Chapitre 2

Suites d’éléments d’un espace vectoriel normé

Dans ce deuxiéme chapitre, on présente rapidement la motion de norme sur un es-
pace vectoriel : cela nous permettra de revoir les principales propriétés des suites
convergentes dans un cadre plus général. D’ailleurs, on verra quelques exemples fon-
damentaux de normes, avant d’aborder les cas particulier de R et des espaces vectoriels
normés de dimension finie.
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Pour aller plus loin

Ce chapitre n’est pas difficile, puisqu’il reprend au fond les principaux résultats de premieére année, mais l'objectif est de
comprendre comment, au travers des démonstrations, on manipule ces normes. C’est d’ailleurs un premier pas vers le chapitre
de topologie qui sera abordé plus tard.
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Les espaces vectoriels considérés ici sont réels ou complexes et K désignera le corps R ou C.

1 Normes et espaces vectoriels normés

1.1 Premiéres définitions

Définition Soit (F, +,.) un K-espace vectoriel.
e On appelle norme sur E toute application ||.|| : E — Ry vérifiant :
Vz € E, ||z|| =0< z =0 (séparation)

VA €K, Vz € E, | Az| = |A|||z]| (homogénéité)
Y(z,y) € E?, ||z +y| < |z + ||yl (inégalité triangulaire)

e Dans ce cas, E muni de la norme ||.|| est appelé espace vectoriel normé.

Remarques

1. Une telle norme sur un espace vectoriel nous permet en fait de définir une distance et donc, de prolonger naturellement
nos probléemes d’analyse asymptotique : convergence, divergence, limite... et ainsi, pour tout (z,y) € E?,

||z — y|| désigne tout simplement la distance entre z et y

2. Pour la séparation, on se contentera de ne vérifier que le sens direct puisque le sens réciproque est immédiat par
homogénéité.

Définition Soit (E, ||.||) un espace vectoriel normé.

e On dit que z € E est unitaire ou normé si ||z|| = 1.

e Plus généralement, si x # 0, alors ——x désigne ’unique vecteur unitaire associé a x.

]|

{Propriété 1 (inégalités triangulaires).}

Soit (E, |.||) un espace vectoriel normé. Alors, on a pour tout (z,y) € E?,

izl = llylll < llz £ yll < ll=ll + [lyll

» On travaille en deux temps : linégalité triangulaire classique découle itmmédiatement des propriétés de la morme. Pour
l'inégalité triangulaire inversée, il suffit de partir de la norme de l'un et d’ajouter + le suivant.

En effet, on a par exemple :

Izl = lle +y =yl < llz+yll + | =yl = llz+ yll + [yl
et ainsi, ||z|| — |lyl] < ||l + y||. De la méme fagon, en partant de y, il vient ||y|| — ||z| < ||z + y|| de sorte que :
(=l = Nlyl) < llz+yll = [l = Iyl < fl= + g

{Propriété 2 (deux exemples a connaitre).]

1. Dans R, on rappelle qu’on définit la valeur absolue d’un nombre réel x par :

x, six >0
|z| =

—x, sinon
de sorte que (R, |.|) désigne un espace vectoriel normé.
2. Dans C, on rappelle qu’on définit le module d’un nombre complexe z par :
|z = V2z

de sorte que (C, |.|) désigne un espace vectoriel normé.

» On revient a la définition d’une norme sur un espace vectoriel. Dans les deuz cas, les premieres propriétés sont immédiates.
Seule linégalité triangulaire nécessite d’étre développée et pour cela, on travaille avec la norme au carré :
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1. Pour tout (z,y) € R=,

2 2 2, . 2 2, . 2 2
le+yl"=(z+y) =z +2zy+y° <" +2lz|lyl + vy~ = (=] + |y|)
On compose alors par la fonction x — \/x croissante sur Ry pour retrouver l'inégalité triangulaire.

2. Pour tout (z,2') € C?,

24P =(z+2)E+72) =

or on peut majorer la partie réelle obtenue : 2Re(zz")
Ainsi, on a :

et on conclut encore par croissance de la fonction racine carrée sur R4 .

Définition Soit (E, ||.||) un espace vectoriel normé, et considérons a € E et r > 0.

e On appelle boule ouverte de centre a et de rayon r ensemble B(a,r) = {z € E, ||z —a| < r}.

e On appelle boule fermée de centre a et de rayon r ensemble Bs(a,r) ={z € E, ||z —a|| < r}.

e On appelle sphére de centre a et de rayon r I'ensemble S(a,r) = {z € E, ||z — a| = r}.

Remarques

1. On choisit d’avoir un rayon r strictement positif, car sinon on a trivialement :
B(a,0) =0, et By(a,0) = S(a,0) = {a}
2. Par inégalité triangulaire, on vérifie aisément que pour tout A € [0, 1], et pour tout (x,y) € By(a,r)? (ou bien B(a,)?),

[Az+ (1 =Ny —al| = Mz —a) + (1 =Ny —a)[| < Az —al + 1 = Mly —af <7
—_————

c’est a dire que les boules fermées et ouvertes sont stables par combinaison convexe. Ce sont des parties convexes
de F, et ainsi on pourra les représenter naivement de la fagon suivante :

Par contre, elles dépendront réellement du choix de la norme retenue.

Définition Soit (E, ||.||) un espace vectoriel normé et considérons A une partie de E. On dit que A est bornée s’il existe M € R
tel que :

vz € A, ||z|| < M
En particulier,
e si (un) désigne une suite d’éléments de E, c’est & dire (u,) € EV, alors on dit que la suite est bornée s'il existe M € R tel
que :
Wn N, |l < M

e si f désigne une application définie sur un ensemble X & valeurs dans E, c’est a dire f € F(X,E), alors on dit que
I'application est bornée s’il existe M € Ry tel que :

Vee X, |f@)| <M

Exemple 1 On se place dans E = C([0,1],R), Pespace des fonctions de classe C* sur [0,1] & valeurs dans R, et on définit
Papplication ||.|| sur E par :

17 =1/(0) + sup |f'(x)|
z€[0,1]
1. Justifier que I’application ||.|| est bien définie sur E.
2. Montrer que ||.|| désigne bien une norme sur E.

3. L’espace E désigne t-il une partie bornée ?
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{Propriété 3 (produit fini d’espaces vectoriels normés).]

On considere Ei, ..., E, des espaces vectoriels normés et on choisit de noter Ni,..., N, des normes associées. On rappelle
que E = E; x ... x E, défini par :
E:{x:(xl,...,xp) e by x... XEp}

constitue un espace vectoriel pour lequel :

V(l’,y) GEZ) x+y:($1 +y15"'7mP+yP)
VN z) e Kx E, At = (Az1,...,A\Tp)

En notant N : E — R4 V'application définie par :
Noo(@) = max(Ni(@1), .., Np(zp)

alors (F, N) désigne un espace vectoriel normé, appelé espace vectoriel produit muni de la norme produit.

» On revient a la définition d’une norme sur un espace vectoriel et on s’appliquera pour retrouver l'inégalité triangulaire.

1.2 Norme associée a un produit scalaire sur un espace préhilbertien

Définition Soit E un K-espace vectoriel.
e Si K =R, on appelle produit scalaire sur E toute forme bilinéaire symétrique définie positive, c’est a dire une application
¢ : E — R vérifiant :

V(z,2',y,9') € B, VA ER, oAz +a',y) = Ap(z,y) + d(2',y) et ¢z, Ay +y') = Ab(z,y) + d(2,y")
Y(z,y) € E?, ¢(y,z) = ¢(z,y) (symétrie classique)
Ve € E, ¢(x,z) >0et ¢(z,2) =0 2=0

et dans ce cas, (F, ¢) définit un espace préhilbertien réel.

e Si K = C, on appelle produit scalaire sur E toute forme sesquilinéaire hermitienne définie positive, c’est a dire une
application ¢ : £ — C vérifiant :

V(z,y) € E?, ¢(x,y) € C

V(z,2',y,9) € B, YA€ C, p(Az +2',y) = Ap(z,y) + d(2',y) et ¢z, Ay +y') = Ab(z,y) + o(w,y")
Y(z,y) € E?, ¢(y,z) = ¢(x,y) (symétrie hermitienne)
Ve € E, ¢(z,z) > 0et ¢p(z,2) =0 2=0

et dans ce cas, (F, ¢) définit un espace préhilbertien complexe.

On appelle alors norme associée & ce produit scalaire 'application notée ||.||2 : E — Ry et définie par :

[zlle = Vé(x, z)

Remarque Les propriétés du produit scalaire nous donnent immédiatement que |.||2 vérifie les axiomes de séparation et
I’homogénéité : par exemple avec K = C,

Azll2 = Vo(Aa, Az) = \/ANd(z, 2) = VIAPo(z,z) = |All|z]|2

mais attention, & ce stade, il ne s’agit pas encore d’une norme : il reste a vérifier I'inégalité triangulaire.

Théoréme 4 (inégalité de Cauchy—Schwarz).]

Soit E un K-espace vectoriel et notons ¢ un produit scalaire sur E. Alors, pour tout (z,y) € E?,

6@z, y)| < llzll2-llyll2

» Six est nul, c’est immédiat. Sinon, on distingue les cas réel et complexe. Ainsi, si K =R, on peut introduire la fonction
polynéme P(N\) = ||Ax 4+ y||3 et invoquer le signe de cette fonction sur R. Si K = C, on montre d’abord qu’il existe un unique
couple (A, z) € C x xt tel que y = Az + z, puis on en déduit I’inégalité & ’aide du théoréme de Pythagore.
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Propriété 5 (norme associée a un produit scalaire) )

V)

Soit E un K-espace vectoriel et notons ¢ un produit scalaire sur E. Alors, la norme associée ||.||2 est une norme sur E.
On parle plus précisément de norme euclidienne associée si K = R ou de norme hermitienne associée si K = C.

» Il suffit de revenir a la définition d’une norme. Encore une fois, seule l'inégalité triangulaire nécessite une attention
particuliére puisqu’il faudra alors discuter les cas réel et compleze.

De cette derniere propriété, on peut en déduire des normes usuelles, toutes associées aux produits scalaires que vous avez pu
rencontrer ’an dernier.

Exemple 2

1. (a) On se place dans E = R" et on définit ¢ : E X E — R par :

P(z,y) =Dz
o=l

Etablir que ¢ définit un produit scalaire sur F.
(b) On se place dans E = C" et on définit ¢ : E x E — C par :

P(z,y) = > Tays
=l

Etablir que ¢ définit un produit scalaire sur E.

Ainsi, dans F = K", on pourra retenir que ||.||2 : x — />_7_, |;:|? définit la norme associée au poduit scalaire canonique.

2. (a) On se place dans E = C°([a, b],R) et on définit ¢ : E x E — R par :

o(f,9) = /abfg

Etablir que ¢ définit un produit scalaire sur F.
(b) On se place dans E = C°([a, ], C) et on définit ¢ : E x E — C par :

o(f,9) = /ab?g

Etablir que ¢ définit un produit scalaire sur E.

Ainsi, dans E = C°([a,b],K), on pourra retenir que |.|l2 : f —> f: | f|? définit la norme associée au poduit scalaire
canonique.

3. (a) On se place dans E = M, (R) et on définit ¢ : E x E — R par :

¢(A,B) =tr(A".B) = > axibri
i=1 k=1
Etablir que ¢ définit un produit scalaire sur E.
(b) On se place dans E = M, (C) et on définit ¢ : E x E — C par :
$(A,B) =tr(A".B) = > > axib;
i=1 k=1

Etablir que ¢ définit un produit scalaire sur E.

Ainsi, dans E = M, (K), on pourra retenir que ||.[|2 : A +—— /> i, > r_; |ar:|? définit la norme associée au poduit scalaire
canonique.
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1.3 Quelques exemples fondamentaux

{Propriété 6 (normes usuelles sur l'espace des n—uplets).]

On se place dans EF = K" et on définit les applications :

n
iz € B> |ail, |lll2:2€ Er—s

n
S il oo @ € B max |a
1=1 1=1 L=iSe

Alors, on vérifie que ces applications définissent bien des normes sur K". FElles sont respectivement appelées norme-1,
norme-2 et norme infinie.

» Le cas de la norme ||.||2 a déja été abordé. Pour les deuz autres applications, on revient & la définition d’une norme sur
un tel espace vectoriel.

Remarque Il s’agira donc de faire attention aux normes utilisées dans les espaces vectoriels considérés. Par exemple, dans
le cas particulier du plan euclidien R?, on peut représenter la boule unité, de centre (0,0) et de rayon 1.

Par définition, on a donc en fonction de la norme retenue :

® By(0g2,1) = {u=(2,9) €R?, [lulh <1} = {u= (z,9) R, |z +]y| <1}

\%

i Bf(OR271) = {u = (I7y) € R27 ||u||2 < 1} = {u = (I7y) € R27 z? +y2 < 1}

1IN
NI

® By(0g2,1) = {u=(z,y) €R?, JJulloo < 1} = {u = (z,y) € R, max(|z|,[y[) <1}

{Propriété 7 (normes usuelles sur I’espace des fonctions continues sur un segment).]

On se place dans E = C°([a, b],KK) et on définit les applications :
b b
Mt feBs (1A, e s e By [117 1ot £ € B sup 17(0)
a a z€Ela,

Alors, on vérifie que ces applications définissent bien des normes sur C°([a, b], K). Elles sont respectivement appelées norme-
1, norme-2 et norme infinie.

» Le cas de la norme ||.||2 a déja été abordé. Pour les deux autres applications, on revient & la définition d’une norme sur
un tel espace vectoriel.
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Remarques

1. Ces trois normes sur ’espace des fonctions continues sur un segment sont importantes, car elles représentent des normes
associées & des modes de convergence différents. Ainsi, ||.||1 est aussi appelée norme pour la convergence en moyenne,
|||l2 est aussi appelée norme pour la convergence en moyenne quadratique et ||.||cc norme pour la convergence uniforme.

2. En fait, on peut généraliser ces résultats et montrer que pour tout p > 1 :

o |llp:z €K™ — (0, |z:|P)"/? désigne encore une norme sur K.

o |l : f €C%a,b),K) — (fab |f|P)}/P désigne encore une norme sur C°([a, b], K).

{Propriété 8 (normes usuelles sur l’espace des marices carrées).}

On se place dans E = M,,(K) et on définit les applications :

[hi:AeE— > lakil, lllz:A€E— | > lanl?, ||.||OO:A€E|—>1Smi,%§n|ak¢|

1<i,k<n 1<i,k<n

Alors, on vérifie que ces applications définissent bien des normes sur M, (K). Elles sont respectivement appelées norme-1,
norme-2 et norme infinie.

» Le cas de la norme ||.||2 a déja été abordé. Pour les deuzx autres applications, on revient & la définition d’une norme sur
un tel espace vectoriel.

2 Suites d’éléments d’un espace vectoriel normé

2.1 Notion de suite convergente

Définition Soit (F, ||.||) un espace vectoriel normé et considérons (u,) € E".

e On dit que la suite (un) est convergente dans FE s’il existe £ € E tel que :

Ve >0, AN € N, Vn > N, |ju, — ¢|| <€

e Si la suite (u,) n’est pas convergente, alors on dit qu’elle est divergente.

Remarques

1. Bien entendu, la convergence d’une telle suite (u,) dépend de la norme considérée sur F et il n’est pas rare de trouver
des suites d’'un méme espace convergentes pour une norme, mais pas pour une autre norme. C’est méme tout l’enjeu
de ce premier chapitre.

Ainsi, 8’il n’y a pas d’ambiguité sur la norme utilisée, on notera : u,, — ¢, sinon on veillera & préciser la norme associée

pour cette limite :

w, -1 )

2. La convergence de la suite (u,) vers ¢ revient en fait & montrer que la distance ||u, — £|| — 0. Ainsi, si la limite est
connue, on cherchera le plus souvent & déterminer une suite (an) € RY telle que :

0 <|lun —¢|| < an, avec a, — 0

Le théoréme d’encadement nous permettra alors de conclure que la suite (u,) est convergente de limite £.

Théoréme 9 (unicité de la limite).j

Soit (F, ||.||) un espace vectoriel normé et considérons (u,) € EN qu’on suppose convergente. Alors, la limite est unique et
elle est encore notée lim wu, ou simplement lim wy,.
n——+oo

» On raisonne encore par ’absurde en adaptant la preuve vue en premiere année.

En effet, si on suppose que la suite (ur) converge vers deux limites distinctes £y et €2 dans E. Alors, pour e = |[f1 —{2]|/3 > 0,
il vient :
N, € N, Vn > A\vl, H“n — (1“ <e
INs € N, Vn > Ny, |Ju, — b2 <€

et ainsi, pour tout n > max(N1, N2), on peut écrire a l’aide de l'inégalité triangulaire :
H(] — (gH = H(l — Un + Up — ZZH S H'll,; — ,('] H + Hll,z — (ZH S 2¢ = 2H(| — (ZH/E))

d’ou, en simplifiant de part et d’autre de l'inégalité : 1 < 2/3. Ce qui est contradictoire et ainsi, la limite est unique.
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Propriété 10 (convergente donc bornée).]

Soit (E, |.||) un espace vectoriel normé. Alors, toute suite convergente est bornée.

a partir d’un certain rang.

» On traduit la convergence d’une telle suite pour e =1 > 0, puis on majore ||un|| = ||un — £+

Remarque On fera attention : la réciproque est fausse et on pourra évoquer la suite réelle ((—1)").

{Propriété 11 (opérations sur les limites).]

Uy —> 4
Soit (E, |.||) un espace vectoriel normé et considérons (un), (v,) € EY telle que { 41 .Ona:
Un — L2

L lunll — 4l
2. pour tout A € K, Auy, + vy, —> My + o
3. si de plus la norme sur E désigne une norme d’algébre, c’est a dire qu’elle vérifie ||zy|| < ||z||||y||, alors :

UnUn — £1£2

» La limite étant connue, on cherchera a chaque fois a contréler la différence entre la suite et sa limite.

Exemple 3 On se place dans E = M, (K) et on définit 'application N : E — R, par :

n
N(A) = lfgfginz |asj|
<i<n

Montrer que N désigne une norme d’algebre sur M, (K).

2.2 Suites extraites et valeurs d’adhérence

Définition Soit (F, ||.||) un espace vectoriel normé et considérons (u,) € E".

e On appelle suite extraite ou sous-suite de (uy) toute suite (v,) pour laquelle il existe ¢ : N — N strictement croissante
telle que pour tout n € N,
Un = Ug(n)

Auutrement dit, la suite (vy,) est constituée de termes de la suite (u,) avec des indices pris de fagon croissante.

e On appelle alors valeur d’adhérence toute limite d’une suite convergente extraite de la suite (un).

Remarque Une telle application ¢ est aussi appelée application extractrice et on peut montrer par récurrence que pour
tout n € N, ¢(n) > n.

{Propriété 12 (valeur d’adhérence d’une suite convergente).]

Soit (E, |.||) un espace vectoriel normé et considérons (u,) € EY, £ € E.

1. Si (un) est convergente de limite ¢, alors toute suite extraite converge nécessairement vers .

2. Toute suite convergente possede donc une seule valeur d’adhérence, sa limite elle méme. Et ainsi, toute suite possédant
au moins deux valeurs d’adhérence, est nécessairement divergente.

» Pour une sous-suite donnée, on se raméne a la définition de la limite et on utilise la remarque précédente pour montrer
qu’elle converge vers £. Le second point découle alors immédiatement du premier.

Remarque On fera tres attention avec cette notion délicate. Par exemple, ce n’est pas parce qu’une suite posséde une seule
valeur d’adhérence qu’'elle est convergente. On pourra considérer la suite (n{™") et pour laquelle on vérifie facilement :

Uop = 2N — +00

- o
U2n+1 mt1
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{Propriété 13 (caractérisation de la convergence a 'aide des suites extraites (u2n) et (U2n+1))-]

Soit (E,||.]|) un espace vectoriel normé et considérons (u,) € EY, £ € E. Alors,

U2n —/

(un) converge vers £ <
U2n+1 — L

» On procéde par double implication. Le sens direct est immédiat et seul le sens réciproque nécessite de revenir a la définition
de la limite.

En effet, si les deux suites extraites convergent, alors pour tout € > 0 fixé, on a :

dN; € N, Vn > Ny, ‘ U2y — (H <e
IN2 € N, Vn > Na, |luznt1 — )| < e

Posons alors N = max(2N1,2N2 + 1), et on vérifie que pour tout n > N, on a :
e ler cas : sim = 2p, alorsn > N = 2p > 2N; = p > Ny et il vient ||uzp — £|| < €
e 2¢me cas : sim=2p+1, alorsn> N =2p+1>2N2+ 1= p > Ny et il vient ||uzpt1 — || < €

c’est a dire dans ces deuz : ||un — £|| < €. Ainsi, on reconnait la définition de la limite et donc, un, — £.

2.3 Comparaison des normes

Définition Soit E un K-espace vectoriel et notons Ni, N2 deux normes quelconques sur E. On dit que ces normes sont
équivalentes s’il existe a, 8 > 0 tels que :

Vz € E, aN1(z) < Nao(x) < BN1(z)

{Propriété 14 (comparaison des normes usuelles sur ’espace des n-uplets).]

On se place dans £ = K" et on rappelle que les applications suivantes définissent des normes usuelles :

n
Iz € B zil, o€ B

n
3 [zil2, [l : @ € E — max |ail
i=1 i—1 1<i<n

De plus, on a pour tout z € F,

< flalh < nllz:

1
= —=llzl
[zlloe < llzll2 < v/nll2le Vn

et ainsi, ces trois normes sont équivalentes.

{nxnm < |lzll < nllzlloo

» Pour les premieres inégalités, il suffit d’encadrer la norme-1 ou 2. La derniere est obtenue par simple transitivité.

Remarques
1. On montre facilement que I’équivalence sur les normes désigne une relation d’équivalence, au sens ou elle est réflexive,
symétrique et transitive.

2. En adaptant les inégalités précédentes & la norme ||.||,, on a encore : ||z]joo < ||z]p < n/P||2]|co, et ainsi, le théoréme

d’encadrement nous livre ||.||, - ||-lloc, ce qui justifie ici la notation utilisée. -
p——4o0

Malheureusement, ’équivalence des normes usuelles sur K™ ne peut pas étre prolongée a l’espace des fonctions continuues sur un
segment.

Exemple 4 Soit E = C°([0,1],R), on considére ||.][1, ||.||2 et ||.]|c les normes usuelles sur E et on définit pour tout n € N* la
fonction f, par :

ont, sit e [0,1/2n]
de sorte que fn(t) = ¢ —2nt+2, sit € [1/2n,1/n]
0, site(l/n,1]

‘ ‘1/n 1

Montrer alors que ces trois normes sont deux a deux non équivalentes.
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{Propriété 15 (invariance du caractere borné et de la convergence).]

Soit E un K-espace vectoriel et notons N1, N2 deux normes qu’on suppose équivalentes, £ € E.

1. Toute suite (un) € E" bornée pour la norme N; est aussi bornée pour la norme Na.

2. Si de plus, (un) est convergente, alors :

N N
Up — 0 < up —> 40

» A chaque fois, on traduit I’équivalence des normes : c¢’est méme le théoréme d’encadrement qui nous donne le second point.

3 Cas particulier des suites réelles

On a vu que (R, |.|) était un espace vectoriel normé de référence, et ainsi toutes les propriétés sur les suites d’éléments d’un
espace vectoriel normé sont encore vraies. De plus, il constitue un corps commutatif totalement ordonné qui vérifie les
axiomes d’existence des bornes supérieure et inférieure :

e toute partie A non vide et majorée de R posseéde une borne supérieure notée M = sup A telle que :

{V;r €A, <M (M est un majorant de A)

Ve>0, dxc € A, xe > M — € (M est le plus petit des majorants de A, au sens ol on ne majore plus si on diminue M)

e toute partie A non vide et minorée de R posséde une borne inférieure notée m = inf A telle que :

{Vm € A, x > m (m est un minorant de A)

Ve>0, dxc € A, e <m+e (m est le plus grand des minorants de A, au sens oll on ne minore plus si on augmente m)

3.1 Inégalités et passage a la limite

Définition Soit (u,) € RY. On rappelle que :

e (un) est convergente s’il existe £ € R tel que :

Ve>0, ANeEN, Vn> N, |up — €| <esl—ec<u, <l+e€

e (un) est divergente si elle ne converge pas ou si elle diverge vers +oo :

Up —> —00: VmER, AN €N, Vn > N, u, <m

{un—>+oo:VM€IR, INEN, Vo> N, un > M

Remarque En fait, c’est la traduction de ces limites en termes d’inégalités qui nous donnent en premiere année des résultats
fort pratiques.

{Théoréme 16 (de comparaison).]

Soient (un), (vn) € RY pour lesquelles on suppose qu'il existe N € N tel que pour tout n > N, u, < vy, et notons (¢1,f2) € R%.

1. Si u, — f1 et v, —> {2, alors par passage a la limite ¢1 < {2.
2. Si up —> 400, alors v, — +o00.

3. Si v, — —o0, alors u, — —oo.

» On revient a la définition de la limite, mais seul le premier point est délicat, puisque les deuz autres s’obtiennent par simple
transitivité de la relation d’ordre.

En effet,
1. On raisonne par U'absurde en supposant que £1 > la. Avec € = (€1 — €2)/3 > 0, il vient :

ANy e N, Vn> Ni, U1 —e<up, </l1+e€
dNs €N, Vn > Na, lo —e <w, </ly+e¢

or ici, le choiz de € nous donne : la+e < €1 —e et ainsi, pour tout n > max(N, N1, N2), ona : vp < lat+e < l1—e < up.
En contradiction avec l’hypotheése u, < v,. D’ou, l'inégalité f1 < 5.
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2. Pour tout M € R fizé, on a : AN, € N, Vn > N1, u, > M. Ainsi, pour tout n > max(N, Ni),

Vp > Un > M
Finalement, on a trouvé un rang a partir duquel vy, est supérieur a nimporte quelle constante M : on a bien v, — +00.
3. Pour tout m € R fixé, on a : AN, € N, ¥n > Ny, v, < m. Ainsi, pour tout n > max(N, N1),
Un <V <M

Finalement, on a trouvé un rang a partir duquel u,, est inférieur a n’importe quelle constante m : on a bien u, — —o0.

Remarque On fera attention : les passages & la limite sont donc compatibles avec les inégalités larges, mais pas avec les
inégalités strictes... c’est une erreur courante a ne pas négliger.

{Théoréme 17 (d’encadrement) ]

Soient (ur), (Un), (wn) € RY pour lesquelles on suppose qu'’il existe N € N tel que pour tout n > N, u,, < v, < Wy, et notons
¢ €R. Alors, on a :
Uy —> L

= v, — £
Wy — 4

» On revient encore a la définition de la limite : on veillera a se placer a un rang suffisament grand pour avoir toutes les
inégalités souhaitées.

Définition Soient (un), (vn) € RY dont on suppose tous les termes non nuls & partir d’un certain rang N. On rappelle que :

*un=_0 (vn) < 3F(an) ERY, Yn > N, uy = anvn avec an, — 0 < up /vy — 0
n——+oo

et dans ce cas, on dit que (u,) est négligeable devant (vy).

o up = Qr (vn) < 3(an) €RY, ¥Yn > N, u, = anvn, avec (a,) bornée < (un/v,) est bornée.
n——+0oo

et dans ce cas, on dit que (un) est dominée par (vy).

o U, ~ U, & El(an)ERN, Vn > N, un = anvp avec anp — 1 < up/v, — 1

n——+oo
et dans ce cas, on dit que (un) et (v,) sont équivalentes.

Remarques

1. Ces relations de comparaisons son trés pratiques, ne serait-ce que pour déterminer la limite d’une suite mais elles
cachent avant tout des inégalités et on pourra plus tard apprendre & sommer, sous certaines conditions, ces relations
de comparaison. D’ailleurs, s’il n’y a pas d’ambiguité, on pourra noter simplement :

Up = 0(Vn), Un = O(Vn), Un ~ Un

2. La relation ~ doit étre maniée avec précaution, car elle est compatible avec la multiplication et donc les puissances,
mais n’est pas compatible avec ’addition et certaines compositions. Par exemple,

. 1
n~n-+1 mais " £ ™"

{Corollaire 18 (immédiat) ]

Soient (un), (v,) € RY dont on suppose tous les termes non nuls & partir d’un certain rang N, et £ € R. Alors, on a
immédiatement :

1. Un ~vn & Up = vn + 0o(vy)

Up ~ Un

= up, — ¢
Vp —> £
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3.2 Des théoreémes de convergence tres utiles

{Théor‘eme 19 (de la limite monotone pour une suite croissante).}

Soit (un) € RY qu’on suppose croissante.

1. Si (un) est majorée, alors la suite est convergente et on a limu, = sup un, qu’on peut aussi noter sup .
neN

2. Sinon, la suite (un) est divergente et lim u, = +oo.

» Pour le premier point, on montre que {un, n € N} posséde une borne supérieure dont on prouvera qu’elle désigne tout
simplement la limite de la suite. Pour le second point, il suffit de nier I’hypothése de majoration et d’invoquer la monotonie...
on retrouvera alors la définition d’une suite divergente.

{Théoréme 20 (de la limite monotone pour une suite décroissante).]

Soit (un) € RY qu’on suppose décroissante.

1. Si (un) est minorée, alors la suite est convergente et on a limu, = ini& Un, qu’on peut aussi noter inf u,,.
ne

2. Sinon, la suite (u,) est divergente et lim u, = —oco.

» On adapte la démonstration précédente et on prouvera d’abord l’existence de la borne inférieure.
Exemple 5 On considére (u,) une suite réelle bornée et on pose pour tout n € N,
vn, = sup{up,p > n} et w, = inf{uy,p > n}
1. Montrer que les suites (vn) et (wy) sont convergentes.

2. On note alors limwv, = limsupu, et limw, = liminfwu,. Etablir que ces deux limites représentent en fait des valeurs
d’adhérence pour la suite (un).

3. Soit £ une valeur d’adhérence de la suite (u,). Montrer que : liminfwu, < /¢ < limsup un.

Ainsi, on pourra retenir que les limites liminf et lim sup désignent respectivement la plus petite et la plus grande des valeurs
d’adhérence d’une suite.

{Théoréme 21 (de convergence des suites adjacentes).]

(un) est croissante
Soient (un), (vn) € RN qu’on suppose adjacentes, c’est & dire que par exemple : { (v,) est décroissante . Alors, on a :

Up —Un — 0
1. les deux suites sont convergentes et de méme limite /.

2. de plus, on peut encadrer cette limite de sorte que pour tout n € N, u, < £ < v,.

» On introduit la suite auziliaire wy, = vy —un et on prouve que pour tout n € N, wy, > 0. On peut alors exploiter la monotonie
des suites données pour erhiber un encadrement de celles-ci et conclure a l’aide du théoréme de la limite monotone.

Remarque On essaiera de retenir cet encadrement, car il peut étre utile. D’ailleurs, si les suites données sont strictement
motonones, on peut méme préciser que pour tout n € N,

Un < Unt1 <UL < Upt1 < Vp = Un < £ < Up

et ainsi, I’encadrement de la limite est strict.

Exemple 6 On définit les suites (un) et (vy) par :

n

* 1
Vn € N*, u, = — et vp = Uup + —
— k! n.n!

1. Montrer que ces deux suites sont adjacentes.

2. On peut montrer que e = lim u,, = limv,,. Prouver alors que e est un nombre irrationnel.
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Théoréme 22 (de Bolzano—Weierstrass).}

Toute suite réelle bornée admet au moins une valeur d’adhérence, c’est a dire qu’elle admet au moins une suite extraite
convergente.

» On va procéder par encadrement et on construit par récurrence des segments emboités I, = [an,byn] de sorte que pour tout
n € N, I, posséde une infinité de termes de la suite (un).

Pour cela, considérons une suite réelle (u,) qu’on suppose bornée et posons :

ap = inf u, o . o
et ainsi, Io = [ao, bo] contient une infinité de termes.
bo = sup un,

Puis, par récurrence, ayant construit un tel segment I,, = [(l,ry,,. b,,] contenant une infinité de termes, on calcule le point milieu
Cnt1 = (an +bpn)/2 et on pose :

An+1 = Qn . N e, . an+1 = Cn41 .
S1 [(1,,,,6,,+1] posséde une infinité de termes, ou bien. sinon

bn+1 = Cn+1 On+1 — bn

Et dans les deuz cas, In41 = [an+t1,bnt1] contient une infinité de termes de la suite (uy).
Pour finir, on choisit alors des termes extraits de la suite (urn) en veillant & chaque fois a piocher d’une part dans les segments
issants. On a alors une suite extraite (ug(n)) vé ant pour tout n € N,

I, et en veillant d’autre part a prendre des indices cr
an S “’o(n,) S bn,

Or les segments I, étant emboités, on a : (a,) croissante, (by) décroissante et b, — an, = (b — ao)/2" — 0. Ces suites
étant adjacentes, elles convergent donc vers une méme limite £.

Le théoréme d’encadrement nous permet de conclure que la suite extraite (u,(,(,,)) ainst construite est bien convergente et on
en déduit le théoréme de Bolzano-Weierstrass.

Remarques
1. On aurait pu aussi revenir & un exemple rencontré plus tot : en effet, les limites limsup et liminf fournissent des
valeurs d’adhérence d’une telle suite bornée, ce qui prouve le théoreme de Bolzano-Weierstrass et nous livre un exemple
explicite de valeur d’adhérence.

2. Ce théoreme a de nombreuses applications : c’est notamment grace a lui qu’on peut prouver en premiere année le
théoreme de Heine pour les fonctions continues d’une variable réelle, ou encore que 'image continue d’un segment est
un segment.

Corollaire 23 (critere de convergence pour les suites bornées).}

Soit (un) € RY qu’on suppose bornée. Si de plus, (u,) posséde une unique valeur d’adhérence £, alors la suite est convergente
et on a :
Uy —> 4

» On raisonne par l’absurbe en supposant que u, +— £ et on construit une suite extraite qui ne peut pas tendre vers £.

Remarques
1. Ce résultat est assez pratique, car pour prouver la convergence d’une telle suite bornée, cela revient a résoudre un
probléeme d’unicité. Bien entendu, c’est le genre de résultat théorique qu’on réservera aux exercices les plus difficiles.

2. D’ailleurs, si la suite est bornée et divergente, c’est donc que nécessairement elle admet au moins deux valeurs
d’adhérence distinctes.

3.3 Application a 1’étude des suites a valeurs complexes

Encore une fois, (C,|.|) est un espace vectoriel normé de référence et on retrouvera les propriétés générales de ces espaces.
Malheureusement, il ne possede pas de relation d’ordre naturel et ’étude des suites complexes nécessitera souvent de se
ramener aux suites réelles qui les constituent.

—[Propriété 24 (convergence d’une suite complexe).}

Soit (un) € CV telle que pour tout n € N, u, = a, + ib,, et notons £ = a + i, (o, B) € R%. Alors, on a 1’équivalence :

an — «

Up — &
b, — B
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» On procéde par double implication. Le sens direct est immédiat, car on peut majorer les différences par le module |u, —£|.
Pour le sens réciproque, on calculera simplement le module avant de passer a la limite.

Remarque Finalement, I’étude d’une suite a valeurs complexes se ramene a I’étude de deux suites réelles, les suites partie
réelle (ay) et partie imaginaire (by,). ‘

D’ailleurs, il peut aussi étre utile de faire appel & la forme exponentielle et ainsi, si u, = pne’®® avec p, — a et 0, — 3,
alors :

iOpn

Un = pne'®™ = p, cos(0,) + ipn sin(0,) — acos(B) + iasin(B) = ae’®

Exemple 7 Fixons A € R et on définit la suite (z,) pour tout n € N* par :
A
n — 1 i—)"
z ( +ln)

Montrer que (zn) converge et préciser sa limite.

Théoréme 25 (de Bolzano-Weierstrass).]

Toute suite complexe bornée admet au moins une valeur d’adhérence, c’est & dire qu’elle admet au moins une suite extraite
convergente.

» On se ramene auz suites partie réelle et imaginaire, puis on invoque le théoréme dans le cas réel... attention, on veillera
a faire une extraction diagonale des termes afin d’exhiber une seule application extractrice.

Corollaire 26 (critere de convergence pour les suites bornées).]

Soit (un) € CY qu’on suppose bornée. Si de plus, (un) posséde une unique valeur d’adhérence £, alors la suite est convergente
et on a:
Uy —> 4

3.4 Quelques rappels sur les suites récurrentes classiques

{Propriété 27 (suite arithmétique).]

On rappelle qu’une suite (u,) € K" est arithmétique 'il existe r € K tel que : Vn € N, upi1 = up, + 7.
Et dans ce cas, on montre par récurrence que :

1. Vn € N, un, = uo + n.r et plus généralement, avec p fixé dans N, Vn > p, up = up + (n — p).r

(uo + un)

2. VneN, Y7 jur=(n+1). >

Remarque On apprendra a utiliser cette derniere formule, car elle nous permet d’aller plus vite pour déterminer 1’expression

de sommes classiques :
2
k=0

n—

L (n—=2)(n+1)
Qkff

k=

{Propriété 28 (suite géométrique).}

On rappelle qu’une suite (u,) € KY est géométrique s’il existe ¢ € K tel que : ¥n € N, Uni1 = q.Un.
Et dans ce cas, on montre par récurrence que :

1. Vn € N, u,, = uo.q" et plus généralement, avec p fixé dans N, Vn > p, up, = up.q" "
1— qn+1 .
Ug.————, si 1
2.VneN, Y _jur = 0 1—q ¥

uo.(n+1), sig=1
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Remarques

1. On apprendra encore a utiliser cette derniére formule, car elle nous permet d’aller plus vite, mais surtout d’éviter des
erreurs grossieres. Ainsi, si ¢ # 1, on fera attention a ce que :

n 1— n+1 n 1—g" n 1— n—1
k _ q k _ q k_ 2 q
> q =14 > g g > g i st

k=0 k=1 k=2

2. 1l faudra connaitre en particulier le comportement asymptotique de la suite géométrique (¢™) avec ¢ € C. En effet,

e ¢ =0 = la suite est évidemment nulle & partir du rang 1.

o gl >1=]¢"| =lqI" = "™ — 400, et donc la suite est divergente au sens ou elle ne peut pas converger.
e 0< gl <1=|¢" =|g|" =e"™Ud) — 0, et donc la suite tend vers 0.

e |g| =1,¢g=1= la suite est évidemment constante égale & 1.

e |g| =1, # 1 = on raisonne par 'absurde en supposant que la suite converge et en notant ¢ sa limite :

comme g™ = q.q", il vient par passage & la limite £ = ¢f < £(1 — q) = 0 < £ = 0. Mais alors :

"l — |4 =0
{:qn: | ||n| ) L ce qui est impossible par unicité de la limite, et donc la suite est divergente.

Finalement, on retrouve bien que la suite (¢") converge si et seulement si |g| < 1 ou g = 1.

Exemple 8 Montrer que la suite (u,) définie pour tout n € N par :
un = nsin(27nle)

est convergente et préciser sa limite.

{Propriété 29 (suite arithmético-géométrique).]

On rappelle qu’une suite (u,) € K" est arithmético-géométrique s'il existe a,b € K avec a # 1,b # 0 tels que :
Vn €N, upt1 =aun, +b
Dans ce cas, on pose £ = b/(1 — a) et on montre que v, = u, — £ définit une suite géométrique de raison a de sorte que :

Vn € N, u, = (ug — £).a" + £

{Propriété 30 (suite récurrente linéaire d’ordre 2)]

On rappelle qu’une suite (u,) € K" est récurrente linéaire d’ordre 2 'il existe a,b € K avec b # 0 tels que :
Vn € N, Unta = alnt+1 + bun

Dans ce cas, on résout ’équation caractéristique associée dans C : 72 — ar — b = 0 et ainsi,

e si A # 0, I'équation admet deux racines distinctes ri,72, et on a : (un) € Vect((ry), (r3)).

e si A =0, I’équation admet une racine double 7o, et on a : (un) € Vect((rg), (nry)).

» On pose E = {(un) € CV, uni2 — atini1 — bun, = 0} et on montre que ¢ : (un) € E — (uo,u1) € C? définit un isomor-
phisme d’espaces vectoriels. On en déduit que dim(E) = 2 et on vérifie simplement que les suites données représentent a
chaque fois deux vecteurs indépendants de E.

Par définition d’une telle suite a deux pas, pour tout couple de conditions initiales données, il existe une unique suite
(un) associée dans E. L’application ¢ étant linéaire, c’est un isomorphisme d’espaces vectoriels de sorte que :

dim(E) = dim(K?) = 2

On vérifie alors que les vecteurs données dans les deux cas conviennent, et n’étant pas colinéaires, ils constituent une base de
E. Ce qui nous permet d’en déduire que toute suite de E est bien engendrée par ces vecteurs.
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Remarques

1. Dans le cas particulier d’une suite réelle pour laquelle I’équation caractéristique nous donnerait deux racines complexes
conjuguées r1 = pe'? ry = pe™® | on peut affiner Pécriture :

(un) € Vect((r?), (r3)) = Vect((p" cos(nb)), (p" sin(nd)))

2. Bien entendu, on ne traite pas ici toutes les suites classiques et il faudra revoir le cas des systemes dynamiques discrets
de la forme :
Unt1 = f(un)

et pour lesquels on cherche souvent :

e & étudier la monotonie de f et y placer des points fixes éventuels afin de reconnaitre des intervalles stables

e 3 identifier la nature de la suite (u,) en fonction des intervalles accrochés par wug.

4 Cas particulier des espaces vectoriels normés de dimenion finie

Définition Soit (E,||.||) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (ei,...,e,) une base de E.
Alors, pour toute suite (u,) € EV, il existe des suites composantes (u1 ), ..., (up.n) € K" telles que pour tout n € N,

Up = UL,n€1 + ...+ Upn€p

Remarque C’est tout simplement ce qu’on fait pour C lorsqu’on voit celui-ci comme un R-espace vectoriel de dimension 2.
D’ailleurs, on pourra méme étendre les autres propriétés a condition de prouver d’abord ce résultat fondamental :

—[Théoréme 31 (de Bolzano-Weierstrass dans (E, ||HOO))}

Soit E un espace vectoriel qu’on suppose de dimension finie, et considérons (e, ..., ep) une base de E, ||.||c la norme infinie
définie sur E par :

lalleo = llzses + ..+ Tpepllos = max [

Alors, toute suite bornée de E admet au moins une valeur d’adhérence, c’est a dire qu’elle admet au moins une suite extraite
convergente.

» On se rameéne aux suites composantes, puis on invoque le théoréme sur K =R ou C... attention, on veillera encore a faire
une extraction diagonale des termes afin d’exhiber une seule application extractrice.

En effet, si une suite (uy) € EYN est bornée, alors :
IM eRy, Vn €N, [Juplloo <M =VneN, Vi€ [L,p], |uin <M
et ainsi, les suites composantes sont toutes bornées dans K.

e En particulier, (ui,,) €tant bornée, d’apres le théoréme de Bolzano-Weierstrass, il existe ¢1 : N — N strictement
croissante telle que la sous-suite ('u]_ol(,,,)) converge vers une limite (1.

e De la méme facon, (usz,,) est bornée, et donc (1/,2.(”(,7)) ausst : il existe ¢po : N — N strictement croissante telle que la
sous-suite ('ltg_olm,,z(”)) converge vers une limite £z.

e Il on itére le processus jusqu’a avoir [’existence de ¢, : N — N strictement croissante telle que la sous-suite
(’ttwwo(,z___oop(,l)) converge vers une limite .

Posons ¢ = ¢1 0 ¢a...0 ¢y et on vérifie que ¢ désigne une application extractrice telle que :

(U1,p(n)) Sous-suite de (U1, (n)) converge vers £

(u2,4(n)) sous-suite de (Uz ¢ 00 (n)) cONVETgE VETS L2

(Up,p(n)) converge vers £y
et par conséquent, avec { = lre1 + ... 4pep, 0N a :
H“o(n) - éHx = ImaxX ‘Uy‘,.o(n,) - éz‘ — 0
1<1<p

Autrement dit, on a bien prouvé l'existence d’une suite extraite de (un) convergente.
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Chapitre 2
MP - Lycée Chrestien de Troyes Suites d’éléments d’un espace vectoriel normé

{Théoréme 32 (équivalence des normes en dimension ﬁnie).]

Soit E un espace vectoriel qu’on suppose de dimension finie, et considérons (e1, ..., ep) une base de E, ||.||« la norme infinie
définie sur F.

1. Pour toute norme N définie sur E, N et ||.||cc sont équivalentes.

2. Par transitivité, on en déduit que toutes les normes en dimension finie sont équivalentes.

» Pour le premier point, on cherche & comparer ces normes : dans un premier temps, il est facile de montrer que N(x) <
allz|le @ Vaide de linégalité triangulaire. Puis, on introduit la sphére unité S(0,1) = {z € E, ||z|lec} = 1, partie compacte
de (E,||.]loo) avant d’invoquer la continuité de N sur (E,||.||s). Le second point s’obtient alors facilement par transitivité de
la relation d’équivalence sur les normes.

Remarques

1. Méme si c’est difficile, on essaiera de comprendre que ce résultat dépend implicitement du théoréeme de Bolzano-
Weierstrass dans (F, ||.||s) : ¢’est lui qui nous permet d’affirmer qu’en dimesion finie, S(0, 1) est compacte.

2. Les normes étant toutes équivalentes, on fera tres souvent le choix de travailler avec la norme infinie dans les espaces
vectoriels normés de dimension finie. De plus, on pourra retenir que la nature d’une suite en dimension finie est donc
une propriété intrinséque, c’est a dire qu’elle ne dépend pas de la norme avec laquelle on travaille.

3. Les normes étant toutes équivalentes, on peut réénoncer le théoréme de Bolzano-Weiertrass dans un cadre plus
général et ainsi : de toute suite bornée d’un espace vectoriel normé de dimension finie, on peut toujours extraire une
sous-suite convergente.

{Corollaire 33 (critere de convergence pour les suites bornées).]

Soit (E, ||.||) un espace vectoriel normé qu’on suppose de dimension finie et considérons (u,) € EN qu’on suppose bornée.
Si de plus, (un) posséde une unique valeur d’adhérence ¢, alors la suite est convergente et on a :

Up —> 4

{Propriété 34 (convergence d’une suite d’un espace vectoriel normé de dimension ﬁnie).]

Soit (E,|.]]) un espace vectoriel normé qu’on suppose de dimension finie, et considérons (e1,...,ep) une base de F, ¢ =
lier + ...+ bye, € E. Alors, pour toute suite (u,) € EY, on a I’équivalence :

un, — £ < ses suites composantes convergent dans K avec pour tout ¢ € [1,p], wi,n — ¥

» On procéde par double implication. A chaque fois c¢’est immédiat, car en dimension finie les normes étant équivalentes,
on a aussi ||un — £l — 0.

Remarque Finalement, I’étude d’une suite en dimension finie se rameéne a I’étude des suites composantes qui la constituent
et on retiendra en particulier :

e dans KP, une suite de vecteurs (u, ) converge si et seulement si les suites composantes convergent et on a :
b

limu, = (imuin,...,limup )

e dans M, (K), une suite de matrices (A,) convergent si et seulement si les suites de coefficients (a;;(n)) convergent et
on a:
limaii(n) ... limaip(n)

lim A, = : :
limapi(n) ... limapy(n)

D’ailleurs, c’est ce qu’on a utilisé dans le chapitre précédent pour justifier le calcul de 'exponentielle d’une matrice A
donnée, ou encore pour déterminer la limite de (A™) quand A désigne une matrice strictement stochastique.
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