
k=1

qk = q.
1− qn

1− q ,
n∑
k=2

qk = q2.
1− qn−1

1− q . . .

2. Il faudra connâıtre en particulier le comportement asymptotique de la suite géométrique (qn) avec q ∈ C. En effet,

• q = 0⇒ la suite est évidemment nulle à partir du rang 1.

• |q| > 1⇒ |qn| = |q|n = en ln(|q|) −→ +∞, et donc la suite est divergente au sens où elle ne peut pas converger.

• 0 < |q| < 1⇒ |qn| = |q|n = en ln(|q|) −→ 0, et donc la suite tend vers 0.

• |q| = 1, q = 1⇒ la suite est évidemment constante égale à 1.

• |q| = 1, q 6= 1⇒ on raisonne par l’absurde en supposant que la suite converge et en notant ` sa limite :

comme qn+1 = q.qn, il vient par passage à la limite ` = q`⇔ `(1− q) = 0⇔ ` = 0. Mais alors :{
|qn| −→ |`| = 0

|qn| = |q|n = 1 −→ 1
ce qui est impossible par unicité de la limite, et donc la suite est divergente.

Finalement, on retrouve bien que la suite (qn) converge si et seulement si |q| < 1 ou q = 1.

Exemple 8 Montrer que la suite (un) définie pour tout n ∈ N par :

un = n sin(2πn!e)

est convergente et préciser sa limite.

On rappelle qu’une suite (un) ∈ KN est arithmético-géométrique s’il existe a, b ∈ K avec a 6= 1, b 6= 0 tels que :

∀n ∈ N, un+1 = aun + b

Dans ce cas, on pose ` = b/(1− a) et on montre que vn = un − ` définit une suite géométrique de raison a de sorte que :

∀n ∈ N, un = (u0 − `).an + `

Propriété 29 (suite arithmético-géométrique).

On rappelle qu’une suite (un) ∈ KN est récurrente linéaire d’ordre 2 s’il existe a, b ∈ K avec b 6= 0 tels que :

∀n ∈ N, un+2 = aun+1 + bun

Dans ce cas, on résout l’équation caractéristique associée dans C : r2 − ar − b = 0 et ainsi,

• si ∆ 6= 0, l’équation admet deux racines distinctes r1, r2, et on a : (un) ∈ V ect((rn1 ), (rn2 )).

• si ∆ = 0, l’équation admet une racine double r0, et on a : (un) ∈ V ect((rn0 ), (nrn0 )).

Propriété 30 (suite récurrente linéaire d’ordre 2).

I On pose E = {(un) ∈ CN, un+2 − aun+1 − bun = 0} et on montre que φ : (un) ∈ E 7−→ (u0, u1) ∈ C2 définit un isomor-
phisme d’espaces vectoriels. On en déduit que dim(E) = 2 et on vérifie simplement que les suites données représentent à
chaque fois deux vecteurs indépendants de E.

Par définition d’une telle suite à deux pas, pour tout couple de conditions initiales données, il existe une unique suite
(un) associée dans E. L’application φ étant linéaire, c’est un isomorphisme d’espaces vectoriels de sorte que :

dim(E) = dim(K2) = 2

On vérifie alors que les vecteurs données dans les deux cas conviennent, et n’étant pas colinéaires, ils constituent une base de
E. Ce qui nous permet d’en déduire que toute suite de E est bien engendrée par ces vecteurs.
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Remarques

1. Dans le cas particulier d’une suite réelle pour laquelle l’équation caractéristique nous donnerait deux racines complexes
conjuguées r1 = ρeiθ, r2 = ρe−iθ , on peut affiner l’écriture :

(un) ∈ V ect((rn1 ), (rn2 )) = V ect((ρn cos(nθ)), (ρn sin(nθ)))

2. Bien entendu, on ne traite pas ici toutes les suites classiques et il faudra revoir le cas des systèmes dynamiques discrets
de la forme :

un+1 = f(un)

et pour lesquels on cherche souvent :

• à étudier la monotonie de f et y placer des points fixes éventuels afin de reconnâıtre des intervalles stables

• à identifier la nature de la suite (un) en fonction des intervalles accrochés par u0.

4 Cas particulier des espaces vectoriels normés de dimenion finie

Définition Soit (E, ‖.‖) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (e1, . . . , ep) une base de E.
Alors, pour toute suite (un) ∈ EN, il existe des suites composantes (u1,n), . . . , (up,n) ∈ KN telles que pour tout n ∈ N,

un = u1,ne1 + . . .+ up,nep

Remarque C’est tout simplement ce qu’on fait pour C lorsqu’on voit celui-ci comme un R-espace vectoriel de dimension 2.
D’ailleurs, on pourra même étendre les autres propriétés à condition de prouver d’abord ce résultat fondamental :

Soit E un espace vectoriel qu’on suppose de dimension finie, et considérons (e1, . . . , ep) une base de E, ‖.‖∞ la norme infinie
définie sur E par :

‖x‖∞ = ‖x1e1 + . . .+ xpep‖∞ = max
1≤1≤p

|xi|

Alors, toute suite bornée de E admet au moins une valeur d’adhérence, c’est à dire qu’elle admet au moins une suite extraite
convergente.

Théorème 31 (de Bolzano-Weierstrass dans (E, ‖.‖∞)).

I On se ramène aux suites composantes, puis on invoque le théorème sur K = R ou C... attention, on veillera encore à faire
une extraction diagonale des termes afin d’exhiber une seule application extractrice.

En effet, si une suite (un) ∈ EN est bornée, alors :

∃M ∈ R+, ∀n ∈ N, ‖un‖∞ ≤M ⇒ ∀n ∈ N, ∀i ∈ J1, pK, |ui,n| ≤M

et ainsi, les suites composantes sont toutes bornées dans K.

• En particulier, (u1,n) étant bornée, d’après le théorème de Bolzano-Weierstrass, il existe φ1 : N −→ N strictement
croissante telle que la sous-suite (u1,φ1(n)) converge vers une limite `1.

• De la même façon, (u2,n) est bornée, et donc (u2,φ1(n)) aussi : il existe φ2 : N −→ N strictement croissante telle que la
sous-suite (u2,φ1◦φ2(n)) converge vers une limite `2.

• Et on itère le processus jusqu’à avoir l’existence de φp : N −→ N strictement croissante telle que la sous-suite
(up,φ1◦φ2...◦φp(n)) converge vers une limite `p.

Posons φ = φ1 ◦ φ2 . . . ◦ φp et on vérifie que φ désigne une application extractrice telle que :
(u1,φ(n)) sous-suite de (u1,φ1(n)) converge vers `1

(u2,φ(n)) sous-suite de (u2,φ1◦φ2(n)) converge vers `2

. . .

(up,φ(n)) converge vers `p

et par conséquent, avec ` = `1e1 + . . . `pep, on a :

‖uφ(n) − `‖∞ = max
1≤1≤p

|ui,φ(n) − `i| −→ 0

Autrement dit, on a bien prouvé l’existence d’une suite extraite de (un) convergente.
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Soit E un espace vectoriel qu’on suppose de dimension finie, et considérons (e1, . . . , ep) une base de E, ‖.‖∞ la norme infinie
définie sur E.

1. Pour toute norme N définie sur E, N et ‖.‖∞ sont équivalentes.

2. Par transitivité, on en déduit que toutes les normes en dimension finie sont équivalentes.

Théorème 32 (équivalence des normes en dimension finie).

I Pour le premier point, on cherche à comparer ces normes : dans un premier temps, il est facile de montrer que N(x) ≤
α‖x‖∞ à l’aide de l’inégalité triangulaire. Puis, on introduit la sphère unité S(0, 1) = {x ∈ E, ‖x‖∞} = 1, partie compacte
de (E, ‖.‖∞) avant d’invoquer la continuité de N sur (E, ‖.‖∞). Le second point s’obtient alors facilement par transitivité de
la relation d’équivalence sur les normes.

Remarques

1. Même si c’est difficile, on essaiera de comprendre que ce résultat dépend implicitement du théorème de Bolzano-
Weierstrass dans (E, ‖.‖∞) : c’est lui qui nous permet d’affirmer qu’en dimesion finie, S(0, 1) est compacte.

2. Les normes étant toutes équivalentes, on fera très souvent le choix de travailler avec la norme infinie dans les espaces
vectoriels normés de dimension finie. De plus, on pourra retenir que la nature d’une suite en dimension finie est donc
une propriété intrinsèque, c’est à dire qu’elle ne dépend pas de la norme avec laquelle on travaille.

3. Les normes étant toutes équivalentes, on peut réénoncer le théorème de Bolzano-Weiertrass dans un cadre plus
général et ainsi : de toute suite bornée d’un espace vectoriel normé de dimension finie, on peut toujours extraire une
sous-suite convergente.

Soit (E, ‖.‖) un espace vectoriel normé qu’on suppose de dimension finie et considérons (un) ∈ EN qu’on suppose bornée.
Si de plus, (un) possède une unique valeur d’adhérence `, alors la suite est convergente et on a :

un −→ `

Corollaire 33 (critère de convergence pour les suites bornées).

Soit (E, ‖.‖) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (e1, . . . , ep) une base de E, ` =
`1e1 + . . .+ `pep ∈ E. Alors, pour toute suite (un) ∈ EN, on a l’équivalence :

un −→ ` ⇔ ses suites composantes convergent dans K avec pour tout i ∈ J1, pK, ui,n −→ `i

Propriété 34 (convergence d’une suite d’un espace vectoriel normé de dimension finie).

I On procède par double implication. A chaque fois c’est immédiat, car en dimension finie les normes étant équivalentes,
on a aussi ‖un − `‖∞ −→ 0.

Remarque Finalement, l’étude d’une suite en dimension finie se ramène à l’étude des suites composantes qui la constituent
et on retiendra en particulier :

• dans Kp, une suite de vecteurs (un) converge si et seulement si les suites composantes convergent et on a :

limun = (limu1,n, . . . , limup,n)

• dans Mp(K), une suite de matrices (An) convergent si et seulement si les suites de coefficients (aij(n)) convergent et
on a :

limAn =

lim a11(n) . . . lim a1p(n)
...

...
lim ap1(n) . . . lim app(n)


D’ailleurs, c’est ce qu’on a utilisé dans le chapitre précédent pour justifier le calcul de l’exponentielle d’une matrice A
donnée, ou encore pour déterminer la limite de (An) quand A désigne une matrice strictement stochastique.
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